
1

1. Introduction

As the number of users on the World Wide Web increases everyday, its use in

different areas is also growing. One of the most powerful aspects of the Web is that

anybody who has Internet access can browse on the net. This enables sharing the

information world wide.

One of the fast growing areas of the Web is distance education (or distance

learning). The reason distance education on the Web is getting popular is because it has

advantages over other types of distance education programs. It gives much more

flexibilit y to the users. The users can take the courses they registered for at any computer

connected to the Internet. They usually have a more flexible time frame to take their

classes and their tests.

In terms of programming of these sites developers had until recently to use limited

range of technology to choose from. These technologies usually involved Common

Gateway Interface (CGI) programming, Javascript, and Microsoft’s Active Server Pages.

This paper demonstrates that Java servlets and JDBC can be used programming for these

sites.

This paper discusses this new technology and explains how this technology can be

used in programming in dynamic Web sites. Section 2 presents an introduction to Java

language, Java servlets and JDBC. It also compares the present technology used in

creating dynamic Web sites to the new Java servlet technology. Section 3 explains the

software used in this study and their configuration. It also describes in detail how this

project is done by explaining each servlet and its relation to the database class. Lastly, it

describes the databse design. Section 4 gives the results and conclusion of the study,

while Section 5 suggests the future work.

2. Background and Literature Review

This section begins by describing in Subsection 1, the alternatives that are

currently available for programming interactive sites on the Web. In Subsection 2, we

present Java servlets and how they can be integrated with JDBC. Finally Subsection 3

compares the present technologies with Java servlets.

2

2.1. Java Servlet Alternatives

Common Gateway Interface is one of the most commonly used server-side

programming method to develop dynamic Web applications[11]. CGI is an application

module that receives requests from a Web server. The application processes the data it

receives and sends it back to the server. The server then sends the data to the client's

browser. Server-side programming with CGI has some problems and limitations. CGI can

be implemented in various ways, but typically it is implemented through the use of

compiled and interpreted languages. C and C++ are the most commonly used compiled

languages and Perl is the most commonly used interpreted language.

In terms of interpreted languages, Perl (Practical Extraction and Report

language)[10] is the most popular one because of its superior string handling capabiliti es

and extended fuctionality[9]. Although Perl is a very powerful language at processing

text, it has a downside because it requires the server to start a new interpreter for each

request. This takes quite a bit of time and resources.

One other thing to consider is that CGI runs as a process completely separate from

the Web server. This requires additional coding for session tracking when session

tracking is necessary on that site.

Server-side JavaScript is another solution for generating dynamic Web sites. This

is achieved by embedding JavaScript into the HTML pages. However, server-side

JavaScript is supported only on Netscape’s Enterprise and FastTrack Web servers.

Microsoft’s Active Server Pages (ASP) is another method of programming

dynamic sites. Similar to server-side JavaScript, ASP is also embedded in HTML pages.

ASP is supported only by Microsoft’s Web servers (Internet Information Server and

Personal Web Server).

2.1.1. Common Gateway Interface

CGI is just a protocol, a formal process between a Web server and a separate

server-side program[1]. The server encodes the client's form input data, and the CGI

program decodes the form and generates output. The protocol is independent from the

programming language used to program CGI.

CGI scripts called in two main ways (methods). The HTTP GET method is used

in document retrievals where an identical request will produce an identical result, such as

3

a dictionary lookup. The HTTP POST method sends form data separate from the request.

The GET method is only safe for short read-only requests, whereas POST is safe for

forms of any size, as well as for updates and feedback responses. Therefore, by default,

the CGI module uses POST for all forms it generates.

2.2. Java Servlets

2.2.1. Introduction

Java[7] is a relatively new and powerful programming language that provides

many useful features to software developers. It inherited its strengths from C++ while

eliminating most of the problems of C++. The syntax and programming logic of Java are

very similar to that of C++. Java is simple, object oriented, portable, robust, and

multithreaded. The syntax for Java is simple and a cleaned-up version of the version of

C++. There is no need for header files, pointer arithmetic (or even a pointer syntax),

structures, unions, operator overloading, and virtual base classes. Java is an object

oriented language, li ke C++. The main difference between the two is in the area of

inheritance. C++ supports multiple inheritance while Java supports only single

inheritance.

