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Abstract 

Among the many ongoing research projects at the University of Nevada, Reno, one has been 

the development of a biologically realistic brain simulator called the NeoCortical Simulator 

(NCS).  As NCS has evolved, it has become desirable to have other applications interact with the 

simulated brain in order to perform a greater range of experiments.  The Brain Communication 

Server (BCS) allows separate applications to exchange data with NCS.  This creates an 

interactive system where information goes into NCS as stimulus to affect the network of 

simulated neurons and a response returns from NCS to indicate the reactions generated within 

the simulation.  By using BCS as a bridge to NCS, a variety of applications may be developed to 

work with the simulator to achieve greater experimentation results and learning. 
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Chapter 1: Introduction 

There is much to be learned about the way mammalian brains work in controlling the body.  

Within the complex networks formed by neurons, information cascades and generates reactions 

that emerge as memory, consciousness, and behavior.  Information enters the brain through the 

body’s senses: sight, hearing, touch, smell, taste.  These interactions with the environment are 

processed to become stimuli.  They trigger the synaptic paths connecting one group of brain cells 

with another.  Those cells then trigger synapses to more cells, and so on.  Once a stimulus has set 

off a chain reaction, some response will usually happen.  An arm raises, legs move forward, or 

any other possible motor response may occur.  Whatever action is taken, it will most likely lead 

to new information collecting through the senses, new stimuli being created, and the whole 

process starting once again. 

Computers offer a new method to further investigate the inner workings of the brain.  As 

computer hardware drops in price, Beowulf clusters can be built with greater processing power 

and the ability to simulate the biological, electrical, and chemical properties within the brain.  

Simulations can separate the stages of neurological processing by having one application focus 

on replicating brain behavior and another gathering sensory information from interactions in an 

environment.  A method for exchanging data between these processes is required.  The Brain 

Communication Server (BCS) is the bridge linking the high level reasoning of the NeoCortical 

Simulator (NCS) with an entity, physical or virtual, moving about a real or artificial world.  

While NCS issues motor commands to an entity, that entity simultaneously gathers sensory data. 

BCS allows the two programs to exchange their results.  BCS must be fast and efficient in order 
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to keep the rate of communication flowing from one source to another since the stimulus-

response loop is continuous. 

The rest of this thesis is organized as follows.  In Chapter 2, the concepts and underpinnings 

of NCS are covered.  From there, the applications that make use of NCS, CARL (not an 

abbreviation, but rather the name of a robot) and IVO (Intelligent Virtual Organism), are 

described.  Next is a discussion of server programs already in development, their intended 

purposes, and why they did not meet our goals, therefore requiring the creation of BCS instead of 

using an off the shelf server program.  Chapter 3 goes into the development of BCS.  It covers 

the methods initially tried in earlier versions and outlines the problems and difficulties 

encountered that forced changes in those methods until the final version of BCS emerged.  

Chapter 4 is an analysis of BCS.  BCS’s performance during data exchange is examined in 

comparison to using static data files.  Also the changes made to NCS so that it could make full 

use of the server and help the progress of the latest research project, the Intelligent Virtual 

Organism (IVO).  Chapter 5 is the final discussion of how BCS performs at the tasks currently 

required of it and offers a glimpse into future projects that will make use of BCS to link with 

NCS and its ability to simulate the brain. 
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Chapter 2:  Background 

2.1 NCS 

2.1.1 The Biology of NCS 

As knowledge of brain functions is uncovered, NCS seeks to incorporate them into models.  

So far, many structures and organizational patterns researched in physical matter [29] have been 

designed and implemented.  The constructs and concepts included in NCS are described in the 

following paragraphs. 

Neurons 

One of the most basic objects, a neuron (denoted as cell from now on) serves as a container 

for compartments, described later.  Collections of cells of the same type are designated as cell 

groups or cell clusters and are managed as single units for the purposes of synaptic connections, 

stimulus and report targeting, and load balancing during parallel simulations.  

Compartments 

A cell may be divided into multiple compartments.  Each compartment keeps track of 

multiple state variables such as membrane voltage, as well as acting as a container for channels 

and synapse endings, described later.  A cell, regardless of the total number of compartments, 

must have exactly one compartment that is designated as active.  This “soma” compartment pays 

special attention to its membrane voltage as it adjusts due to incoming current from adjacent 

compartments, cells connected via synapses, and other sources.  If the membrane voltage reaches 

a threshold value, the compartment generates a spike shaped template and sends an action 

potential (AP), a sudden burst of current, to all the other cells/compartments to which it is 
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connected via synapses.  Figure 2.1 shows the voltage pattern for a soma compartment that has  

reached its threshold.  When multiple compartments exist in a cell, voltage flows from the 

compartments where synapses terminate, dendrites and spines, towards the soma.  Figure 2.2 

shows a possible cell configuration with synapses terminating on dendrite compartments or the 

soma itself.  When the soma fires an AP, it may send the AP itself, or have axon compartments 

send the APs to other cells/compartments.  The process of collecting current and generating an 

AP is called “integrate-and-fire.”  Information propagation through networks of cells is described 

in [22] and [23]. 

 

Figure 2.1 Compartment reaches threshold and fires an Action Potantial (AP) 

Channels 

Within a compartment, channels regulate the flow of certain types of ions, dynamically 

impacting how the compartment’s membrane voltage changes either inhibiting or enhancing the 

generation of an AP from the active compartment.  NCS has the capacity to simulate M, A, and 
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AHP channels and can potentially create more channels types in the future [18, 39].  M channels 

become activated by an incoming AP.  An M channel seeks to inhibit its compartment and 

prevent it from reaching its threshold.  An A channel opens up as a compartment approaches its 

threshold, but shuts off once threshold has been reached [16].  This has the effect of reducing the 

impact of background noise. AHP channels are different from the other types in that they are not 

voltage dependant.  Rather, these respond to calcium (Ca+2) concentration within a compartment.  

As a cell generates its own APs, calcium enters the compartment, opening the channel so that it 

hyperpolarizes its compartment, possibly suppressing further firing. 

