
Computers & Graphics 34 (2010) 655–664
Contents lists available at ScienceDirect
Computers & Graphics
0097-84

doi:10.1

� Corr

Univers

E-m
journal homepage: www.elsevier.com/locate/cag
Graphics for Serious Games
VFire: Immersive wildfire simulation and visualization
Roger V. Hoang a,b, Matthew R. Sgambati a,b, Timothy J. Brown b, Daniel S. Coming b,
Frederick C. Harris Jr.a,b,�

a Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV 89557, United States
b Center for Advanced Visualization, Computation and Modeling, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, United States
a r t i c l e i n f o

Keywords:

Virtual reality

Computer-based training

Collaborative virtual environment

Earth and atmospheric sciences
93/$ - see front matter & 2010 Elsevier Ltd. A

016/j.cag.2010.09.014

esponding author at: Department of Compu

ity of Nevada, Reno, Reno, NV 89557, United

ail address: Fred.Harris@cse.unr.edu (F.C. Har
a b s t r a c t

The destruction caused by wildfires has led to the development of various models that try to predict the

effects of this phenomenon. However, as the computational complexity of these models increases, their

utility for real-time applications diminishes. Fortunately, the burgeoning processing power of the

graphics processing unit can not only mitigate these concerns but also allow for high-fidelity

visualization. We present VFire, an immersive wildfire simulation and visualization system. Users are

placed in a virtual environment generated from real-world data regarding topology and vegetation.

There they can simulate wildfires in real-time under various conditions. They can then experiment with

various suppression techniques, such as fire breaks and water drops. The simulation is performed on the

graphics card, which then provides visualization of the results. The system is intended to train fire

chiefs in planning containment efforts and to educate firefighters, policymakers, and the general public

about wildfire behavior and the effects of preventative measures.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Every year, wildfires destroy millions of acres of land and cost
millions if not billions of dollars to control. From 2000 to 2002,
over 18 million acres were burned, over 2000 structures were
destroyed, and over 3.4 billion dollars were expended just for
suppression efforts. Beyond the immediate damage caused by
wildfires, there are also lingering effects that are not only
environmental, but social and economical as well [1].

To better understand wildfires, scientists have developed
methods for modeling wildfire behavior. These models vary in
terms of the types of spreading behaviors simulated and the
simulation domain used [2,3]. Some models simulate the spread
of fire across surface fuels while others simulate fire propagating
into the canopies and possibly moving from tree top to tree top
without interacting with the surface fuels. Still others simulate
embers being lofted through the air and igniting spot fires
potentially vast distances away from the source. These models
take into account a variety of factors including wind, weather
conditions, fuel types, and slope.

Visualization of wildfire behavior can provide a number of
benefits. First of all this allows scientists to verify the accuracy of
these models by comparing the results of an actual fire with the
ll rights reserved.

ter Science and Engineering,

States.

ris Jr.).
output of a simulated version. Once the model is validated, it can
then be used to predict not only the behavior of an existing fire,
but also the consequences of preventative measures, such as
vegetation thinning and prescribed burns.

Displaying these predictions in a visually informative manner
allows for community planners and/or city officials to better educate
the public on existing fire hazards. Furthermore, enabling interactive
manipulation of the simulation along with the visualization allows
for training of fire bosses with respect to resource allocation and fire
behavior. While experimentation would be dangerous and costly to
perform in a real-life situation, these risks can be mitigated by
simulating untested approaches first.

Virtual reality (VR) technology allows users to immerse
themselves in their data. Stereoscopy provides depth information
that is usually lost with standard desktop displays. This depth
information enables the creation of 3D user interfaces, which can
provide a more intuitive form of interaction. Additionally, combining
depth information with high-fidelity graphics can allow an observer
to better compare a simulated fire to a historic fire.

VFire is a wildfire simulation and visualization tool built for an
immersive virtual environment. Users are able to load data about
a geographical region and then experiment on this region by
starting fires, manipulating fuels, and altering weather conditions.
Fire simulation is performed on the graphics processing unit
(GPU) to enable real-time simulation and visualization.

The remainder of this paper is structured as follows. Section 2
provides background information, while Section 3 gives an overview
of the system. Section 4 outlines how the fire simulation is performed

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.09.014
mailto:Fred.Harris@cse.unr.edu
dx.doi.org/10.1016/j.combustflame.2007.04.008

R.V. Hoang et al. / Computers & Graphics 34 (2010) 655–664656
on the GPU and Section 5 describes the methods used to visualize the
simulation. Section 6 discusses the interaction of the user with the
system while Section 7 details the current state of the system. Finally,
Section 8 offers closing thoughts and avenues for future research.
2. Background and related work

This section details work related to and referenced by VFire.
Particularly, a brief history of fire models is presented followed by
a review of software projects that apply these models. Virtual
reality and its previous applications to visualization are then
discussed.

2.1. Fire models

Research into parameterizing various aspects of wildfires has
been ongoing for decades. This section highlights components of
this research that are relevant to this work. For a more complete
treatment of fire models, the reader is referred to Pastor et al. [2].

Both Pastor et al. [2] and Perry [3] outline three types of fire
models: theoretical, empirical, and semi-empirical. Theoretical
models are models that rely solely on physical principles. The
advantage of such reliance is that these models are based on
known properties. On the other hand, the utility of these models
in practice is questionable due to the difficulty of obtaining the
appropriate inputs. On the other end of the spectrum are
empirical models, which are generally statistics that can be used
to predict fire behavior under certain conditions. Beyond this set
of conditions, purely empirical models have had little success.
Between these two extremes lies semi-empirical or semi-physical
models that rely on some theoretical principles which are
adjusted with some experimental data. Because of their reliance
on experimental data, some calibration may be needed in order to
apply these models to different conditions.

Most work done in determining the shape of a fire as it spreads
has concluded that under homogeneous conditions, fire will
spread in roughly an elliptical shape of some sort. Green et al. [4]
compared the effectiveness of a simple ellipse, a double ellipse, an
ovoid, and a rectangle and found that while any of those shapes
could adequately fit the contours of various observed fires, the
ellipse and double ellipse were found to fit best under
homogeneous conditions. As wind speed increased, the length
to width ratio of the ellipse would likewise increase [5].

Spread of a fire tends to be modeled using Huygens’s Principle,
which assumes that every point along a fire perimeter will ignite
another fire that grows elliptically according to the environmental
characteristics of that point. At the end of a time step, the new fire
perimeter is given by the outline of all of these new ellipses [6].

Pastor et al. [2] further classifies models by the aspect of
wildfire that a model is attempting to parameterize. This
classification divides fire models into surface fires, crown fires,
and spotting.