Java is platform independent (portable). Once the Java code is compiled into byte

code, it runs on every machine which has Java Virtual Machine (JVM) on it. This is one

of the biggest advantages of Java over C++. The Java compiler detects many problems

during compilation. Some of these problems are detected during run time with other

language compilers. This makes Java a robust language. Java is also multithreaded. This

feature gives Java a better real-time behavior[6].

The Java language was originally intended for use in small , embedded devices[2].

Its first use on the Web came in the form of applets. Until recently, Java has not been

used in serious server-side Web development. Now, with the improvements in Java

application programming interfaces (API’s), especially the Servlet API, Java is becoming

an important tool for server-side Web programming.

2.2.2. Java Servlets and Their Applications

A servlet is a dynamically loaded module that services requests from a Web server

and is a generic extension to Java-enabled servers. The most common use of servlets is to

extend Web servers providing secure, portable, and an easy-to-use replacement for other

4

server-side scripting methods, such as CGI. Servlets run entirely in the JVM and on the

server-side; therefore they don't depend on browser compatibilit y (unlike Java applets).

Servlets can be used for any number of Web-related applications where dynamic

Web pages are needed. One of the biggest applications for servlets is developing E-

commerce sites since they are one of biggest trend in Web development. Servlets can be

connected to a database, either on the same server or on a different machine, and make

accessible the contents of that database on the Web through JDBC which will be

described later. Since the servlet API includes classes and interfaces for session tracking,

servlets can be easily used on sites where session tracking is needed.

2.2.3. Servlet Advantages

Today, servlets are one of the most exciting and new technologies in server-side

Web development. Servlets are eff icient, persistent, portable, robust, extensible and

secure[3].

Servlets are eff icient, because a servlet’s initialization code is executed only once

when the Web server loads it for the first time. Once the servlet is loaded, handling new

requests is only a matter of calli ng a service method. Since session tracking is built -in to

the servlet API, servlets can maintain states between requests, which makes them

persistent. Because servlets are written in Java, they are platform independent and

portable. This feature enables servlets to be moved to a new operating system without

changing the source code. Also because servlets are written in Java, they are developed

with the access to the entire Java Development Kit (JDK) API. Therefore powerful Java

packages, such as JDBC, Networking, Remote Method Invocation, etc., can be used in

servlets. Servlets are secure, because they run on the server side, inheriting the security

provided by the Web server. Servlets can also take advantage of the Java Security

Manager API.

2.2.4. Architecture of Servlets

There are two packages that constitute the Servlet API; these are javax.servlet

and javax.servlet.http[6]. The javax.servlet package contains classes to support

generic, protocol-independent servlets. These classes are extended by the classes in the

javax.servlet.http package to add HTTP-specific functionality. The top-level

package name is javax instead of the familiar java, to indicate that the Servlet API is a

5

standard extension.

Every servlet must implement the javax.servlet.Servlet interface. Most

servlets implement it by extending one of two special classes:

javax.servlet.GenericServlet or javax.servlet.http.HttpServlet. A protocol-

independent servlet should subclass GenericServlet, while an HTTP servlet should

subclass HttpServlet, which is itself a subclass of GenericServlet with added HTTP-

specific functionality.

Unlike a regular Java program, and just like an applet, a servlet does not contain a

main() method. Instead, certain methods of a servlet are invoked by the server in the

process of handling requests. Each time the server dispatches a request to a servlet, it

invokes the servlet’s service() method.

A generic servlet should override its service() method to handle requests as

appropriate for the servlet. The service() methods accepts two parameters: a request

object and a response object. The request object tells the servlet about the requests made

by the clients (web browsers), while the response object is used to return a response.

Figure 1[6] shows how a generic servlet handles requests.

Figure 1. A generic servlet handling a request.

In contrast, an HTTP servlet usually does not override the service() method.

Instead, it overrides doGet() method to handle GET requests and doPost() method to

handle POST requests. An HTTP servlet can override either or both of these methods.

The service() method of HttpServlet handles the setup and dispatching to all the

doXXX() methods. Figure 2[6] shows how an HTTP servlet handles GET and POST

requests.

request

response service
()

GenericServlet subclassWeb Server

6

Figure 2. An HTTP servlet handling GET and POST requests.

