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Abstract. Since the introduction of the Modern Portfolio Theory by
Markowitz in the Journal of Finance in 1952, it has been the underlying
theory in several portfolio optimization techniques. With the advance-
ment of computers, most portfolio optimization are done by CPUs. Over
the years, there have been papers that introduce various optimization
methods including those introduced by Markowitz, implemented on the
CPUs. In the recent years, GPUs have taken the front seat as a tech-
nology to take computational speeds to new levels. However, very few
papers published about portfolio optimization utilize GPUs. Our paper
is about accelerating the open source Critical Line Algorithm for portfo-
lio optimization by using GPU’s, more precicely using NVIDIA’S GPUS
and CUDA API, for time consuming parts of the algorithm.
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1 Introduction

Since its introduction in 1952 by Harry Markowitz, the Modern Portfolio Theory
has become a solid foundation for the creation of various methods of portfolio
optimization. The paper he wrote [1] provided mathematical model which took
into account expected return and risk when constructing an optimal portfolio [2].
Other methods heavily used since the departure from Markowitz model such as
“market-cap weighting” and “fundamental weighting” don’t explicitly make as-
sumptions about the risk and return parameters like the one used in Markowitz’s
theory. However, there has been a shift from market-cap weighted indexing to
other schemes that take market anomalies into consideration rather than the
“standard investment theory” that are very similar to the one Markowitz pro-
posed; These modern methods tend to focus on minimizing the variance of the
portfolio and focusing on portfolio diversification measures [2]. Since the model’s
introduction in 1952, the equity indexes have come full circle according to Ka-
plan [2]. This shift might have to do with the market slumps in the late 2000’s
or just be the cyclical nature of the market.

For this paper we utilized the open source (critical line) algorithm for port-
folio optimization presented by Bailey and Prado in their paper [5]. The main
reason for utilizing this algorithm besides the fact that it is open source was
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that it computed the same optimized portfolio as a VBA algorithm with a faster
computation time [5] and it can handle any number of assets restricted only
by the hardware limitations. The focus of this paper is to parallelize the bottle
neck of the sequential algorithm to reduce the computation time for deriving an
optimized portfolio.

2 Related Works

With the advancement in computing capabilities, there has been an increase in
utilizing computers for optimization algorithms. However, though there is an
abundance of literature highlighting various methods of optimization, very few
if any provide an open source implementation of such algorithms. Most methods
used by non-professionals are either too slow or rely too much on VBA/Excel
for portfolio optimization. Though there are some open source implementations
and guides on using VBA such as [4], most examples utilize a small set of assets
and as the size of the co-variance matrix starts increasing dramatically, excel
starts having issues with the size of the data.

We found two papers that address portfolio optimization on the GPUs [6]
and [7]. The [6] written by Stchedroff used the Multi Directional optimization
which is an example of the Direct Search method, to find an optimal portfolio
from an asset population. The sequential code was executed on an unspecified
CPU using multiple threads and the parallel code was written on an unspecified
GPU. Stchedroff did mention using CUBLAS, BIAS and BLAS libraries for the
matrix computations. According to his results he achieved a 10x speed up on
the GPU vs CPU and a 60x speed up for the combined GPU and new algorithm
approach. However the author didn’t provide any psuedo code for the sequential
or parallel implementations, and didn’t specify any information on the CPU and
GPU hardware.

The [7] written by Hu used simulated anealing to derive the optimal portfolio
from randomly generated portfolios from asset population of twenty. He provided
one psuedo algorithm for his portfolio selection process but didn’t provide any
psuedo code for the Cuda kernels. He mentioned a 4X speed up using two Nvidia
GTX295 cards vs the sequential code executed on Intel i7 Quadcore. Besides
these two papers we haven’t found other papers that implemented any portfolio
optimization algorithms on the GPU.

3 Portfolio Optimization

Concept: A vital assumption Markowitz’s model makes is that “the investor
does (or should) consider expected return a desirable thing and variance of return
an undesirable thing [1].” This concept is referred to the “expected returns-
variance of returns rule.” The idea is that for a given risk there should not be
another portfolio that yields a greater or equal return with a risk that is less
than or equal to the optimal portfolio. Another way Markowitz stated this is
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that for a given return there should not be a risk that is less than the risk of the
optimal portfolio.