Surface fires are characterized by the burning of fuels that are
less than 2 m in height. While numerous models for surface fire
spread have been developed, few have been applied to real-world
applications. The most successful of these models is a semi-
empirical model developed by Rothermel in 1972 [2]. Rothermel
[7] found that the forward rate of spread for a wildfire was
approximated by the equation

R¼
IRxð1þfwþfsÞ

rbwQig

where IR is the reaction intensity, x is the propagating flux under
zero wind and zero slope conditions, fw is a coefficient resulting
from wind, and fs is a coefficient resulting from slope. rb is the
bulk fuel density, w is the effective heating number, and Qig is the
amount of energy per unit mass required to ignite the fuel.

The previous equation approximates spread in one dimension
with both the direction of maximum wind and the direction of
maximum slope oriented along this axis. Rothermel [8] presents a
method for finding a two-dimensional spread vector if the slope
and wind directions are not aligned. The first component of the
maximum spread rate is found using only the slope in the
direction of maximum slope and no wind; likewise, the second
component of the maximum spread rate is found using only the
wind speed and direction and no slope. These two vectors are
then added together to yield a vector describing the maximum
spread rate.

Crown fires are characterized by the spread of fire into the
crowns of trees. Modeling of such a phenomenon attempts to
determine how a surface fire transitions to a crown fire and how
such a crown fire would modify the spread of fire [2].

Van Wagner [9] classifies crown fires into three categories and
details conditions required for each type. The conditions are tied to
the surface fireline intensity and the surface fire spread rate. A
passive crown fire characterized by the torching of trees occurs
when the fireline intensity crosses a threshold intensity required for
the crowns to be ignited, but the surface fire spread rate is less than
the spread rate required for an active crown fire. Should the surface
rate cross this threshold value, the fire is then considered an active
crown fire. Such a fire spreads through both the surface fuels and
crown fuels simultaneously. The surface fire aids in igniting the
crowns while the crown fire increases the heat radiated to the
surface fuels in front of the fire. If the horizontal heat flux required to
ignite the crowns can be supplied completely by the burning
crowns, then the fire is considered to be independently crowning,
spreading without being linked to the surface fire below.

While Van Wagner outlined various crown fire types and the
conditions for each, the quantitative effects of these fires had to be
measured and calibrated for particular situations. Rothermel [8]
provides one such set of values. The average spread rate of a
crown fire was found to be roughly 3.34 times the spread rate
computed for fuel model 10 (timber litter and understory) with
the wind reduced by a factor of 0.4. Despite its purely empirical
nature and relatively high standard deviations, these values have
been applied to other situations [2].

Spotting occurs when burning embers are carried into the air
and land somewhere in the landscape, possibly igniting it. This
presents a slew of problems ranging from limiting the efficacy of
fire barriers to altering the shape, size, and progression of a fire
[2]. As an example, spotting was observed as far away as 10 km
from the fire front [10].

Major models in this category have been primarily theoretical
in nature and have focused on determining the maximum
spotting distance. Albini proposed a set of models to determine
the maximum spotting distance from torching trees, fuel piles,
and surface fires [2]. In the torching tree case, embers are lofted
vertically to some maximum height and then fall horizontally
with the wind field [11]. While Albini’s models computed the
movement of cylindrical particles that ignored wind parameters
as they were being lofted upwards, more recent research has been
focused on other shapes such as spherical particles being lofted
[12] and propagated [13] and disk-shaped particles moving
through a three-dimensional plume that accounts for wind
during the lofting stage [14].
2.2. Fire simulators

As computer technology advanced, fire models were incorporated
into various software applications. In the one-dimensional case,

R.V. Hoang et al. / Computers & Graphics 34 (2010) 655–664 657
several applications were developed that could compute various
aspects of wildfires under some set of conditions [15,16]. With the
increase in availability of spatial landscape data, several simulators
have been developed that account for both spatial and temporal
variations in landscape characteristics. Such simulators can be
divided into two classes: vector-based and raster-based.

Vector-based approaches more strictly follow the idea of
elliptical wave propagation; that is, the fire shape after some
time step can be found by generating ellipses along the previous
fire shape and determining the new outline. Simulation is done on
a continuous space. While greater in accuracy when compared to
raster-based approaches, their complexity and time requirements
are also greater [2]. Compared to the number of raster-based ones,
few simulators use this approach including SiroFire [17] and
Prometheus [18], and of them, the most commonly known is
FARSITE.

Utilized globally [2], FARSITE [11] is a vector-based wildfire
simulator. It incorporates a number of fire models, including
Rothermel’s surface spread model and Van Wagner’s crown fire
model. Spotting is implemented via Albini’s spotting model for
torching trees with an adjustable percentage reduction in the
number of brands that actually ignite new fires. Fire acceleration
is also accounted for. Acceleration addresses changes such as a fire
heating nearby fuels and increasing the potential for spread as
well as to prevent instantaneous jumps in spread rate when the
perimeter enters an area with a different fuel type. More recent
work on FARSITE includes the integration of a post-frontal
combustion model [19]. The simulator has been used in a
number of fuel treatment assessment applications both by itself
[20] and in conjunction with FlamMap [21].

Raster-based approaches, or cellular approaches, propagate fire
through some set of rules across a uniform grid. While faster and
simpler to implement, they lack precision when compared to
vector-based approaches [2]. Depending on the number of paths
that a fire can travel across, distortion is possible [11].

HFire [22] is a cellular fire spread simulator designed to
compute the spread of surface fire in chaparral fuels. It allows fire
to spread from cell to cell in eight directions, four orthogonal and
four diagonal. A fire ellipse is computed using Rothermel’s spread
rate equation and then spread rates in each of these spread
directions are derived from the result. The simulator assumes that
fire spreads at the maximum rate (no acceleration is accounted
for) and mitigates the effects of distortion due to the limited
spread directions by using an adaptive time step and finite
fractional distances. The adaptive time step determines the
minimum time required for a fire to spread from at least one
burning cell to another burning cell. Using such a mechanism
allows the simulation to quickly simulate large time steps when a
fire moves slowly and vice versa. In conjunction with an adaptive
time step, finite fractional distances allow a fire to spread some
partial distance to other cells within a time step. Should a fire
spread farther than the distance separating two cells, the extra
portion of that spread is contributed to the partial distance
burning out of the newly burning cell.

While FARSITE computes the spread characteristics of a fire
over time, FlamMap [23] assumes that the entire landscape is
ignited and computes the spread characteristics for each cell of
the terrain. It also provides functionality to compute the
minimum time required for a fire to spread from an ignition
point to any other point on the landscape given constant temporal
conditions [24]. In essence, every node in the grid is connected to
each other. The cost in time of traversing any connection is
computed accounting for changes in fuels and the length of the
connection across each fuel type. Given this information, a
shortest path algorithm is executed to determine the minimum
travel time to every node in the simulation space. Optimizations
such as stopping the search if no travel times are updated within a
certain range can be used to speed up this algorithm.