 

Figure 2.2 APs arrive on compartments, and new APs will be generated. 

Synapses 

Synapses connect one cell to another and pass APs from source (pre-synaptic cell) to 

destination (post-synaptic cell).  The spike shaped output of the soma in a pre-synaptic cell is 

considered a binary event due to the short length of time it lasts.  However, the synapse turns the 

AP into an analog event for post-synaptic compartments since the resulting post-synaptic current 

(PSC) lasts one to two hundred microseconds, considerably longer than the original AP.  

Synapses are either excitatory or inhibitory.  Excitatory synapses help post-synaptic cells to 

reach their threshold (depolarize), and inhibitory synapses suppress the ability of post-synaptic 

Terminating synapses 

 

Beginning Synapses 
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cells from reaching their threshold (hyperpolarize).  The effectiveness of a synapse to depolarize 

or hyperpolarize is controlled by short-term dynamics called facilitation and depression as well 

as long term dynamics called Hebbian learning [34].  These affect a synapse’s Utilization of 

Synaptic Efficacy (USE) which determines the release of more neurotransmitters (amplifying the 

signal) or less neurotransmitters (dampening the signal). 

Short-term dynamics regulate neurotransmitters within a specified window of time.  Two 

primary values dictate whether a synapse will be more or less effective as successive APs arrive.  

The depression time constant seeks to reduce effectiveness while the facilitation time constant 

seeks to promote it.  A synapse adjusts its USE based on the relative values of its depression time 

constant and facilitation time constant.  USE is not allowed to drop below 0.0 (no efficacy) or 

rise above 1.0 (full efficacy).  The effectiveness of a synapse is not permanently affected by 

these properties; during periods in which APs are not arriving, a synapse can recover its USE 

back to its original state. 

Hebbian learning does have a permanent effect on the USE of a synapse.  This depends on 

the pre- and post-synaptic AP timings.  A post-synaptic AP that arrives and helps cause a pre-

synaptic AP will strengthen the synapse that delivered the AP.  Otherwise, if the post-synaptic 

AP arrives too late, after the pre-synaptic AP has been generated, then that synapse is weakened.  

Figure 2.3 illustrates the timing involved where two pre-synaptic cells fire at different times.  

Cell A’s AP arrives in a positive learning window and the synapse connecting Cell A and Cell C 

is strengthened.  Cell B’s AP arrives during a negative learning window and the synapse 

connecting Cell B and Cell C is weakened. 
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Columns and Layers 

Cells are organized into other container objects.  Within a layer, the quantity of each cell type 

determines the size of the final cell groups or clusters.  Layers are organized on top of each other 

to form columns.  Once cells have been placed within these structures, synaptic connections are 

made using a probabilistic model.  Cell groups within the same layer use the highest probabilities 

of connecting with each other.  Connections between layers use the next highest probabilities, 

and connections across columns use the lowest probabilities.  

 

Figure 2.3 Hebbian Learning occurs over 3 stages. 

A. During a positive learning window, synapses that fire to S1 are strengthened 
B. When S1 fires, the positive learning window closes, and negative learning window begins  

C. During a negative learning window, synapses that fire to S1 are weakened 

2.1.2 NCS1 and NCS2 

The initial version of the NeoCortical Simulator (NCS) explored the potential of simulating 

experimental results obtained from rat brain slices [14].  Matlab was the chosen platform for 

development of the pilot program.  Implementations of calcium dependant AHP channels, 

voltage dependant A and M potassium channels, synaptic delay, and membrane impedance were 
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tested and calibrated against the biological experiment recorded observations.  Short-term 

synaptic dynamics and long-term refinements due to Hebbian regulation of synaptic efficacy 

were incorporated using recently published results from Markram and Colleagues [34].  A model 

comprised of 160 point-neurons (single compartment) in a 2-column architecture was used for 

testing and observing associations of input-output pairing. 

To increase the scale of simulations and maintain reasonable performance, NCS2 was 

developed by converting the existing program into C code.  In addition, parallelization of the 

code was developed and experimentation was carried out on a 20 node Beowulf cluster 

comprised of 450 MHz Pentium CPUs.  Experiments were performed by increasing the size of 

the network from 100 cells to 1000 cells and increasing the number of CPUs from 1-10.  

Increasing the number of CPUs beyond 10 did not provide any more benefit to the runtime of 

NCS.  Figure 2.4 shows the speedup results of increasing the number of nodes on a 1000 neuron 

simulation.   

 

Figure 2.4 Speedup results of attempting to parallelize NCS2 [15] 

The disappointing speedup is due to slow switching across Ethernet.  A proposed Beowulf 

for the next incremental version of NCS planned to incorporate high-speed Myrinet switching 
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along with faster CPUs.  This would allow for greater complexity in the design of biological 

neural networks, in terms of both compartmental design and the number of cells and synapses 

that could be processed. 

2.1.3 C++ Version NCS3 

The third incarnation of NCS sought to utilize object-oriented designs to improve code 

performance and organization [36, 37, 38].  The relationships among neuronal properties were 

broken down into corresponding objects to allow for the completion of two goals.  First, with 

objects fully encapsulated, different implementations could be swapped out without needing to 

rewrite large portions of code.  This allowed for easier experimentation with algorithms to find 

the most efficient means of accomplishing biological simulation.  The second goal was to allow 

the code to be better organized by having objects serve as containers and/or state machines.  As a 

container, instances of other objects are stored, usually in lists.  For example, a column object 

acts as a container for layer objects, keeping them separate from unrelated objects.  As a state 

machine, biological tasks are performed that impact a system’s behavior.  A synapse object is an 

example of a state machine since it keeps track of its USE parameter as it changes due to short 

and long-term learning. 

Since NCS3 was a complete rewrite of the NeoCortical simulator, steps were taken to make it 

more general for future improvements as well as capable of executing on a parallel system more 

efficiently.  This version of NCS split up cells evenly across the nodes with no notion of keeping 

cell groups together, although load-balancing algorithms were anticipated to be included in the 

future.  A Message Bus object was created to coordinate the flow of communication between 

objects on and off node.  This managed the timing and synchronization of simulations to prevent 
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deadlock and starvation [8].  Figure 2.5 shows the interaction of the Message Bus with various 

other components of NCS3.  