Model Markowitz’s model is based on portfolio returns, portfolio variances
and the weights assigned to the assets included in the portfolio. We therefore
summarize the ideas behind these components below.

The sum of the weights assigned to each asset have to sum up to one∑N
i=1Xi = 1. The Expected Return of the whole portfolio is expressed as:

E =
∑N

i=1Xiµi. Where Xi is treated as a random variable representing the
weight assigned to an asset and µi represents the expected return of an asset.

The risk in the model is expressed as the variance of the portfolio. However
to understand the variance we first need to understand the co-variance between
two assets. The co-variance between two assets is the expected value of the
product of the deviations of the two assets from their mean. This equation can be
represented as: σij = E[Ri − E(Ri)][Rj − E(Rj)], where σσij is the co-variance
between asset i and j.

We can use the fact that the variance of asset i is the co-variance of σii. We
can express the variance of the whole portfolio as:

V =

N∑
i=1

N∑
j=1

σijXiXj (1)

From the co-variance matrix we are able to compute the correlation between
the assets. An ideal portfolio usually contains assets with minimal correlation
between each other [9] and where the variance of the assets with respect to other
assets in the portfolio is more important than a particular asset’s own variance
alone[8].

4 Critical Line Algorithm

Markowitz’s theory focuses on deriving an efficient portfolio that yields the max-
imum return for a minimum risk (or volatility). When several efficient portfolios
are computed, they make up the Efficient Frontier. There can be no portfolios
that exceed the frontier, the optimal portfolio (max return or min variance)
will be on the frontier and all other portfolios will be inside the boundary of
the curve. The portfolios on the Efficient Frontier will dominate the rest of the
portfolios [9]. Harry Markowitz referred to the the method of deriving the entire
efficient frontier as the “Critical Line” Method. It is also known as Markowitz’s
Efficient Frontier. However we will call it Critical Line because it is referred to
by that name in [1] and [5].

This method has changed over time from minor to major modifications such
as including negative weight for short sales resulting in the problem taking on the
form of an unconstrained problem. However, the algorithm provided by Bailey
and Prada doesn’t allow negative weights (associated with short sales), keeping
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the method as a constrained problem with inequality conditions and equality
conditions as specified in their paper [5]. According to Bailey and Prada, there
isn’t an analytic solution to the optimal portfolio problem so it must be solved
as an optimization problem.

Several works such as [9] suggest solving the efficient frontier using a gradi-
ent based approach. However, the approach is very slow and can lead to local
maximal and minimal based on the starting position and the seed vector. Bailey
and Prado point out that the gradient based optimization approach “require a
separate run for each portfolio” in the efficient frontier; this might explain the
slow computation for gradient based optimization algorithms. They continued
to state that the Critical Line Algorithm is specifically designed for the inequal-
ity constrained optimization problem and it guarantees an exact solution after
a set number of iterations. The Critical Line Algorithm also derives the whole
frontier of efficient portfolios in one run vs multiple runs for each portfolio as
experienced by gradient based approaches.

Various Approaches Some literature points towards setting up the problem
as a convex function and then using quadratic programming to solve the prob-
lem with linear constraints [9] or non-linear programming for convex functions
with non-linear constraints. While others use heuristic approaches such as fire-
fly algorithm [10] or genetic algorithms. Mixed integer programming is another
approach which came up when we searched for various optimization methods of
the portfolio.

Optimization Problem The solution set is found by setting up the problem
as a quadratic problem subject to linear constrains in inequalities and one linear
constraint inequality [5]. In order to understand the model, it is first important
to know the variables Bailey and Prado used for the model in [5]:

– N = 1,2,3 contain the indices for the asset universe
– ω is the row vector of the weights assigned to the assets (a optimizer variable

that needs to be solved)
– l is the row vector with the lower bound for the weights ωi ≥ li, for all i in

N
– u is the row vector with the upper bound for the weights ωi ≤ Ui, for all i

in N
– F ⊆ N represents the “assets that don’t lie on their boundaries” where li ≤
ωi ≤ µi

– B ⊆ N represents the “assets that lie on their boundaries” where 1 ≤ k ≤ n
and B ∪ F = N

– the covariance matrix
∑

, row vector ω, and the mean vector µ are modeled

below:
∑

=

[ ∑
F

∑
FB∑

BF

∑
B

]
, µ =

[
µF

µB

]
, ω =

[
ωF

ωB

]
where

∑
F is the covariance matrix for Free assets,

∑
FB is the covariance

between free assets F and assets lying on the boundary B,
∑
BF is the

transpose of the
∑

FB , µF is the row vector for the means of the free weights,
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µB is the row vector for the means for the assets lying on the boundary, ωF

is the row vector for the weights assigned to the free assets and ωB is the
row vector for the weights assigned to the assets lying on the boundary.