While vector-based approaches may be more precise, they can
also be rather time-consuming. While Stratton [21] computes the
spread of fire and a few other characteristics using FARSITE,
another set of characteristics were computed with FlamMap
instead since a FARSITE simulation could run for hours while
FlamMap output was almost instant. On a set of trial runs, HFire
was found to run roughly 92 times faster than FARSITE running
with several of FARSITE’s capabilities disabled to more correctly
compare the outputs [22].
2.3. Virtual reality and visualization

Virtual reality is a medium through which users are immersed
in artificial environments. With respect to this work, this
immersion is primarily achieved through visual feedback. This is
accomplished through the use of depth cues and specialized
hardware. There are three main types of depth cues: monoscopic,
stereoscopic, and motion. Monoscopic cues provide information
from only one eye, while stereoscopic cues provide information
from two eyes and motion provides information from moving
objects or a moving eye.

To achieve stereoscopic vision there needs to be two images
that view the same point but from different perspectives. There
are two ways to achieve stereoscopic vision: passive and active
stereo. Passive stereo uses two projectors, one for each image that
pass the image through a unique polarized filter, and the users
then wear glasses that match the polarization of the projector
filters. Active stereo uses a single projector that cycles back and
forth between the left and right images. The users wear shutter
glasses that are in sync with the cycling of the projector.

VR has been shown to be effective for crises training by
Sniezek et al. [25]. Systems have been developed to train Civil
Support Teams to handle radiological disasters [26] and to
educate oilrig workers to combat fires [27]. VR is also used to
visualize many scientific data, such as arterial flow data [28] and
LIDAR [29]. This visualization is important because it allows
researchers to view and interact with their data in ways not
possible through a standard desktop system.

Within the realm of visualizing fire data, much work has been
done both to present data in a meaningful way and to improve the
visual quality. Ahrens et al. [30] and McCormick and Ahrens [31]
discuss the generation of non-interactive videos from wildfire
simulation data using volume rendering for fire and smoke.
Govindarajan et al. [32] explores various methods for visualizing
room fire simulations, including the superposition of multiple
simulation results into a single image, while Rushmeier et al. [33]
present a technique for visualizing pool fires. Pegoraro and Parker
[34] apply fire physics to render realistic fire. Bukowski and
Séquin [35] integrate an architectural walkthrough program with
a fire simulator to visualize building fires. This work on VFire we
are presenting is based off of early wildfire visualization work
detailed by Harris et al. [36], Sherman et al. [37], Penick et al. [38],
and Hoang et al. [39].
3. System overview

In this section, we describe the system upon which VFire is
built, beginning with the hardware platform, followed by the
hardware abstraction library, and ending with the types of data
used. The composition of the VFire application itself is then
discussed in detail in the three subsequent sections.

Fig. 3. (Left) A 6-DOF wand device. (Right) A 6-DOF tracking device mounted on

stereoscopic glasses.

R.V. Hoang et al. / Computers & Graphics 34 (2010) 655–664658
3.1. Virtual environments

There are two environments that our system runs on. The first
system is a four-sided CAVETM with one projector per display,
each having a resolution of 1048�1048. The entire system is
driven by a Symmetric Multi-Processor machine running Ubuntu
7.10 with four Intel Xeon E7320 2.13 GHz processors, 48 GB DDR2
RAM, and an Nvidia QuadroPlex Model IV. The system is shown
in Fig. 1.

The other system, shown in Fig. 2, is a six-sided CAVE-like
display with each wall being composed of two 1920�1080
resolution projectors partially overlapped to form a 1920�1920
display. The rendering of the 12 projectors is done by 12 machine
nodes each running Ubuntu 9.10. Each node contains two Intel
Xeon W5590 3.33 GHz processors, 24 GB DDR3 RAM, and two
Nvidia Quadro FX 5800s.

Both systems track the positions and orientations of the user’s
head and a 6-DOF wand input device with an InterSense IS-900
tracking system. In addition to tracking information, the wand
provides the user with six input buttons and a joystick. The
tracker and wand are shown in Fig. 3.
Fig. 1. A 4-sided CAVETM .

Fig. 2. VFire running in a 6-sided CAVE-like environment.
3.2. Hydra

VFire was implemented using Hydra [40], a library for
developing applications in a virtual reality environment. It
abstracts away details about devices and instead provides the
application programmer with a set of generic inputs. Along with
input handling it also automatically computes off-axis view
frustums for all the screens in the environment. For clustered
systems, co-simulation is performed across all nodes in lock-step,
forcing synchronization between all nodes. A head node replicates
all inputs as well as time deltas to all nodes. The time delta
synchronization is necessary to ensure that non-linear systems do
not experience drift over time.
3.3. Data

There are three main types of data in VFire: topological, fuel, and
tree placement. The topological data provides VFire with the
elevations of the geographical area of interest. This data was
acquired using a variety of techniques, including LIDAR, and is stored
as a digital elevation model (DEM). The heightfield terrain and
texture applied to it are generated from this data. The fuel data
provides VFire with the necessary vegetation characteristics, such as
densities, types, BTUs/ton, etc. and can be obtained through
LANDFIRE [41]. Scientists gathered this data on foot using several
instruments and stored it as raster data, which is later converted to
texture data and used by the GPU simulation. The tree placement
provides VFire with more accurate positions for the vegetation and
was determined by using the method presented by Brown [42],
which takes the satellite image provided by the topological data and
applies some image processing to generate the tree positions, as can
be seen in Figs. 4 and 5. The system then uses these positions to
place the trees and buildings in the visualization.
4. GPU fire simulation

The core of VFire is its wildfire simulator. To achieve
interactive feedback, the simulator was implemented on the
GPU using OpenGL and GLSL. The result of this decision is that the
simulation output resides within graphics memory, ready to be
visualized. At the time of its development, more direct GPU
programming mechanisms such as CUDA were unavailable.
Future efforts will explore their use to improve efficiency.
This section details the various components of the simulator
and how they were mapped onto the GPU. More details are given
by Hoang [43].

Fig. 4. Possible trees identified using [42].

Fig. 5. Random tree placements that were made according to the vegetation data.