In addition to code improvements, new hardware was obtained to improve system 

performance and increase simulation size [14].  The Cortex cluster was built using 30 dual-

Pentium III 1 GHz processor nodes with 4 GB of RAM per node.  A new networking system 

built with Myrinet [4] was purchased and installed for this system.  As connectivity was a main 

issue with previous versions, Myrinet’s high-performance packet-switching technology allowed 

for high rate data transfers without flooding the network, as occurred with Ethernet. 

 

Figure 2.5 NCS3 communication model centered on a Message Bus object [36] 

Using NCS3, experiments were performed to utilize channel structures within cellular 

compartments in order to reflect accurate dynamics of interneuronal GABAergic system [27].  

NCS3 supplied M-, A-, and AHP-channels that could be tuned using parameters.  By combining 
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these channels in a proper way, previously published in vitro responses taken after applying 1-

second current steps ranging from 50 to 350 pA were replicated. 

Biological research has shown that neocortical interneuron membrane responsiveness is more 

varied than previous neuronal classifications took into account [10, 16].  Studies have looked 

into the GABAergic system to understand its role in neuronal anatomy, synaptic dynamics, and 

membrane physiology [7, 16].  Using a point-neuron model, based on published data [16, 17], 

channels were developed and fine-tuned to reflect biological data [18, 20, 39].  Figure 2.6 shows 

the results achieved by NCS3 in replicating the behavior of various neurons: classic non-

accommodating (cNAC), classic accommodating (cAC), bursting non-accommodating (bNAC), 

bursting accommodating (bAC), delayed non-accommodating (dNAC), delayed accommodating 

(dAC), classic stuttering (cSTUT), and bursting stuttering (bSTUT).  Under NCS, the behaviors, 

except for “stuttering” types, were relatively robust under a two-fold variation in strength for a 

single somatic cell. 

2.1.4 NCS4 and NCS5 

The next revisions of NCS sought to expand the functionality available to simulations as well 

as offer further optimizations to speed and performance [13].  Previous versions of NCS had 

been designed to work with point neurons (i.e. only a soma compartment).  The latest revisions 

of NCS allowed for complex cells to be created consisting of numerous compartmental structures 

such as dendrites, spines, and axons.  Additionally, geometric information could be assigned to 

the structures.  For example, synapses would have a higher probability of formation among 

closely spaced objects and action potentials would travel faster to nearby destinations.  The 

capability to save and load the state of a constructed brain was added.  This allowed synaptic 

dynamics influenced by Hebbian learning to be preserved and reused for future simulations. 
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Figure 2.6 Simulated response to step current of 150-300 pA [27].  
A. cNAC B. cAC C. bNAC D. bAC E. dNAC F. dAC G. cSTUT H. bSTUT 

Numerous optimizations were made to NCS during the latest revisions.  Improved load 

balancing was needed to ensure that some processors in the cluster weren’t being overworked 

while others stayed idle [11, 12].  The method of load balancing in NCS3 had focused on 
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dividing cells evenly among nodes whereas the latest methods focused on the number of 

synapses in order to properly lay out the possibilities of “work” balance.  Synapses comprised 

the largest memory usage in the simulation; thus, the need to evenly distribute total synapse 

count became more important.  The connection process was also optimized so that less time was 

spent initializing the brain network.  Older versions would visit every possible connection during 

the construction of the brain and check the probability of that connection being created.  This 

yielded an O(n2) process where the number of cells in the network (n) could potentially be 

connected with each other.  The new version looks at the number of connections desired, and 

selects available cells randomly to create a connection.  This algorithm more closely approaches 

O(n) in execution.  One of the other major optimizations was to tone down the Message Bus so 

that it produced less overhead.  Message sizes were reduced and were therefore able to get to 

their destinations faster.  Some objects no longer needed to use the Message Bus as they were 

made more intelligent in working with the brain.  Figure 2.7 shows the results of the 

optimizations on NCS in the parallel environment.  The inset graph shows the same data, but on 

a logarithmic scale. 

More biological experiments were performed with the latest versions of NCS.  One such 

experiment took a look at how spike-timing and membrane dynamics of biological neurons may 

encode information [26, 27].  It sought to make comparisons with artificial neural networks 

(ANNs) to show how the biologically influenced NCS was more flexible and robust and could 

utilize multiple sensory modalities as humans do in situations requiring pattern recognition, 

speech comprehension, and path planning.  Audiovisual recordings were decomposed and 

presented to the synaptic and membrane dynamics obtained from laboratory-derived parameters.  
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The results of these experimentations would be used in the development of the CARL 

application described in Section 2.2.1. 

 

Figure 2.7 With optimizations, NCS achieves speedup closer to ideal [11] 

Another experiment examined intracortical and cortical-subcortical “networks of networks” 

involved in attention, sensory association, motor planning, memory, reward, theory of mind, and 

emotion [30].  It attempted to understand how these modules interact using NCS as a platform 

for rapid experiment development and processing.  After performing literary synthesis of 

existing research and incorporating the designs into virtual brains, models ranging from 1,000 to 

1,000,000 neurons were constructed to sustain auditory patterns with stability.  Synapses used in 

the simulation approached 600 million creating a massively interconnected network. 

A look at entropy and its association with data distribution in a neural network was looked at 

in further experimentation.  First, a look at entropy in biological models was created to establish 
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a foundation [26, 27].  Further experiments looked at the impact that AHP channels have in the 

transmission of information; that is, determining the amount of entropy in the system [28].  By 

knocking out the AHP channel, entropy substantially lowered, which indicated a reduction in the 

information carrying capacity of the network.  Entropy measurements were taken using methods 

developed by quantifying spike codes recorded from a fly’s visual system [6, 33]. 

Experimentation continues in both real-world biology as well as NCS’s silicon environment.  