The remainder in the javax.servlet and javax.servlet.http packages are

largely support classes. For example, the ServletRequest and ServletResponse classes

in javax.servlet provide access to generic server requests and responses, while

HttpServletRequest and HttpServletResponse in javax.servlet.http provide

access to HTTP requests and responses. The javax.servlet.http package also contains

an HttpSession class that provides built -in session tracking functionality and a Cookie

class that allows you to set up and process HTTP cookies.

2.2.5. Java Servlet Engines

As mentioned above, servlets are standard extensions to Java. However, the

servlet API is not part of the core Java API. Therefore, the servlet API must be present on

the server-side, in addition to JVM, in order for the servlets to work. The first servlet API

was made available by the Java software division of Sun Microsystems. This product is

called as Java Servlet Development Kit (JSDK)[6]. In addition to JSDK, there are many

third party servlet engines (standalone and add-on) available from different

manufacturers.

A standalone engine is a Web server that includes built -in support for servlets.

Some of the standalone servlet engines include Sun’s Java Web Server[6], the World

Wide Web Consortium’s Jigsaw Server[6], and Netscape’s Enterprise Server (version

3.51 and later)[6]. One advantage of these servers is that once the Web server is installed

and configured on the server-side, the servlet engine is also installed. Therefore, an add-

on servlet engine does not need to be separately installed and configured.

GET

request

response

request

response

POST service
()

doGet
()

doPost
()

HttpServlet subclassWeb Server

7

An add-on servlet engine functions as a plug-in to an existing Web server. It adds

servlet support to a server that was not originally designed with servlets in mind. Some of

the add-on servlet engines include Java-Apache project’s JServ module[6], Allaire

Software’s Jrun[6], and IBM’s WebSphere Application Server[6].

2.3. JDBC Data Access

JDBC is a Java API for executing Structured Query Language (SQL) statements.

Sun Microsystems says that JDBC is a trademark and is not an acronym for Java

Database Connectivity, however, it is offen associated with Java Database Connectivity.

It consists a set of classes and interfaces. JDBC makes it possible to write database

applications using a pure Java API [8].

In its simplest form, JDBC makes it possible to do three things: a) establish a

connection with a database, b) send SQL statements, and c) process the results. JDBC

cannot be used to create databases. Therefore, in order to access a database using JDBC, a

database has to be created with a Relational Database Management System (RDBMS).

Open Database Connectivity (ODBC) is probably the most widely used

programming interface for accessing the relational databases. ODBC, developed by

Microsoft, was the first standard database driver. ODBC drivers provide a common API

to database clients. However, using ODBC drivers in Java has its own drawbacks. It is

written in C language, which is not an object-oriented language. It uses pointers and other

programming structures that Java does not support. Also, ODBC drivers must be installed

on the client side. This requires that an ODBC driver has to be present on the client side

in order for Java applets to be run on the client’s Web browser. As mentioned above,

JDBC provides a common database programming API for Java programs.

The JDBC API supports both two-tier and three-tier models for database access.

In the two-tier model, a Java applet or application talks directly to the database. This

requires a JDBC driver that can communicate with the particular database management

system being accessed. A user’s SQL statements are delivered to the database, and the

results of those statements are sent back to the user. Figure 3[4] shows a simpli fied

version of a two-tier architecture.

8

Figure 3. JDBC two-tier model.

In the three-tier model, commands are sent to a “middle tier” of services, which

then sends SQL statements to the database. The database processes the SQL statements

and sends the results back to the middle tier, which sends them to the user. In many cases

the three-tier architecture can provide performance advantages. Figure 4[4] show the

three-tier model.

Figure 4. JDBC three-tier model.

Java Application

JDBC

RDBMS

Client Machine

DBMS – proprietary protocol

Database server (engine)

Java Application
Server

JDBC

RDBMS

Client Machine (GUI)

DBMS – proprietary protocol

Database server (engine)

Java Applet or
Web browser

Server machine
(Business logic)

HTTP, RMI, CORBA, or other calls

9

2.4. Present Technology vs Java Servlets

As the World Wide Web continues to grow, its use for different purposes are also

increasing. One of the rapidly growing uses of the Web is on-line education and testing.

This can be considered as a form of distance learning. The advantages of on-line

education and testing are many. Since a site on the Web is accessible from all over the

world, everybody who has authentication to use the site can benefit from that site. The

limitations of time and location are eliminated in on-line education. On-line testing

provides instant results (scores/grades) to those who take it, while minimizing grading

and correcting by hand.