R.V. Hoang et al. / Computers & Graphics 34 (2010) 655–664 659
4.1. Fire spread

For basic fire spread, the simulator is based on Rothermel’s fire
spread equations, which are based on Huygens’s principle. Thus,
fire spread is modeled as an ellipse expanding at some maximum
rate Rmax with some orientation f and eccentricity e based on
wind and slope. Given this information, the spread rate in any
arbitrary direction Y can be computed using

rðYÞ ¼ Rmax
1:0�e

1:0�ecosðjf�YjÞ

as described by Morais [22]. Given this spread rate r, the time
required for a fire to travel from one point to another point
separated by a distance d is given by

t¼ d=r

Because the desired output is a set of rasters that can be
visualized and analyzed, the simulation is modeled as a two-
dimensional regular rectangular lattice in a fashion similar to that
of HFire [22]. Essentially, the center of each cell is connected to
the centers of each of its eight neighboring cells by a straight line
of fuel. Fire can spread from a burning cell to any unburnt cell by
burning the entire distance separating the cell centers. In the case
of multiple lines burning towards the same center, the first line to
completely burn is used to determine the time of arrival and other
fire characteristics. The time of arrival logic can be summarized by
Algorithm 1. It may be executed repeatedly until the resulting
times of arrival no longer change. To account for changing spread
conditions, times of arrival can only be computed up to the point
when these conditions are altered; any arrivals after this point are
simply discarded.

Algorithm 1. Time of arrival computation.
1: f
or all Surrounding Cells c do

2:
 t¼timeOfArrival(c) + spreadTime(c, thisCell)

3:
 timeOfArrival(thisCell)¼
min(timeOfArrival(thisCell), t)

4: e
nd for
To achieve this logic on the GPU, the times of arrival are
double-buffered with a pair of 32-bit floating point textures. All
times are initialized to the very end of the simulation. A fragment
shader is executed over each cell of the simulation space. This
shader executes a single iteration of Algorithm 1 and uses the
resulting value as the fragment color as well as the fragment
depth. During execution, one texture is used as the times of
arrivals accessed while the other texture is used to collect the
outputted values. After each iteration, the values are copied from
the write texture to the read texture. Fragments that would write
a time that is later than the one currently stored for that cell
would be discarded. To compute times of arrival up to a certain
point in time, the acceptable time range is set to the simulation’s
current time step window (earlier fragments need not be written
again) and the fragment shader is executed repeatedly until no
more fragments are written.

While some arrival times may exceed the threshold time and
thus would not be recorded during that simulation step, that does
not necessarily imply that nothing occurred between each pair of
links. In fact, if that were the case, using a time step that is too
short would result in no fire propagation at all since the arrival
times would always exceed the time window. To prevent this
problem, fractional burning is utilized. That is, while a fire may
not be able to travel the entire distance between two links, it has
at least burned through some of that distance; as a result, that
distance is reduced by the product of the spread rate and the
elapsed time.

d¼ d�rDt

The result of this effect is that the distance will eventually be
reduced to the point where the fire will spread across the link
within the simulated time window. It also necessitates the
modification of Line 2 of Algorithm 1 to

t¼maxðtimeOfArrivalðcÞ,windowStartTimeÞþspreadTimeðc,thisCellÞ

to account for the time spent partially burning the distance.
On the GPU, implementation of partial burning is straightforward.

The remaining distance from the center of each cell to each of its
neighboring cells is stored in two textures, with the orthogonal
distances in one four-component floating point texture and the
diagonal distances in another. At the end of a simulation step, a
fragment shader is executed with the write targets set to these
distance textures. The fragment shader fetches from a set of textures
the spread rates in each direction, multiplies them by the elapsed
time, and outputs the result as the fragment colors. Subtractive
blending results in the distances already stored in the write targets
being reduced by the output fragment values.

4.2. Surface fire

The basic spread characteristics of a wildfire are computed
using Rothermel’s model. Spatial information such as fuel model

R.V. Hoang et al. / Computers & Graphics 34 (2010) 655–664660
and terrain characteristics are stored in two-dimensional textures.
Various fuel model properties such as packing ratio and fuel bed
density are stored in one-dimensional textures that are accessed
using the integer fuel model used for each cell. Computation
of the spread characteristics is performed by executing a fragment
shader over the simulation space with the write target set to a
four-component floating point texture. The outputted fragments

contain the maximum spread rate of fire including the contributions
of slope and wind, the eccentricity of the ellipse, the direction of
maximum spread, and an intensity modifier value Im

Im ¼
12:6IR

60:0s

where IR is the reaction intensity and s is the ratio of the fuel bed’s
surface area to volume. The modifier, Im, is used later in computing
crowning.

4.3. Fire acceleration

A newly ignited fire does not immediately begin to spread at
its maximum rate. Instead, it accelerates towards its maximum
rate over time. Fire acceleration in the GPU simulator uses a
modified model of that used by FARSITE [11]. Given the maximum
rate Rmax, the spread rate at time t is given by

RðtÞ � Rmaxð1:0�e�aatÞ

where aa is an acceleration constant. From this equation, the time
Dtmax required to achieve the maximum spread rate given the
current spread rate R is given by

Dtmax ¼

1:0�
R

Rmax

aa

During the fire acceleration phase, the spread rate for every
burning cell is increased by

dR¼
dt

Dtmax
ðRmax�RcurrentÞ

A fire started from an ignition will have an initial spread rate of
zero and will steadily increase to its maximum rate. As the fire
spreads from cell to cell, the cell inherits the current spread
characteristics of the cell that ignited it. If the spread rates exceed
the maximum spread rates of the newly burning cell, they are
clamped instantaneously to their maximums. If, however, they
are slower than the cell’s maximum rates, they are accelerated by
the difference dt given by

dt¼ timeOfArrivalðthisCellÞ�maxðbaseTime,timeOfArrivalðignitingCellÞÞ

where baseTime is the last time that the burn distances were
updated.

To implement fire acceleration, the maximum spread rate in
each of the eight spread directions is computed and stored in a set
of two textures, one for the orthogonal directions and another for
the diagonal directions. A separate pair of textures is used to
maintain the current spread rates for each cell and is initialized at
the beginning of the simulation to be all zeroes. At the end of
every simulation step, all burning cells have their spread rates
accelerated as previously discussed.

Propagation based on burn times and times of arrival is still
used, although it was modified to account for changing spread
rates as a result of acceleration and rate inheritance. Spread rates
are double-buffered like the time of arrival textures, and a copy
from write texture to read texture for each is done at the end of
the iteration. The propagation shader was modified to output the
inherited and accelerated rates from the igniting cell.
Three additional textures were added. The first two store
integer time stamps that denote the last time a cell was updated.
If any cell surrounding the current cell were updated in the last
round, the current cell is checked again to see if a lower time of
arrival is possible. These textures are swapped in terms of reading
and writing at the end of each iteration; no compositing is
necessary since only cells that changed in the previous iteration
are of concern. At the beginning of the propagation phase, all
stamps are cleared to zero to force all cells to at least check once
with new spread times. Cells that are updated write the next time
stamp out to the write buffer. The third texture contains the
texture coordinate of the cell that ignited the current cell. If
the data in that cell becomes invalid, that is, if the spread
properties of that cell have changed and the time stamp is equal
to the previous iteration’s time, the current cell’s time of arrival is
invalidated and the original time of arrival used at the beginning
of the simulation step is used to proceed.
4.4. Crown fire