As new discoveries are made, both fields can benefit.  NCS can expand its simulation 

capabilities by including new structures and biology.   Biologists can perform experiments that 

might not be feasible under real-world circumstances. 

2.2 Applications 

Once NCS reached a threshold level of biological realism, projects were developed to make 

use of the simulator.  These applications created the stimulus that initiated dynamics within NCS. 

In turn, report files from NCS initiated reactions on applications.  The first major application 

created to work in this manner was a mechanical robot dubbed CARL (note that CARL is not an 

abbreviation).  An ongoing project focuses on creating an Intelligent Virtual Organism, or IVO 

for short. 

2.2.1 CARL 

In 2002, work was done to create a system that mimicked interactions between the brain, the 

body, and the environment using a robot body controlled by a small on-board computer, a local 

computer or laptop, and a Beowulf cluster of CPUs [9, 24, 25].  Juan Carlos Macera, who 

worked on this project, sought to meet the timing demands of complex thinking while 

maintaining a sleek, light robot body capable of interacting with the environment.  Complex 
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thinking in a reasonable amount of time often meant carrying heavy, multiprocessor systems 

which would reduce the dexterity of a robot body.  By keeping two systems separate as described 

by Inaba et al, a robot used wireless communication to gain the benefits of faster, more complex 

processing from the multiprocessor system without compromising maneuverability [19].  Juan 

Carlos went even further by expanding the two-system model into a three-layer hierarchal 

robotic control system.  These layers were labeled the Body, the Brainstem, and the Cortex to 

associate their behaviors with corresponding biological structures. 

The Body layer corresponds with the robot body, which directly interacts with the 

environment, gathering stimulus.  The Brainstem corresponds to a local machine where 

“instinctive” behavior allows fast responses. It also relays information to the Cortex and back.  

The Cortex corresponds to NCS which handles higher-level cognition to formulate responses to 

complex situations.  Simple tasks are handled by the lowest layer and incorporate other layers as 

needed.  Table 2.1 shows the breakdown of certain tasks across the three-layer system. 

Table 2.1 Distribution of robot tasks over three-layer system [24] 
Application Body Brainstem Cortex

Obstacle avoidance & navigation routines  x

Binaural sound localization  x  x

Navigation to sound target  x  x

Robotic control over the Internet  x  x  x

Bimodal speech recognition (ANN)  x  x  x

Bimodal speech perception (SNN)  x  x  x  

One of the primary experiments performed using CARL was to incrementally triangulate and 

navigate towards a speaking target.  By giving audio and visual speech information to NCS, the 

target would then be classified as a threat or non-threat based upon any potential danger so that 

CARL could take an appropriate tactical response [25].  The audio processing is handled by short 

time Fourier transforms that return sets of energies for 129 frequency bands.  These energy 
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values are written to a file that NCS can open and read, then convert the information into 

probabilities of synaptic firings.  The probabilities are applied to a cell group designated as the 

auditory cortex as stimulus.  Video data, meanwhile, is processed by a Gabor filter where sub-

regions of a frame are converted once again to spike probabilities.  These are likewise output to a 

file to be processed and fed to a cell group designated as the visual cortex [26].   Figure 2.8 

illustrates the conversion of audio and visual data into spike probabilities for NCS.  Using these 

tactics, the behavior of CARL was fine tuned to achieve the project goals. 

 

Figure 2.8 Preprocessing of visual and audio data [25]. 
(a) Video frame of the speaking mouth target 

(b) Gabor analysis of the mouth frame 
(c) Spectrogram of the speech captured. 

The communication method uses a wireless link between CARL and the local machine, and a 

wired link from the local machine to the cluster running NCS.  A simple, coarse grain 

communication pattern was implemented.  The robot can move, stop and gather stimulus for a 

period, and transmit to the local machine.  The local machine compresses the data to improve the 

speed of transfer to the cluster.  When the local machine transferred data, it would send it as one 

large file, and via ssh, start a new NCS job using the chunk of stimulus data.  NCS would go 
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through all its initializations to construct the brain and all its components, work with the data file, 

and produce a report for the complete simulation, then shut down.  The final report is interpreted 

in order to issue a command to CARL. 

2.2.2 IVO 

CARL demonstrated that an external entity could make appropriate motor responses after 

exchanging information with NCS.  The next goal was to fine tune the simulator so that it could 

exhibit greater memory and learning.  A virtual organism was selected as the platform for 

experimentation.  Using Matlab, an Intelligent Virtual Organism (IVO) was designed so that it 

could send and receive data from NCS.  This holds key advantages over CARL to facilitate the 

research process. 

One advantage is that using a virtual organism would simplify maintenance.  As a physical 

machine, CARL had numerous mechanical pieces that needed to be maintained.  Effort was 

spent repairing and replacing worn components.  Sometimes, the failing components might not 

be so easily determined and numerous attempts were made to find out which part was faulty 

before future simulations could be run.  These components were sometimes expensive as well 

since CARL was designed with small, delicate parts.  By moving to a virtual environment, no 

physical piece of the IVO could fail and research time could be spent working with NCS. 

Additionally, as a physical object, CARL stayed in the research lab.  In order to perform 

experiments, researchers needed to be near him to observe behavioral responses.  As inspiration 

may come at anytime, being forced to travel to the lab to make every change seemed less 

productive.  An IVO has the advantage of being highly portable.  Anyone can run the IVO 

program remotely from a home computer and see its actions of IVO on his or her monitor.  Also, 
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for demonstration purposes, an IVO can be shown off more easily since IVO can be downloaded 

from the Internet as opposed to transporting a system like CARL. 

By using IVO, the focus of research was clearly in fine-tuning NCS to achieve the level of 

learning and responses we needed.  The goals of IVO were to work out the model of the brain 

first, then make that model available to any platform.  CARL had shown a glimpse of what was 

possible with NCS.  IVO provided a faster, more efficient way to work with NCS.  IVO was also 

designed from the start to use fine-grained communication implemented with BCS so that it 

could send and receive data from NCS as it became available. 