The solution to the problem is obtained by minimizing the Lagrange Function
with respect to the weights in the row vector ω and its multipliers γ and λ. The
Lagrange Function is shown in Equation 2

L[ω, γ, λ] =
1

2
ω′
∑

ω − γ (γ′1n − 1)− λ (ω′µ− µp) (2)

Bailey and Prado used a modified version of the function in Equation . They
stated due to the conditional inequalities they would not be able to solve for the
variables or would be required to use the Karush-Kuhn-Tucker conditions. The
Karush-Kuhn-Tucker conditions are used in mathematical optimization to set up
first order conditions so that the solution is optimal in non-linear programming
[11]. Instead they used the divide and conquer method where they converted the
constrained problem into an unconstrained problem by using the “two mutual
funds theorem.” They modified the Lagrange Multiplier shown in Equation 2
to the format shown in Equation 3, changing the constrained problem to an
unconstrained problem and computed the efficient frontier by deriving a convex
combination between any two neighboring turning points. Due to the length of
the algorithm we have not provided it in the paper, please refer to [5] for the
complete algorithm.

L [ω, γ, λ] =
1

2
ωF ′
∑
F

ωF +
1

2
ωF ′
∑
FB

ωB

+
1

2
ωB ′

∑
BF

ωF
1

2
ωB ′

∑
B

ωB − γ(ωF ′1k + ωB ′1n−k − 1)

−λ (ωF ′µF + ωB ′µB − µp)

(3)

5 Hardware

The algorithms were executed on the CUBIX by the CUBIX Corporation. The
box has 8 NVIDIA GTX-780 cards, 2 Intel Xeon E5 2620s and 65.9 Gigabytes
of Ram. We didn’t use multiple GPUs.

6 Data Collection

The data gathered for the trials was in the same format as specified in their paper
[5]. The assets were collected from Yahoo and contained daily returns for each
asset for a little over two years. We only used stocks as the assets for the portfolio
optimization to keep the data gathering process simple. We originally tried to
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start off at one hundred assets and increment the number of assets by fifty up
to five-hundred assets. We dropped any asset that had missing value(s) for daily
returns. This resulted in the number of assets per file not being increments of 50
and the asset universe varying in size based on the number of assets that were
dropped.

The end results was we had files with the following number of assets: 86,
118, 139, 160, 174, 257, 310, 346, 390, 463, and 501. This allowed us to test
the Critical Line Algorithm on various asset sizes. We also used the 10 asset file
used by Prado and Bailey to do their own testing, this allowed us to confirm that
the parallel algorithm didn’t provide erroneous results. Once data was collected,
we computed the average daily return for the each asset and computed the co-
variance matrix for the asset set.

7 Sequential Execution

The sequential code was slightly modified. Bailey and Prado wrote all the meth-
ods within a class. However due to minimal amount of comments and nature of
Python language we decided to bring all the functions outside of the class so
that we could modify and test each function as we needed. We also modified the
main driver slightly so that we could profile and test the code using various asset
numbers. However, all the modifications we made left the computations and the
control flow intact.

The code was profiled to both time the program completion and determine
which part(s) of the program contribute the most to the completion time. This
allowed for a more precise target to parallelize using CUDA. After profiling the
code it was determined that the majority of the time was spent in the reduce
matrix function. The purpose of the function is to derive a sub matrix for a set
of assets from a larger matrix.