Whether a fire will spread into and through the crowns of trees
depends on a number of factors. As with FARSITE’s implementa-
tion [11], active crown fires have a different maximum spread rate
than surface and passive crown fires approximated by

Rmaxcrown ¼ 3:34R10

where R10 is the surface spread rate for fuel model 10 with a wind
reduction factor of 0.4. The actual maximum spread rate of a
crown fire depends on the crown fraction burned, given by the
equation

CFB¼ 1�e�ac ðR�R0Þ

where

ac ¼
�lnð0:1Þ

0:9ðRAC�R0Þ

and

R0 ¼ I0
R

Im

I0 is the threshold intensity for a crown fire to occur and is given
by

I0 ¼ ð0:010CBHð460þ25:9MÞÞ3=2

where CBH is the crown base height and M is the foliar moisture
content. RAC is the threshold spread rate at which a crown fire is
promoted from passive to active. Given the crown bulk density
CBD, this threshold is given by

RAC ¼ 3:0=CBD

Crowning is modeled in the simulation as an increase in
maximum spread rate in the case of an active crown fire. Canopy
height is stored in a texture, and crowning is only considered if
the canopy height is greater than zero. RAC is computed with a
shader and stored in a texture. Modification of the CBD texture
results in the recomputation of the RAC texture. I0 is also
computed with a shader and is only updated if the CBH texture
is modified. Before accelerating spread rates, the current spread
rates are used to test whether the fire is now actively crowning,
and if so, the maximum spread rate is adjusted accordingly. This
computation is done on a per direction basis.

R.V. Hoang et al. / Computers & Graphics 34 (2010) 655–664 661
4.5. Simulation progression

At the beginning of the simulation, all directional spread
rates are initialized to zero. Times of arrival are cleared to a
user-defined end time. Burn distance textures are set to the
complete distance to each neighbor.

Algorithm 2 outlines the flow of the simulation. Because
spread properties can change due to alterations caused by events,
simulation progresses in substeps between events.

Algorithm 2. Simulation flow.
1: e
ndTime ¼ currentTime
2: s
tartTime ¼ lastUpdateTime
3: w
hile startTime !¼ endTime do

4:
 stepTime ¼ min(endTime, nextEvent.time)

5:
 Update corrupted data()

6:
 Propagate fire(startTime, stepTime)

7:
 Burn distances(startTime, stepTime)

8:
 Accelerate(startTime, stepTime)

9:
 Trigger next event()

10:
 startTime ¼ stepTime
11: e
nd while

12: la
stUpdateTime ¼ endTime
5. Visualization

Simulation programs generally concentrate on the simulation
and less on the presentation of the simulation. Our system
concentrates both on the simulation and the presentation.
Providing enhanced visualizations can possibly help users to
better interpret and understand what is happening at any point in
time during the simulation. We concluded that a good visualiza-
tion of our simulation would be one that has detailed terrain,
vegetation, buildings, fire, and smoke.

5.1. Terrain

Slope is an important factor of fire spread. Visualizing topology
is therefore necessary to provide better comprehension of how
the fire spreads in the environment. To achieve this visualization
the terrain was implemented as a 2.5D terrain, which uses the
height field data discussed in Section 3.3. The satellite image is
overlaid on the terrain; however, the resolution of this image is
usually inadequate for the size of the terrain. When rendered to
scale, a single pixel of the image correlates to roughly a 1�1 m
patch of terrain. Thus, the terrain near the user tends to appear
blurry. To ameliorate this, we modulate a repeating texture onto
the satellite image to add more detail. In addition to the satellite
image, we also overlay several data layers from the simulation,
the opacities of which can be modified as discussed in Section 6.3.

5.2. Objects

One of the key components to increase the visual fidelity of the
visualization is the vegetation, which was handled by SpeedTree
[44], a commercial tree rendering package. SpeedTree has an
adjustable threshold distance that is set by the user. Based on this
threshold, SpeedTree renders trees within the threshold with full
geometry models, while trees outside the threshold are rendered
as billboards. Another threshold value is used to transition from
the full geometry models to the billboards, which eliminates
popping. Since SpeedTree was developed for video games, which
are typically single screened environments, modifications were
necessary to allow it to be used in a virtual environment, which
can contain multiple rendering contexts and displays. The main
modification was creating context buffers, which contained
graphic assets for each rendering context.

Another key component for having increased visual fidelity
when simulating a geographical area is rendering the buildings of
that area. The locations used to place the buildings is gathered
using the technique described by Brown [42]. The buildings are
composed of a cube with a gable roof, which are drawn from a
single point passed to a geometry shader, which then creates the
remainder of the structure. The geometry shader accounts for the
length and width of the building; the current version does not,
however, account for its orientation, though this is scheduled for
the next release.
5.3. Fire effects

Visualization of fire behavior is achieved through the use of a
particle system on the GPU. The particle system is composed of
two types of objects: emitters and particles. Once the simulation
has been updated to the current simulation time, an emitter is
created at every newly ignited cell. To accomplish this, a vertex is
sent to the geometry shader for each cell in the simulation space.
If the cell is determined to have ignited within the previous
update window, an emitter is streamed out to a vertex buffer.
Immediately following this, all previously existing emitters are
streamed through another geometry shader, updating their state.
If an emitter survives the update step, it is streamed into the same
vertex buffer as the newly generated emitters, resulting in a final
list of all active emitters.

Particles are generated and updated in a similar fashion.
Particles are generated by streaming emitters through a geometry
shader that emits particles based on the state of the emitters.
Existing particles are then streamed through an update shader,
and surviving particles are appended to the same buffer as new
particles. A part of this updating process is to apply environ-
mental effects to each particle, such as wind. Particles are
rendered as billboards spherically aligned to the user’s head
position. While the particle images are simply artistically
generated currently, future work will focus on altering flame
and smoke color based on the burning fuel generating the
particles. Rendering of these particles presents difficulties due
to different blending behaviors exhibited by the two types of
particles: fire and smoke. While fire particles use additive
blending, smoke particles use back-to-front blending, where the
resulting pixel color is given by colorsrcasrcþcolordestð1�asrcÞ. This
back-to-front blending of smoke requires that fire particles be
rendered simultaneously from back-to-front in order for the
smoke to correctly obscure the fire. Due to the large number of
interspersed particles being rendered, it would be impractical to
switch blending types each time the particle type is changed;
instead, blending is controlled within the fragment shader. To
accomplish this, we set the blending function to add the new
fragment color to the old fragment color multiplied by the new
fragment alpha ðcolordest ¼ colorsrcþcolordest � asrcÞ. All particles
are then sorted and rendered from back to front. When a fire
particle is rendered, the particle texture color is outputted as the
output color while the output alpha is set to 1.0, resulting in
additive blending. However, when a smoke particle is rendered,
the output fragment color is premultiplied by the a while the
outputted alpha value is set to 1�a, yielding correct obscuring
behavior for smoke particles.