2.3 Analysis of other Server Packages 

2.3.1 Overview of limitations 

Many of the following server tools provide the ability to customize to fit user needs.  

Unfortunately, the amount of retooling needed to change any of these projects to fit the needs of 

IVO and NCS would have required a greater amount of work than building a specialized server.  

In addition, documentation for many of the available tools is written for individuals whose work 

stays close to the mainstream purposes of Internet activity whereas the work done at the Brain 

Lab is far from mainstream.  Without documentation specially written to assist in meeting the 

goals of NCS, time would need to be devoted to use available tools in non-conventional ways.  

The worst-case scenario being a retooling of source code to meet exclusive needs. 

These projects are great at what they do; they are very robust and full featured and should be 

used for projects that have use for their abilities.  However, all these features are unnecessary for 

this project and result in excess overhead.  With a goal slated towards real-time operation, as 

much overhead as possible needs to be eliminated; otherwise, communication overhead adds up 
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rapidly when for example, a single second of simulated brain-time is divided into 10,000 time 

increments. 

2.3.2 Apache 

Apache is an open source HTTP server [2].  It seeks to provide a secure, efficient, and 

extensible server for current HTTP standards.  A commercial-grade HTTP server, Apache is 

provided by means of a collaborative development project working towards robust, featureful, 

and freely available source code.  By accepting work from dedicated programmers world-wide, 

Apache has grown into one of the most widely used server applications, existing on 

approximately 64% of the servers on the web.  Apache provides full access to HTTP standards, 

helping to maintain the integrity of the protocol and ensuring that the Internet serves as a "level 

playing field" for any entities seeking to develop for the web. 

Apache is designed for expansion through the use of modules.  This allows new features to 

be added with the durability of the underlying server.  In an unpredictable environment such as 

the Internet, such robustness is essential.  Users bombard a system and mishaps, both intentional 

and unintentional, occur constantly.  However, such heavy-duty security is not needed, and only 

hinders our activity. 

2.3.3 Squid 

Another product recommended during an initial look for existing servers was Squid.  A 

proxy-caching server for multiple services such as FTP, gopher, and HTTP, Squid offers high 

performance for web clients [5].  It allows Internet objects to be stored on a closer system to 

speed access from clients. 
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There is no speed of efficiency advantage gained by using Squid as opposed to creating BCS.  

It is best used in an environment where data is repeatedly accessed at varying times by one or 

more clients.  For example, a business might use a proxy server to create a local copy of a web 

page so that employees within the company can access it more quickly without consuming as 

much bandwidth.  With the communication scheme used between IVO and NCS, data is needed 

as soon as it is generated, and only used once.  Storing copies of the data that will never be 

needed again accomplishes nothing.  
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Chapter 3: Development 

In developing the Brain Communication Server, various methods were implemented and 

tested.  As flaws and unexpected cases emerged, modifications were made so that a more refined 

communication server would emerge and satisfy all requirements.  In this chapter, the history of 

developing BCS is presented. 

3.1 First Approach: VOserver 

Initially, the server was intended to work only with one other program.  After NCS achieved 

a level of biological realism, an Intelligent Virtual Organism, or IVO for short, was created to 

further test the capabilities of NCS after the CARL project wrapped up.  The server was 

therefore designed with the specific purpose of coordinating data between IVO and NCS more 

fluidly than had occurred with CARL when it was forced to accumulate data over an extended 

period of time and then allow NCS to start from scratch on the collected data.  This virtual 

organism server, or VOserver, accepted data from IVO and sent it to NCS as stimulus 

dynamically as it was received.  NCS in turn sent data back to the server as a motor response for 

the IVO to execute continuously rather than in large, discreet blocks.  During execution, the 

VOserver need not differentiate between the two types of data streams.  As shown in Figure 3.1, 

VOserver merely accepted whatever was sent to a “writer port” and directed it to a “reader port”.  

Any client connected to the reader port received the pending data.  So long as NCS and IVO 

connected to the correct ports, each would receive the data sent from the other application. 

Figure 3.2 helps to clarify by showing a simple connection scheme.  Once data pathways had 

been set up, the IVO could connect to one of the writer ports while NCS connected to the reader 
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port corresponding to that writer.  Meanwhile, NCS connected to a different writer port and IVO 

connected to the corresponding reader port. 

  

Figure 3.1 Data enters the server from the writer port, leaves through the reader port 

 

Figure 3.2 Simple connections scheme for data exchange 

Additionally, the change in communication model used by CARL had another effect that 

facilitated the need for VOserver.  Because NCS was always restarted with CARL, the simple 

communication program it employed needed only contact the head node of the Cortex cluster 

and initiate a new NCS run.  With NCS always running, an outside application could not connect 

to the specific nodes where NCS actually ran since only the head node was accessible from the 

outside world due to security restrictions.  Figure 3.3 shows the organization of the Cortex 

system when NCS is running and how VOserver fit into the scheme.  Users working from home 

or from another lab could connect to the VOserver application since it ran on the head node of 
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the Cortex cluster, then VOserver would have access to the individual nodes.  

 

Figure 3.3 NCS nodes are kept separate for security. 

3.1.2 Using VOserver  

VOserver used two ports for each one-way flow of data.  This meant that each port used by 

VOserver was responsible for only reading or for writing and was linked with only one other 

port.  Thus, no header information needed to be sent by any clients connecting to VOserver.  

Ports were assigned the responsibility of reading or writing using a configuration file passed to 

VOserver as a command line argument.  The file had a very simple initial design where the first 

number in the file was the number of writer/reader pairs and the following lines contained the 

pairs of port numbers, with the writer port followed by the reader port.  

In addition to the port numbers in the configuration, the user needed to specify whether the 

reader and the writer would handle data in ASCII mode or binary mode.  The two formats were 

made available because each had advantages and disadvantages that could affect a user choosing 

one over the other.  ASCII was easy for a user to work with and quickly debug, but consumed 

more bandwidth to transmit data.  Floating-point numbers transmitted in ASCII were often 
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truncated to only a few places after the decimal, reducing their accuracy.  On the other hand, 

binary would maintain full precision for floating point values and used the same amount of space 

for each value, saving bandwidth.  Users wanting to view or debug binary values needed to know 

how to view them using the appropriate tools.  In order to help accommodate the user, a 

conversion function was added to the server so that data could be changed from ASCII to binary 

or binary to ASCII.  Figure 3.4 illustrates data coming into the server as one form, and if the 

output data format is not the same, VOserver will handle the conversion to the other format. 