The getMatrices function calls the reduceMatrix function. The reduceMa-
trix function contains two for loops, with the first for loop extracting specified
columns and appending them to an intermediate matrix. The second for loop
extracts specified rows from the intermediate matrix and appends them to the
return matrix. The loops rely heavily on the numpy.append function which calls
the numpy.concatenate function. This function joins two arrays together. How-
ever, to accomplish this task it requires creating a new array large enough to
hold all the values. With small size arrays this task is very fast and the overhead
associated with it is trivial, but as the size of the matrices and the number of
calls to the function increase, the overhead associated with this task takes a toll
on the overall completion time. This was made evident by the profiling of the
code and led us to parallelize the reduceMatrix function.

8 Parallel Execution

Memory Transfer The most significant overhead associated with parallel com-
puting (GPU specific) comes from the transfer of data from the host to device
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and back again. In order to minimize the impact of this overhead we created two
large matrices when we first initialized the CLA class. The first matrix contained
the covariance matrix for the complete asset population in the device memory
(deviceCovar matrix) and the second matrix (intermMatrix) was a square matrix
based on the asset population size was used to extract and hold all the necessary
columns from the deviceCovar matrix; it acted as the temporary matrix that held
the specified columns of the deviceCovar matrix. From the intermMatrix we ex-
tracted the specified rows for the reduced returnMatrix. By allocating a large
bank of memory and then transferring the needed data to the device once during
the initialization phase we reduced overhead associated with memory allocation
and data transfer significantly. Once the data and the needed memory were on
the device, we could utilize the two matrices repeatedly without incurring the
overhead of transferring data from the host to the device repeatedly. However,
we did have to transfer the reduced matrix from the device to the host at the
end of the reduceMatrix function.

reduceMatrix function We created a new reduceMatrix function we named
gpuReduceMatrix because we utilized the original reduceMatrix function for
reduction of the row vectors. As stated previously, with a small asset population
the overhead associated with the reduceMatrix function is very trivial. Keeping
that in mind we created a branching instruction where we specified a threshold
value that had to be met before we utilized the GPU version of the code else
we executed the sequential code written by the Bailey and Prado. The threshold
referred to the size of the deviceCovar matrix. If we set the threshold to zero then
every time the gpuReduceMatrix was called it executed the parallel code. On
the other hand if we specified a threshold then the matrices to be reduced had
to meet the specified threshold size before the parallel code was executed. If the
threshold was not met then the gpuReduceMatrix function used the same code
as the sequential version. In the parallel code section of the gpuReduceMatrix
function, we wrote two kernels that replaced the for loops that were executed in
the sequential code. These two kernels are discussed later.

Cuda Kernels To parallelize the reduceMatrix function we wrote two cuda ker-
nels and called them in the gpuReduceMatrix. The first one (columnAppend)
appended the specified columns from the deviceCovar matrix to the intermMa-
trix. The second one (rowAppend) appended the specified rows from the inter-
mMatrix to the gpuReturnMatrix. Inside the columnAppend kernel each block
mapped to a column of the deviceCovar matrix based on its blockId and each
block thread appended an element of that column to the intermMatrix. Inside
the rowAppend kernel each block mapped to a specified row of the intermMatrix
and each thread copied an element of a row to the gpuReturnMatrix.

Since the max size of the asset population was less than the max number of
blocks the GPU card allowed us to launch, we didn’t stride the blocks for columns
or rows. Meaning each block only mapped one column in the columnAppend
kernal or row in the rowAppend kernel. However, we did stride the the threads
so each thread would be able to append more than one element in each kernel
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if the number of elements in the column or row exceeded the max number of
threads we could launch. Instead of iterating through a loop to append a single
column/row per iteration we were able to append all the columns simultaneously
and then all the rows simultaneously by launching the appropriate kernels with
specified number of blocks and threads. Algorithm 1 and Algorithm 2 show the
code for the cuda kernels.