In addition to particles, fire spread is also visualized by
illuminating the terrain and disintegrating trees and buildings
as the fire spreads through an area. To illuminate the terrain, the

Fig. 6. VFire’s ‘‘construct’’ allows users to select tools to manipulate the

simulation.

R.V. Hoang et al. / Computers & Graphics 34 (2010) 655–664662
time-of-arrival texture computed during simulation is used to
determine which areas are on fire based on the current simulation
time. Those cells that fall within a time window around the
simulation time render a bright fragment into a light texture
while those cells that do not simply render a black fragment. The
light texture is then blurred and additively blended onto the
terrain when it is rendered. To destroy objects such as vegetation,
a burn progression value is computed per vertex based on how
long the cell beneath the vertex has been on fire. In the fragment
shader, the interpolated progression value is used to transition
the texture color to an orange glow before darkening. It is also
used as a threshold value for discarding fragments. The alpha
channel for each object’s textures is modulated by low-frequency
noise. If the modulated alpha is lower than the threshold value,
the fragment is discarded; otherwise, the fragment is rendered at
full opacity. Using these techniques, objects appear to char and
disintegrate over time.

To better control the brightness of the fire and lighting effects,
high dynamic range lighting (HDR) techniques are employed.
Regardless of all other lighting in the scene, fire and any
illumination effects caused by it are rendered at a constant
intensity. The color intensity of the screen is then tone mapped
based on the average luminance of the entire image as described
by Reinhard et al. [45]. Since the average luminance for each
screen in a virtual environment can be different based on what is
actually rendered onto the screen, the average of all the averages
in the virtual environment is used for tone mapping. As a result of
using a constant fire brightness with HDR, the visual effect of the
fire is more subdued during daytime scenes with greater
environmental illumination while more pronounced during
nighttime scenes.
6. Interaction

Upon starting the application, the user is presented with the
virtual world rendered to physical scale. The user is able to
navigate by simply pointing the wand in the direction he wishes
to go and pushing up on the y-axis of the joystick. The speed at
which the user travels is dependent upon the distance between
the user and the terrain directly below him. At greater distances
the user travels more quickly, while at lower distances,
movements are much slower, allowing for fine navigation around
objects such as trees and structures. Based on the virtual
environment, rotation may be mapped to the x-axis of the
joystick. For example, in a four-sided CAVETM environment
without a back wall, rotation is necessary for the user to see
objects behind him. On the other hand, rotation is not necessary
in a fully enclosed environment such as a six-sided CAVE-like
display as the user can physically turn to see objects out of view.

6.1. Construct

In order to interact with the world, the user must first select a
tool to use. To do so, a button can be pressed to enter an alternate
world called the ‘‘construct.’’ By entering the construct, the
current simulation is paused and a number of tools appear around
the user. To differentiate those objects within the construct and
those within the simulation world, the former is rendered over
the latter, which is muted by converting the colors to grayscale
and blending it with white, as seen in Fig. 6. Navigation is
disabled, and the construct objects can simply be selected by
pointing at them with the wand, which highlights the object with
the user’s color. Pressing the trigger on the wand results in the
highlighted tool being selected, returning the user from the
construct to the simulation world.
6.2. Tools

There are four tools currently available in VFire: an ignition
tool, a fire break tool, a moisture modification tool, and a wind
modification tool. The ignition tool, represented by a matchstick,
allows the user to start fires. After selecting the tool, the user can
point the wand to an area he wishes to ignite. To aid the user in
selecting the point of ignition, a line is drawn from the wand out
in the direction it is pointing. Additionally, a matchstick is
rendered at the ignition point. By pressing the trigger, a fire is
started at the ignition point. If the trigger is held, the user can
outline a path of ignition points. For visibility purposes, the
matchstick, along with all tools that require the user to point at a
location on the terrain, is scaled based on the distance between
the user and the terrain point.

The fire break tool, represented by a bulldozer, allows the user
to render parts of the terrain unburnable. Interaction with the tool
is identical to the interaction with the ignition tool. To render the
selected area unburnable, the fuel model of the selected area is
replaced with the fuel model for an unburnable type. To prevent
fire from moving diagonally through cells due to aliased raster-
ization of break lines, the thickness of each line was set to twice
the size of a single cell.

The moisture modification tool, represented by a water drop,
allows the user to increase the amount of moisture in a cell. Again,
the user manipulates the tool as he would the ignition tool.
Moisture is added to the current moisture content in the
simulation layers by rasterizing the added moisture onto the
original moisture data using additive blending.

The wind modification tool, represented by a tornado, allows
the user to alter the direction and magnitude of the wind. To do
so, the user presses the trigger to create an initial anchor point. By
holding the trigger down and moving the wand around, the user
creates a vector from the anchor point to the current position of
the wand. The direction of this vector determines the wind
azimuth while the length determines the wind speed. While
performing this action, a line is drawn from the anchor point to
the current wand position; the azimuth and windspeed are also
rendered along this line.

6.3. Data visualization

To allow the user to see different aspects of the current
simulation state, a layer visualization interface is provided. This
interface displays a 3�3 grid composed of eight data layers
surrounding a composite image of all the layers overlapped on top

Fig. 7. The opacities of various data layers can be modified by the user.

R.V. Hoang et al. / Computers & Graphics 34 (2010) 655–664 663
of each other, as shown in Fig. 7. The opacity of each layer can be
adjusted by pointing to the desired layer and pressing left or right
on the joystick. The composite image is used as the texture
rendered onto the terrain.
7. Current status

The current version of VFire runs in the six-sided CAVE-like
display described in Section 3.1 at full resolution. As a test dataset,
a 10 km by 10 km area around Kyle Canyon, NV, was selected. The
simulation runs at 10 m resolution initially at 200 times real-time,
although this parameter is adjustable at run-time. At higher
simulation speeds, performance drops as fire is able to propagate
across more cells in a single update step. With the initial settings,
the system runs at approximately 30 frames per second in stereo
and can drop to about 15 FPS depending on what is visible to the
user. For example, if the user flies directly into smoke, the system
becomes pixel-bound as every individual particle consumes more
screen space.

The system has been demonstrated to both the general public
and fire experts with positive responses. We plan to work with
fire officials to generate scenarios that can be used to train fire
managers as well as investigate the effectiveness of the system. To
this end, incorporation of a scoring metric is being researched,
and current work is focused on recording the simulation and user
decisions in order to evaluate performance afterwards.
8. Conclusions and future work

We have presented VFire, an immersive wildfire simulation
and visualization system. By harnessing the processing capabil-
ities of the GPU, we created an interactive wildfire simulator, the
output of which is immediately visualized for the user. We
developed various graphical techniques to create a visualization
that leveraged both image quality and utility. Using virtual reality,
we provided users with unique interaction methods while also
immersing them within the data. This process has been tied in
with cyclic reviews and demonstrations to various fire officials in
preparation the user studies.