 

Figure 3.4 Input data may convert from ASCII to binary or vice versa. 

This conversion was especially useful for sending stimulus to NCS since it had been 

designed to receive only in binary (NCS sent reports in either binary or ASCII).  In addition, in 

working with Matlab to build the IVO, it was difficult to understand how to make Matlab use the 

same binary format as NCS, so from the user's perspective she/he could just use ASCII on IVO's 

end within Matlab, and let the server convert the data to a binary representation that NCS could 

understand.  Although this put more work on the server to handle, the conversions would not be 

used as long as data remained in the same format going from one port to the next. 

The last function handled in the configuration file allowed the user to display verbose output 

for a given port so that it could be monitored in a terminal during runtime. In order to keep the 

configuration file from becoming cluttered, this feature was merged with the ASCII/binary mode 
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indicator.  If a port was to be verbose, a capital letter was used, 'A' or 'B', whereas a lowercase 

letter, 'a' or 'b', would leave verbose output turned off. 

As the server program developed, a means of giving commands directly to the server during 

runtime became necessary.  The user could designate a separate port for issuing server 

commands on the command line along with the configuration file.  The commands available to 

the user are described in a later section. 

The final command to start the server appeared as: 

VOserver <configuration file> <control port> 

3.1.3 Data Format 

In order to decrease overhead in sending data, a minimal header was introduced for all 

transmissions.  It aided in converting data whenever that function became necessary.  The header 

required the sender to specify the total number of bytes in the main message.  This value was 

expected to be in ASCII followed by a white space character (' ', '\n', \t', '\0').  By sending the 

length value in ASCII even if the stream was using binary, this simplified the parse function on 

the server that would extract the data.  In addition, by using ASCII, it would be understandable 

by any users of the server.  When data from a writer arrived, the header would be removed and 

the extracted data stored until it was sent to the reader.  Figure 3.5 shows an example ASCII 

transmission.  Figure 3.6 shows an example of a binary transmission.  Note that the length value 

does not include the space taken up by itself or the separating white space. 

Any additional formatting needed by the reading application would need to exist outside of 

the header used by VOserver.  For example, when NCS reads stimulus, it reads a constant size, 

so no additional formatting is needed.  When NCS writes an ASCII report, it ends each line with 

a new line since each report line could be of variable length.  This new line character remained in 
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the data stream and was sent on to any client applications even after VOserver had removed its 

own header from the data.  VOserver’s header was included so the server could distinguish a 

whole block of data and properly queue it for the reader.  By knowing when the whole block of 

data had arrived, VOserver could correctly convert data without mistakenly breaking apart 

values that might have only partially arrived on the port.  

 

Figure 3.5 Example header used when sending ASCII data. 

 

Figure 3.6 Example header used when sending binary data. 

3.1.4 VOserver commands 

As the server was used, the need to control the server as it ran emerged so that various 

commands were created.  The first server command conceived was a reset command to keep the 

server from needing to be shut down every time the user wanted to perform a new simulation.  

The reason behind this reset command is addressed in Section 3.1.5.  With the server always 

active, additional commands needed to be added to help with the verbose output.  For example, if 

a port was set to have verbose output, and the user had become satisfied that communication was 

working properly, she/he should not need to shut down the server in order to change system the 

configuration.  Therefore, another command was added so that a user could specify a port's 

verbose output be turned on or off during runtime.  These commands, reset and verbose control, 

were the initial attempts to control the server during runtime.  Later versions of BCS would 

expand the number of commands a user could use to manage the server. 
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3.1.5 Difficulties with VOserver 

VOserver had been designed to be simple so that it could transfer data with as little overhead 

as possible.  However, that simplicity led to difficulties in getting the server to work the way the 

users wanted it to and work around solutions were not always forthcoming.  

One of the initial problems that came up occurred whenever the server was shut down.  The 

ports it had been using would remain reserved for a period of time set by the operating system in 

order to assure that new applications would not use those ports and read potentially left over 

data[32].  This was a great inconvenience when a user wanted to make minor changes to the 

interaction between the IVO and NCS.  To try and solve this problem, a reset command was 

added to the server so that it would close any open connections with other programs (i.e. NCS 

and IVO) and clear any pending data from its buffers.  This would allow the server to continue 

running and keep the ports it had already claimed.  The user would make any changes and then 

reconnect to the ports without worrying about data from the previous run corrupting the current 

run.  Although this new feature helped make consecutive runs easier, other difficulties still 

existed. 

Numerous data streams could be added to VOserver since multiple stimulus and reports are 

needed for NCS to better simulate a biological organism.  As the number of data stream 

increased, working with the port numbers became increasingly difficult since a number does not 

describe the purpose of a port.  Figure 3.7 illustrates that connecting an IVO to the appropriate 

ports could easily become confusing since the port numbers are not descriptive enough to 

distinguish one from another. 
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Figure 3.7 With many ports, coordination becomes difficult 

Additionally, if the IVO or NCS connected to the wrong ports, the mistake might be difficult 

to discover.  Figure 3.8 shows NCS connecting a report writer to one of VOserver’s reader ports 

while NCS also connects a stimulus reader to one of VOserver’s writer ports.  Such mistakes 

might allow the simulation to run fine while it reads erroneous data or it might lock up while it 

waits for data that will never arrive.  Even when a user realized that a mistake existed in the 

connections, debugging these connections was a tedious chore.  The user would be forced to 

spend much time reading through text files making sure NCS and IVO connections were all 

properly directed to the correct port numbers when a simulation was started.  If changes to the 

connection scheme needed to be made or if multiple simulations were to be run at the same time, 

the user would need to repeat the process of reconfiguring port connections all over again.  For 

the case of multiple simulations running at once, each simulation needed its own set of ports to 

work with since a given set of ports could not be shared.  When these situations arose, the user 
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would spend time coordinating three separate files: IVO’s Matlab file, VOserver’s configuration 

file, and the NCS input file. 