The examples of the sites that provide Web based learning and testing include

Web Course Tools (WebCT)[12], Blackboard.com[13], Learn University.com[14],

University of Phoenix (Distance Learning section)[15], etc. Programming of these kind of

sites typically involves a server-side scripting language and a RDBMS. As discussed in

earlier sections, CGI programming dominates server-side dynamic Web programming.

CGI technology is old and has its downsides. A small portion of this type of Web

programming involves JavaScript, however JavaScript cannot be used for creating secure

sites.

Java servlets have a number of advantages (as discussed in the previous sections)

over the existing technologies. Some of the advantages are security, platform independent

and full access to Java API. Session tracking and interaction with a RDBMS are

necessary features that these kind of sites should posses. Since session tracking is a built -

in feature of servlets and database access from servlets is very easy through JDBC,

developing dynamic Web sites and Web database applications with servlets are simple

and eff icient.

3. Methodology

This section describes the different pieces of software used in this study and their

configuration. It also describes the project by explaining the components of it, such as the

servlets, JDBC class and the database design.

10

3.1. Software Used in This Study

All the pieces of software used in this study are compatable with and installed on

a Red Hat Linux 6.0, kernel 2.2.5-12, operating system. We used the Apache Web Server

that comes with the above Red Hat distribution as the Web server. Although, Linux

comes with a third party Java compiler, Kaffe Virtual Machine, I downloaded and

installed the JDK for Linux provided by Blackdown.org which follows the Sun

Microsystems specifications for JDK. The version of JDK, I used, was 1.1.7v3.

As a servlet engine, I downloaded and installed the Java Servlet Development Kit

2.1 available from Sun Microsystems. Currently, this is the latest servlet engine available.

In order for servlets to function correctly, some features of this engine had to be

configured before its use. Some of these features are the port number that the servlets run,

servlet directory, and servlet properties file which holds the names of the compiled Java

servlets.

I used Mini SQL 2.0.11 as my database engine. This is a freely available RDBMS

(for non-profit organizations) from Hughes Technologies, Australia

(www.Hughes.com.au). This database server is very small and compared to its size very

powerful. Mini SQL is designed and developed to run on UNIX flavor operating systems.

Its installed version takes less than 3 megabytes space on hard disk.. This RDBMS

provides a SQL monitor and supports standard SQL commands. It posses the properties

of many large RDBMS's without the overhead of those. In order to connect my Java code

to this database server, I used mSQL-JDBC 1.0 driver. This driver is also freely available

from the Center for Imaginary Environments (www.imaginary.com/Java) to whoever

wants to use it.

3.2. The Project

This study involved, in terms of Java servlets and JDBC, sixteen servlet programs

and one database program. While servlets generated the Web pages, the database program

functioned as a bridge between the servlets and the database server. Most of the servlets

created objects of the database class and accessed the functions of the database class,

which will be explained in detail l ater. In addition to Java servlets and JDBC, this project

involved some database design and programming. The database design consisted of f ive

tables. The database design will be explained later.

11

Session tracking was an essential part of this project. It was accomplished by

passing the user name from one servlet to another as a hidden field (since user name was

the unique identifier).

Table 1 gives servlet names and the file name which generates that servlet. A

general flow diagram for the servlets is given in Figure 5.

Table 1. Servlets and their brief descriptions.

Servlet Name File Name
Welcome welcome.java
Welcome2 welcome2.java
QABoard qaboard.java
List li st.java
Message message.java
Reply reply.java
EntryRep enrtyrep.java
Post post.java
Entry entry.java
Sample sample.java
SamAns samans.java
Quiz quiz.java
Answer answer.java
Grades grades.java
Change change.java
Passwd passwd.java

The first function of the database class (quizdb.class) is connect() function,

which makes a connection to the database server on the local host. If the connection is

established and the database (quiz1) is opened successfuly, this function returns true,

otherwise false. The next function is the loginCheck() function (called from the

Welcome servlet), which takes the user's name and password from the Welcome servlet

and searches the relevant database table (passwd) for these entries. If the user name and

password are found in the database and matched, this function returns true, otherwise

false. Explanations of the tables will be described later. The stop() function calculates

the duration of quiz, and inserts the duration into the taken table. This function also marks

the database that student has taken the quiz.