There are a number of ways we intend to extend this work.
First, we plan to improve the fire model to incorporate other
wildfire phenomena such as spotting. We also plan to introduce
an atmospheric model that is affected by and affects the fire
simulation. To facilitate more realistic training for fire chiefs,
associating and limiting costs in terms of human resources, time,
and money to various suppression tactics could be employed.
Another area for improvement is the visualization, where
methods will be explored to intuitively display more information
regarding the situation and to improve the visual fidelity.
Likewise, given the unique input capabilities of virtual reality
systems, alternative interaction methods will be examined. The
efficacy of VFire as a training tool must also be validated through
a user study.
Acknowledgements

This work is funded by the U.S. Army’s RDECOM-STTC under
Contract no. N61339-04-C-0072 at the Desert Research Institute.

References

[1] Morton DC, Roessing ME, Camp AE, Tyrrell ML. Assessing the environmental,
social, and economic impact of wildfire. Technical Report, The Global Institute
of Sustainable Forestry; 2003.

[2] Pastor E, Zrate L, Planas E, Arnaldos J. Mathematical models and calculation
systems for the study of wildland fire behaviour. Progress in Energy and
Combustion Science 2003;29(2):139–53, doi:10.1016/S0360-1285(03)
00017-0. URL /http://www.sciencedirect.com/science/article/B6V3W-4899
V97-1/2/79f2053cdee67b01a3f5f22ca7e677aeS.

[3] Perry G. Current approaches to modelling the spread of wildland fire: a
review. Progress in Physical Geography 1998;22(2):
222–45. URL /http://0-search.ebscohost.com.innopac.library.unr.edu/login.
aspx?direct=true&db=aph&AN=4089240&site=ehost-liveS.

[4] Green DG, Gill AM, Noble IR. Fire shapes and the adequacy of fire-spread
models. Ecological Modelling 1983;20(1):33–45, doi:10.1016/0304-3800
(83)90030-3. URL /http://www.sciencedirect.com/science/article/B6VBS-
48YNTMB-FG/2/9a7171795b8e9f1a0a124a11d112682eS.

[5] Anderson HE. Predicting wind-driven wild land fire size and shape. Technical
Report, US Forest Service; 1983.

[6] Richards G. An elliptical growth model of forest fire fronts and its numerical
solution. International Journal for Numerical Methods in Engineering
1990;30(6):1163–79.

[7] Rothermel RC. A mathematical model for predicting fire spread in wildland
fuels. Technical Report, U.S. Forest Service; 1972.

[8] Rothermel RC. Predicting behavior and size of crown fires in the northern
rocky mountains. Technical Report, U.S. Forest Service; 1991.

[9] Wagner CV. Conditions for the start and spread of crown fire. Canadian
Journal of Forestry Research 1977;7(1):23–40.

[10] Billing P. Otways fire no 22 – 1982/83. Technical Report, Victoria Department
of Sustainability and Environment; 1983.

[11] Finney M. FARSITE: fire area simulator-model. Development and evaluation.
Technical Report, USDA Forest Service; 1998.

[12] Woycheese JP, Pagni PJ. Brand lofting above large-scale fires. In: International
conference on fire research and engineering proceedings, 1998. p. 137–50.

[13] Woycheese JP, Pagni PJ, Liepmann D. Brand propagation from large-scale fires.
Journal of Fire Protection Engineering 1999;10(2):32–44. arXiv:http://jfe.
sagepub.com/cgi/reprint/10/2/32.pdf, doi:10.1177/104239159901000203. URL
/http://jfe.sagepub.com/cgi/content/abstract/10/2/32S.

[14] Sardoy N, Consalvi J-L, Porterie B, Fernandez-Pello AC. Modeling transport and
combustion of firebrands from burning trees. Combustion and Flame
2007;150(3):151–69, doi:10.1016/j.combustflame.2007.04.008. URL /http://
www.sciencedirect.com/science/article/B6V2B-4NWN3BN-2/2/125b9b8e2ba99c
f7036f8c5d7e9df667S.

[15] Andrews PL. BEHAVE: fire behavior prediction and fuel modeling system—

burn subsystem, part 1. Technical Report, U.S. Forest Service; 1986.
[16] Andrews P. BehavePlus fire modeling system: past, present, and future. In:

Proceedings of 7th symposium on fire and forest meteorology, 2007. p. 22–6.
[17] Coleman J, Sullivan A. A real-time computer application for the prediction of

fire spread across the Australian landscape. Simulation 1996;67(4):230.
[18] Canadian Interagency Forest Fire Centre, PROMETHEUS, /http://www.fire

growthmodel.com/index.cfmS, accessed August 6, 2010 (May 2008).
[19] Finney M. Spatial modeling of post-frontal fire behavior. Technical Report,

Rocky Mountain Research Station; 1999.
[20] Van Wagtendonk J. Use of a deterministic fire growth model to test fuel

treatments. In: Sierra Nevada ecosystem project, final report to congress, vol.
2, Citeseer, 1996. p. 1155–66.

[21] Stratton RD. Assessing the effectiveness of landscape fuel treatments on fire
growth and behavior. Journal of Forestry 2004;102(7):32–40.

[22] Morais ME. Comparing spatially explicit models of fire spread through
chaparral fuels: a new algorithm based upon the Rothermel fire spread
equation. Master’s thesis, University of California, Santa Barbara; 2001.

[23] Finney MA. An overview of FlamMap fire modeling capabilities. In: Fuels
management—how to measure success: conference proceedings, 2006.
p. 213–20.