 

Figure 3.8 Bad configurations were difficult to detect and debug. 

3.2 Second Approach: Autoport Server 

Because the problem with port organization was becoming unbearable, a better solution was 

needed.  Instead of forcing the user to select ports beforehand, the server should determine if it 

needs to create a new port while it runs.  As the “autoport” system was being developed, it 

became apparent that creating individual ports was not necessary.  Rather, the server would 

merely manage the sockets created during the connection process.  Despite the slight misnomer, 

the name “Autoport Server” was used for simplicity. 

3.2.1 Behavior 

The idea behind the Autoport Server was to have the IVO and NCS tell the server what they 

intended to read or write.  For instance, if NCS wanted to find a stimulus named ‘reward’, it 

would request the Autoport Server connect NCS as a reader to a writer for the ‘reward’ stimulus.  

The server would look through the already existing connections to see if any sockets were named 

‘reward.’  If it was found, the reader would be linked with that socket so that as data was written 
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there, it would be transferred to NCS.  If no socket was found with the name ‘reward,’ the 

Autoport Server would create a new object with that name and associate the reader with that 

object.  When a writer then arrived with that name, it could be associated with that same object 

to create the full connection.  Figure 3.9 illustrates this operation.  The IVO and NCS connect 

only to one port on the Autoport Server.  Internally, the server locates objects by name and 

creates an association with the socket. 

 

Figure 3.9 Autoport Server manages connections for the user.  

Sockets from clients link with data objects (A, B, C, D) when communicating with main port.  

3.2.2 Identification Header 

In order for the clients such as the IVO and NCS to use the new Autoport Server, changes 

needed to be made to the way these and any other programs communicated with the server.  

There would only be one actual port opened by the server where connections are made.  The 

command port created in the original VOserver for receiving reset and verbose commands would 

now be the only port.  A new command, “request,” was created to handle when clients contacted 
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the server with a request to be connected to another client for transferring data.  Along with the 

request tag, an identification header would be sent in order to establish the name of the 

connection, the format of the data, and the purpose of the connection.  These fields were allowed 

to have variable length, so a new line character separated them, allowing the server to know 

where one field ends and another begins. 

The Autoport Server does not place any restrictions on what a connection is named.  Instead, 

the clients are expected to use a consistent standard so that each will be able to recreate the 

names on their own.  Since NCS is the driving force behind the development of the server and 

IVO, the method of building a name came from pieces of information contained within the 

simulation input file.  Specifically, a root name is built from fields describing the brain type and 

active brain job that normally help to identify the simulation.  Then the individual reports and 

stimuli have a field named Filename to append to the root name.  The IVO would be given the 

same pieces so that it could construct the name in a similar manner.   

After the name of the connection came the data format.  Data formats included the ASCII 

and binary formats from the VOserver along with a new format called “constant binary.”  With 

both ASCII and binary, each time step that NCS or IVO sent data to the server, the line was first 

written with the total number of bytes contained in the data chunk of the transmission.  This 

would add a small amount of overhead the beginning of each transmission.  Although such a 

small amount of extra data seems insignificant, NCS breaks each second of simulated time into 

10,000 time steps.  Even though typical simulations lasted only two seconds, with an eventual 

goal in mind that simulations should last beyond a mere couple of seconds, this overhead would 

further interfere with trying to achieve near real-time simulation.  The constant binary option was 

devised based around the fact that most binary transmissions would be the same length 
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throughout the simulation.  This length could be determined at the beginning of the simulation 

and used whenever the data was written or read. 

The last component of the header was the purpose of the connection.  This purpose was 

simply whether the connecting application intended to read or write data.  With the original 

VOserver, the writer had always connected to the port listed in the first column.  Under the 

Autoport Server, the reader or writer could connect at anytime and in any order.  By specifying 

the intended purpose of the connection in the header, a reader could connect first and wait for the 

writer, or a writer could connect first and begin sending data. 

3.2.3 Updated and New features 

Under the Autoport Server, it was still necessary for the user to have some method of 

viewing activity in order to ensure data transferred correctly.  The user had the ability to turn on 

and off verbose output for the server’s main port, but finer control was needed to manipulate 

verbose output on each of the named connections.  In this way, the user could view only the 

connections she or he was interested in viewing and keep the remaining connections silently at 

work.  The original verbose command was therefore updated so that it could accept a connection 

name in determining which connection needed to be turned on or off. 

The server reset command also needed an update.  Upon receiving the reset command, the 

server destroyed each of the connection objects containing the name of the connection and the 

socket numbers of the clients communicating with the server.  If the same names were given to 

the server, they would need to be rebuilt, but if a new simulation with new names was used 

instead, then keeping the old objects would have been a drain on resources.  Destroying the 

connection objects did not have the same impact as closing a port since working with sockets did 

not result in a time delay while waiting for the operating system to verify port security. 
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A new command was also created for users of the Autoport Server.  During development of 

the Autoport Server, the specific nodes and CPUs used by the simulations were predetermined 

by the user.  Although Autoport Server’s naming convention allowed multiple similar jobs to run 

by changing the ‘job’ field of the input file, these simulations would try to use the same 

computing node in the cluster.  This was because the helper script used to launch the simulations 

needed to read a file containing the desired nodes.  Thus, multiple launches of NCS resulted in 

each reading this same file.  In an attempt to remedy this problem, a new server command was 

created to start the NCS simulations through the server itself.   

The “launch” command was designed to take a set of arguments from the user so that it could 

launch the simulation on any set of nodes.  This was even available if the intended NCS 

simulation did not make use of run-time communication, but merely executed by itself until 

completion.  The arguments included an input file to use, an NCS executable to use, the nodes to 

use, and the files where standard output and standard error should be written.  Although, the user 

could use this information to launch NCS separately, the process of repeatedly editing the helper 

launch script was tedious, especially for new users unfamiliar with scripting languages. 