Algorithm 1 columnAppend Kernel

function appendColumn(dest, src, posList, numColsAppendMatrix, padding, size,
realColumns)

tid ← threadIdx.x
appendPos ← blockIdx.x
extractionPosDataMatrix ← posList[blockIdx.x]
numColsDataMatrix ← realColumns
for mimickedIndex < size do

globalTid += tid × numColsDataMatrix + extractionPosDataMatrix
stride ← blockDim.x×i + tid
index ← stride × (numColsAppendMatrix + padding) + appendPos
rowPos ← (index ÷ realColumns)
mimickedIndex ← index (rowPos × padding)
if mimickedIndex ≥ size then

break
end if
dest[index] ← src[globalTid]

end for
end function

getMatrices function After we parallelized the reduceMatrix function we de-
termined we had to modify the getMatrices function. Each instance of the get-
Matrices calls the reduceMatrix four times: twice to reduce two NXN matrices
(both covariance matrices) and twice to reduce two row vectors (one for average
returns of the assets, and the other for the weights of those assets). We deter-
mined through trial and error that parallelizing the calls for the row vectors
was not efficient and led to an increase in computational time. We modified
the getMatrices function to call the GPU version of the reduceMatrix function
(gpuReduceMatrix) only for NXN square matrices and keep using the original
sequential version of the reduceMatrix for the row vector reductions.

9 Results and Analysis

All of the GPU implementations had a speed up over the sequential trial after
a given threshold. It makes sense that once the number of assets grow, the
computations should be shifted over to the GPU. However, one of the interesting
procedures we tried was a hybrid approach where prior to a certain threshold,
the CPU would run the computations after which threshold the GPU would
take over. This threshold was the number of elements in the co-variance matrix
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Algorithm 2 rowAppend Kernel

function rowAppend(destMatrix, srcMatrix, rowList, numCols, padding, sizeOfIn-
putMatrix)

tid ← threadIdx.x
rowPosDest ← blockIdx.x
rowPosSrc ← rowList[blockIdxX]
destIndex ← rowPosDest × numCols+tid
srcIndex ← rowPosSrc × (numCols+padding)+tid
while iterator < numCols do

if iterator > numCols then
break

end if
matrix[destIndex] ← inputMatrix[srcIndex]
srcIndex += stride
destIndex += stride
iterator += stride

end while
end function

(rows × columns ). After trying different thresholds we were able to see that the
optimal CPU/GPU combination was at fifty elements in the co-variance matrix.
That is when the number of elements in the matrix was below fifty the CPU
reduced the matrix otherwise the GPU reduced the matrix for the co-variance
matrices.

Fig. 1: Completion Time(s) for Sequential, Parallel and 50 Element Threshold

Graph in Figure 1 shows the completion times for the sequential vs parallel
vs the threshold method. The 50 threshold method runs slightly faster than
the GPU reduceMatrix however after 257 assets, the GPU version runs slightly
faster. It is easier to see speed up between the reduceMatrix running on the GPU
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for all covariance matrix reductions and the threshold approach in the graph in
Figure 2. The sequential implementation runs at a much faster time for a small
number of assets, however once the number of assets exceeds 139, the 50 element
threshold method starts getting speed up with the GPU version attaining speed
up at 174 assets and above. However, please note at around 500 assets, the
GPU method has a slightly higher speed up than the threshold method. This
was tested multiple times, and it seems that after 500 assets, when the GPU
does all the reductions for the covariance matrix, it will be faster than both the
sequential and the 50 element threshold method.

Fig. 2: Speed Up Parallel vs 50 Element Threshold

10 Conclusion and Future Work

In this paper we used GPUs to speed up the Critical Line Algorithm to optimize
portfolios using Markowitz’s Efficient Frontier presented by Bailey and Prado.
Prior to parallelizing the bottleneck of the Critical Line Algorithm on the GPU,
we did have an inkling that there would be speed up. We were not sure about
the extent of speed up. However after the results, we were able to determine that
the speed up tends to grow in relation to the number of assets. The most speed
up we were able to attain with an asset population of 501 asset was around 8X.

However, we believe as the size of the asset population increases, the speed
up we attain in relation to the sequential completion time will grow drastically.
The method in which the Critical Line Algorithm has been optimized, it can
handle 65535 assets on one GPU before it will require additional GPUs for the
matrix reduction. The purpose of this paper was to speed up the Critical Line
Algorithm presented in [5] and to hopefully encourage others into utilizing the
power of GPUs for computational finance and publishing the results.

There are several modifications that can be made to the Critical Line Algo-
rithm, such as including negative weights for short sales. The speed up achieved
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was the result of parallelization of a small part of the code. However, as the
number of assets increase, we believe the other parts of the algorithm will start
adding to the time and could be viable for parallelization.
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