dx.doi.org/10.1016/S0360-1285(03)00017-0.3d
dx.doi.org/10.1016/S0360-1285(03)00017-0.3d
http://www.sciencedirect.com/science/article/B6V3W-4899V97-1/2/79f2053cdee67b01a3f5f22ca7e677ae
http://www.sciencedirect.com/science/article/B6V3W-4899V97-1/2/79f2053cdee67b01a3f5f22ca7e677ae
http://0-search.ebscohost.com.innopac.library.unr.edu/login.aspx?direct=true&db=aph&AN=4089240&site=ehost-live
http://0-search.ebscohost.com.innopac.library.unr.edu/login.aspx?direct=true&db=aph&AN=4089240&site=ehost-live
http://0-search.ebscohost.com.innopac.library.unr.edu/login.aspx?direct=true&db=aph&AN=4089240&site=ehost-live
http://0-search.ebscohost.com.innopac.library.unr.edu/login.aspx?direct=true&db=aph&AN=4089240&site=ehost-live
http://0-search.ebscohost.com.innopac.library.unr.edu/login.aspx?direct=true&db=aph&AN=4089240&site=ehost-live
dx.doi.org/10.1016/0304-3800(83)90030-3.3d
dx.doi.org/10.1016/0304-3800(83)90030-3.3d
http://www.sciencedirect.com/science/article/B6VBS-48YNTMB-FG/2/9a7171795b8e9f1a0a124a11d112682e
http://www.sciencedirect.com/science/article/B6VBS-48YNTMB-FG/2/9a7171795b8e9f1a0a124a11d112682e
arXiv:http://jfe.sagepub.com/cgi/reprint/10/2/32.pdf
arXiv:http://jfe.sagepub.com/cgi/reprint/10/2/32.pdf
10.1177/104239159901000203
http://jfe.sagepub.com/cgi/content/abstract/10/2/32
dx.doi.org/10.1016/j.combustflame.2007.04.008
http://www.sciencedirect.com/science/article/B6V2B-4NWN3BN-2/2/125b9b8e2ba99cf7036f8c5d7e9df667
http://www.sciencedirect.com/science/article/B6V2B-4NWN3BN-2/2/125b9b8e2ba99cf7036f8c5d7e9df667
http://www.sciencedirect.com/science/article/B6V2B-4NWN3BN-2/2/125b9b8e2ba99cf7036f8c5d7e9df667
http://www.sciencedirect.com/science/article/B6V2B-4NWN3BN-2/2/125b9b8e2ba99cf7036f8c5d7e9df667
http://www.sciencedirect.com/science/article/B6V2B-4NWN3BN-2/2/125b9b8e2ba99cf7036f8c5d7e9df667
http://www.sciencedirect.com/science/article/B6V2B-4NWN3BN-2/2/125b9b8e2ba99cf7036f8c5d7e9df667
http://www.firegrowthmodel.com/index.cfm
http://www.firegrowthmodel.com/index.cfm

R.V. Hoang et al. / Computers & Graphics 34 (2010) 655–664664
[24] Finney M. Fire growth using minimum travel time methods. Canadian Journal
of Forest Research 2002;32:1420–4. (5).

[25] Sniezek J, Wilkins D, Wadlington P. Advanced training for crisis decision
making: simulation, critiquing, and immersive interfaces. In: Hawaii
international conference on system sciences, vol. 3, 2001. p. 3042.

[26] Koepnick S, Norpchen D, Sherman WR, Coming DS. Immersive training for
two-person radiological surveys. In: Proceedings of IEEE virtual reality, 2009,
p. 171–4.

[27] Tate DL, Sibert L, King T. Using virtual environments to train firefighters. IEEE
Computer Graphics and Applications 1997;17(6):23–9.

[28] Forsberg A, Laidlaw D, Van Dam A, Kirby R, Karniadakis G, Elion J. Immersive
virtual reality for visualizing flow through an artery. In: Proceedings of the
conference on visualization’00. IEEE Computer Society Press; 2000. p. 457–60.

[29] Kreylos O, Bawden G, Kellogg L. Immersive visualization and analysis of
LiDAR data. In: Advances in visual computing. Lecture notes in computer
science, vol. 5358. Springer; 2008. p. 846–55.

[30] Ahrens J, McCormick P, Bossert J, Reisner J, Winterkamp J. Case study:
wildfire visualization. In: Visualization ’97. Proceedings, 1997, p. 451–4.
doi:10.1109/VISUAL.1997.663919.

[31] McCormick P, Ahrens J. Visualization of wildfire simulations. IEEE Computer
Graphics and Applications 1998:17–9.

[32] Govindarajan J, Ward M, Barnett J. Visualizing simulated room fires. In: IEEE
visualization 1999, Citeseer, 1999, p. 475–8.

[33] Rushmeier H, Hamins A, Choi M. Volume rendering of pool fire data. IEEE
Computer Graphics and Applications 1995;15(4):62–7.

[34] Pegoraro V, Parker S. Physically-based realistic fire rendering. In: Proceedings
of the Eurographics workshop on natural phenomena, 2006. p. 51–9.

[35] Bukowski R, Séquin C. Interactive simulation of fire in virtual building
environments. In: Proceedings of the 24th annual conference on computer
graphics and interactive techniques. ACM Press, Addison-Wesley Publishing
Co.; 1997. p. 35–44.

[36] Harris Jr F, Penick M, Kelly G, Quiroz J, Dascalu S, Westphal B. V-FIRE: virtual
fire in realistic environments. In: The 4th international workshop on system/
software architectures in proceedings of the 2005 international conference
on software engineering research and practice, Citeseer, 2005. p. 73–9.

[37] Sherman W, Penick M, Su S, Brown T, Harris F. Vrfire: an immersive
visualization experience for wildfire spread analysis. In: IEEE virtual reality
conference, 2007. VR’07, 2007, p. 243–6.

[38] Penick M, Hoang R, Harris Jr F, Dascalu S, Brown T, Sherman W, et al.
Managing data and computational complexity for immersive wildfire
visualization. In: Proceedings of high performance computing systems
(HPCS’07), Prague, Czech.

[39] Hoang RV, Mahsman JD, Brown DT, Penick M, Harris Jr FC, Brown TJ. VFire:
virtual fire in realistic environments. In: Proceedings of IEEE virtual reality
conference 2008 (VR 2008), Reno, Nevada.

[40] Hoang R, Hydra, /http://www.cse.unr.edu/hpcvis/hydra/S, accessed August
6, 2010.

[41] LANDFIRE, Landfire, /http://www.landfire.govS, accessed May 31, 2010.
[42] Brown DT, Hoang RV, Sgambati MR, Harris Jr FC. An application for tree

detection using satellite imagery and vegetation data. In: Proceedings of the
ISCA 18th international conference on software engineering and data
engineering (SEDE’09), 2009.

[43] Hoang R. Wildfire simulation on the GPU. Master’s thesis, University of
Nevada, Reno; 2008.

[44] Interactive Data Visualization, Inc., Speedtree, /http://www.speedtree.comS,
accessed May 30, 2010.

[45] Reinhard E, Stark M, Shirley P, Ferwerda J. Photographic tone reproduction for
digital images. ACM Transactions on Graphics 2002;21(3):267–76.

10.1109/VISUAL.1997.663919
http://www.cse.unr.edu/hpcvis/hydra/
http://www.landfire.gov
http://www.speedtree.com

	VFire: Immersive wildfire simulation and visualization
	Introduction
	Background and related work
	Fire models
	Fire simulators
	Virtual reality and visualization

	System overview
	Virtual environments
	Hydra
	Data

	GPU fire simulation
	Fire spread
	Surface fire
	Fire acceleration
	Crown fire
	Simulation progression

	Visualization
	Terrain
	Objects
	Fire effects

	Interaction
	Construct
	Tools
	Data visualization

	Current status
	Conclusions and future work
	Acknowledgements
	References