The insertGrade() and getGrades() functions of the database class inserts a

student's quiz grade into the grade table and retrieves and returns a student's grades from

12

the grade table, respectively. The insertGrade() function is called from the Answer

servlet and the getGrades() function is called from the Grades servlet. There are some

functions which involve with the security when a student attempts to take a quiz called

from the Quiz servlet. The taken() function searches the database to see if the student

has already taken that particular quiz. The ipCheck() function checks the IP address of

the remote computer that a student is trying to view the quiz page. Because students are

restricted to take quiz only from a set of computers, access from other computers will be

denied. The timeCheck() function checks the time of the quiz time and student's

connection time. If the student is trying to access the quiz page other than the quiz time,

the student's access to this page will be denied.

Figure 5. Flow chart for the servlets.

There are also some database related functions involving the Question/Answer

(Q/A) posting board. These functions are getSubjects(), getOneSubject(),

Login Screen (HTML Form)

Welcome

Welcome2

QABoard Sample Quiz Grades Change

List

Message

Reply

EntryRep

Post

Entry

SanAns Answer Passwd

13

getMessage(), insMessage() and insReply(). The getSubjects() function gets the

message number, the user name who posted that message, posting date and the subject of

that message from the subjects table. This function gets all the entries from the subject

table. The getOneSubject() function does the same thing with getSubjects()

function, except this function gets only one message from the database. The

getMessage() function gets the message body of a particular message from the message

table. The insMessage() function inserts the message number, user name, posting date

and time, subject of the message and the message body into subject and message tables.

The insRepy() function inserts a reply to a previously posted message in to the database.

The first screen that comes on when the program is started is the login screen

(Figure 6). This is the only page that is generated by HTML. The page after the login

screen is the welcome screen. This screen is generated by Welcome servlet. This servlet

takes the user name and password from the previous login page and checks if they exist in

the database using the loginCheck() function of the database class. If the user didn't

enter user name or password, or if user name/password couldn't be found in the database,

this servlet generates an error page displaying the appropriate error message. If the user

name and password are found in the database, this servlet calls the next servlet.

The next page, generated by Welcome2, is the main screen (Figure 7) for this

project. This page has links to other pages, such as Q/A posting board, sample and real

online quiz pages, etc.

14

Figure 6. Login screen.

Figure 7. Main screen.

15

The Q/A posting board page (Figure 8), generated by QABoard, has two links,

one is to view the previously posted messages and reply to a particular message, and the

other is to post a new message. The page that shows the previously entered messages,

generated by List, gets the entries from the database and displays them as links to the

messages using the getSubjects() function of the database class. If the user clicks on

one of the links, the message body is displayed on the next page and an option to reply to

this message. The user can also choose to post a new message without replying to a

message.

The main page includes two links to the quiz pages. One of the links is to the

sample quiz page (Figure 9). This page, generated by Sample servlet, displays how the

real quiz will l ook like and explains how it will work and familiarize the students with the

real quiz. There is no time limit on this page. After the student submits the answers, the

next page, generated by SamAns servlet, displays the correct answer for each question

and the score of that user. The real quiz page is the page where students take the online

quizzes (Figure 10). This page is generated by Quiz servlet. When this page is loaded, it

first checks if the student has taken the quiz before by calli ng taken() function of the

database class, then checks the IP address of the remote computer by calli ng ipCheck()

and the time by timeCheck() functions. This servlet also starts a Java timer to measure

the duration of the quiz. A JavaScript timer shows the quiz time starting from the loading

of the quiz page. The purpose of this JavaScript timer is to show the elapsed time to the

student. The timer is stopped when the student presses the submit button when he/she

finishes taking the quiz. This servlet passes the duration measured by the Java timer to the

next servlet. The next page, generated by Answer servlet, calculates the duration of the

quiz and updates the taken table in the database, inserting the duration of the quiz and

marking the taken field as true. This servlet also displays the correct answers of the

questions and the student's grade. It inserts the student’s grade for that quiz into the

grades table by calli ng insertGrade() function.

16

Figure 8. Question/answer posting board main page.

Finally, the main page has two links to two other features. By following the links,

the students can view their previously taken online quiz grades (Figure 11). This page,

generated by Grades servlet, uses the getGrade() function of the database class to

retrieve the grades of the student. The students can also change their existing passwords

(Figure 12). The page, generated by Change servlet, takes the existing and new

17

Figure 9. Sample quiz page.

Figure 10. Online quiz page.

18

Figure 11. Grade viewing page.

Figure 12. Password changing page.

19

passwords of the student and calls the next servelt (Passwd). Passwd servlet updates the

student’s password (by changePasswd() function) after checking its validy.

The database design, as mentioned earlier, involved 5 tables. These tables are

password, taken, grade, subject and message. The primary key was the user name for

tables password, taken, grade and subject, and the primary key was message number for

table message. The password table contains general information about the users. This

table stores the first and last names of the users, user names, passwords, e-mail addresses

and a field that specifies whether the user has super user privileges. The taken table

includes a field for the user name, a filed for the time for each student to finish that

particular quiz (duration), and a field for if the student has taken that quiz previously. The

grade table stores the user names and the grades of the students for each quiz. The subject

table contains user fields for name, the number of the message, message insertion date

and time and the subject of the message. The message table stores the number of the

messages and the message body.

4. Results and Conclusions

This study involved server-side programming with Java servlets to produce

dynamic Web pages and Web database applications. As mentioned before, currently, CGI

is the most commonly used medhod in this field. Java servlets are new, exciting fast

growing technology in web programming.

This study demonstrated that Java servlets can be used on-line testing/courseware

programming. It utili zed instant grading for student’s quizzes, eliminating human

grading/corrections. The grades were stored in the database. This also simpli fies the

calculation of student’s average final course grades.

The Q/A posting board provides a useful tool for message/question posting and a

discussion board. Students can benefit from it by posting new questions and even by

answering some of the questions.

The database design used is a three-tier model. The database class (quizdb) acted

as the middle application server between the Java servlets and the database engine.

Although speed of database queries wasn’ t much of an issue in this project, the three-tier

model is used here because it usually provides better performance.

20

5. Future Work

In the future, more functionality may be added to this project. Some of these

functionaliti es may include, automatic assignment submission and grading, chat room(s),

posted classnotes, etc.

Although the quizzes are timed, there is no automatic submission feature on this

page when the quiz ends. This feature could be added on the quiz page. So that, at the end

of the quiz, the next page (answer page) loads automatically before student submiting the

quiz page.

JavaServer Pages (JSP) is another new and exiting technique in dynamic web site

programming. JaveServer Pages are standard extension of the Java Servlet API. Possible

future studies may involve compining servlets and JSP to generate better results.

References

[1] Tom Christiansen and Nathan Torkington. Perl Cookbook. O'Reill y and Associates,
Inc., Sebastopol, CA, 1996.

[2] Bruce Eckel. Thinking in Java: A Definitive Introduction to Object-Oriented
Programming in the Language of the World Wide Web. Prentice Hall , Upper Saddle
River, NJ, 1998.

[3] James Goodwill . Developing Java Servlets. Sams Publishing, Indianapolis, IN, 1999.

[4] Graham Hamilton, Maydene Fisher and Rick Cattell . JDBC Database Access with
Java: A Tutorial and Annotated Reference. Addison Wesley Longman Inc., Reading,
MA, 1997

[5] Cay S. Horstmann and Cary Cornell . Core Java 2, Volume I: Fundamentals. Prentice
Hall , Upper Saddle River, NJ, 1998.

[6] Jason Hunter and Willi am Crawford. Java Servlet Programming. O'Reill y and
Associates, Inc., Sebastopol, CA, 1998.

[7] Jamie Jaworski. Java 1.2: Unleashed. 4th Edition. Macmillan Computer Publishing,
Indianapolis, IN, 1998.

[8] George Reese. Database Programming with JDBC and Java. O'Reill y and Associates,
Inc., Sebastopol, CA, 1997.

[9] Mark Swank and Drew Kittel. World Wide Web Database Developer's Guide. Sams
Publishing, Indianapolis, IN, 1996.

21

[10] Larry Wall , Tom Christiansen and Randal L. Schwartz. Programming Perl. 2nd

Edition. O'Reill y and Associates, Inc., Sebastopol, CA, 1996.

[11] Willi am E. Weinman. The CGI Book. New Riders Publication, Indianapolis, IN,
1996.

[12] URL: www.webct.com

[13] URL: www.blackboard.com

[14] URL: www.learnu.com

[15] URL: www.uophx.edu