The input file could be given to the ‘launch’ command as either a filename directly 

accessible by the Autoport Server, or the entire contents of the file would be streamed to the 

server from a remote host and then stored locally for NCS to use.  The nodes were handled in a 

similar way such that a file listing the nodes could be specified by name or created on the fly.  

The NCS executable was handled differently, however.  A new file was created for the server to 

read at the time of start up.  The ‘server.apps’ file contained the name of all the executables the 

server was allowed to run using MPI.  Each executable was then given an id number.  The client 

would then send this id number instead of a name, with id 0 being the default executable.  
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Obtaining the list of executables is described shortly.  The final arguments were merely 

filenames where the standard output and standard error files were written as the simulation ran. 

To assist the launch command, the “applist” command allowed a client to receive the list of 

available applications.  When the server received the applist command, it sent the contents of the 

‘server.apps’ file to the requesting client.  The client could determine which id to assign each 

application by the order the names were received.  The first application had id 0, making it the 

default.  The next had id 1, then id 2, and so on.  Each application name was of variable length, 

so new lines were used to separate one from another. 

The Autoport Server handled simulations of moderate size very well.  With the Autoport 

server managing where the writers and the readers sent and received their data, the user had less 

maintenance to deal with.  However, the Autoport Server had limitations that revealed 

themselves as more complex simulations were developed. 

3.3 Third Approach: Single Socket Server 

As research with NCS expanded beyond just the IVO, a greater variety of simulations were 

being developed, among which were ones causing the Autoport Server to create over a thousand 

sockets.  The UNIX system used by NCS allowed for a single process to have a limit of 1024 

sockets open at once [32].  When this threshold was reached, no new sockets could be created, 

preventing the simulation from being executed properly.  For these large simulations, a new 

method of communicating with the server was needed that would keep the server program from 

reaching this limit. 
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3.3.1 Description 

The Single Socket Server was created so that a client would need to use only one socket 

when communicating with the server.  The client would use this single socket for reading and 

writing all the various data being exchanged with NCS.  Additionally, more commands intended 

to manage the server itself were created so that the user could better manage an NCS simulation 

remotely.  These new features prepared the server to deal with a greater variety of applications 

for communication with NCS. 

The Single Socket Server opened one port for communications like the Autoport Server.  

This was actually the same port since the Single Socket Server could still accept Autoport 

connections.  This was done for backwards compatibility and because in some instances, 

Autoport connections would be a better choice in terms of efficiency.  The efficiency aspect is 

described later.  When a client such as an IVO or NCS connects to the Single Socket Server, 

more descriptive headers than the ones originally used must be sent to the server since a socket 

must be able to give multiple commands at arbitrary times.  The server cannot make any 

assumptions about the connection; otherwise, it risks corrupting the data being passed over the 

socket.  The new headers affect the handling of traditional stimulus and reports, as well as the 

commands issued to the server. 

3.3.2 Modified Handling of Stimulus and Reports 

Since a single socket was used in the transfer of data, the clients needed to use a complete 

header for each transfer between itself and the server.  For example, an IVO wishing to send a 

stimulus and read a report from the Single Socket Server would need to properly label its 

requests since assumptions could no longer be made based on the socket number.  Instead, when 
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the IVO was ready to send the stimulus, it would initiate communication, sending the name of 

the stimulus, its intent to write, and the stimulus contents.  When the IVO was ready to read a 

report, it sent the name of the report and its intent to read.  At that point, it began listening to the 

socket, waiting for the server to send the data. During a stimulus event, a server locates the place 

in memory where it stores data for a named object (or creates a new location if it does not exist) 

and queues newly arriving data until another client requests that data.  During a report event, a 

server accepts a name and locates where data for that name is stored.  If there is no data currently 

available, the server continues handling other requests.  When the data arrives, it will send it to 

the requesting client.  If the data already exists, then the server can remove the first available 

data and send that. 

The names for stimuli and reports are built the same way they were with the Autoport Server.  

The brain type and brain job form the root of all names with the filename of the stimulus and 

reports appended to the end. 

3.3.3 New Reporting using NFS 

In expanding the behavior of the server, a new method of handling reports was also 

developed.  This allowed a user to let NCS write reports to the Network File System (NFS) as it 

normally does for non-dynamic communication.  Larger reports need not need be kept in 

memory, and the contents of the report files could be manipulated and arranged to suit the user’s 

needs.  Figure 3.10 shows how the Single Socket Server requires only the single connection from 

client applications, and accesses NFS to acquire larger reports.  The clients NCS and IVO 

connect to single port provided by the Single Socket Server.  Internally, the server manages the 

movement and storage of data into objects based on naming conventions. 
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One goal of using the traditional reporting to NFS and then accessing those reports through 

the Single Socket Server was to look at data across reports for a specific block of time.  Using 

direct communication from NCS to the server, reports only give data sequentially from the first 

data sent to the last data sent.  If the user wished to look back at the middle of the simulation, the 

client needed to have saved the data and be able to access the desired locations.  Now, with the 

option of using NFS to store reports but still access them with the server, new commands were 

introduced to let the user manage and manipulate report files.  

 

Figure 3.10 Single Socket Server handles larger simulations best.  
Clients connect through a single port and the server manages the data objects (A, B, C, D). 

The primary command used to collect data from the NFS reports was the ‘getdata’ command.  

After the server received parameters to indicate which files and which time steps the user was 

interested in, the Single Socket Server would open those files and combine the same time steps 

together.  Figure 3.11 shows how the time steps were extracted, combined, and sent rather than 

having one report send all its data as one big block before moving on to the next report. 
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In order to specify which reports the user wanted, six properties of a report combined to form 

a pattern.  These properties included the report name, what values were being reported, and 

identifiers for a particular cell cluster: column name, layer name, cell name, and compartment 

name.  These properties were embedded in the header of a binary report file.  The server was 

given the layout of this header so it could extract and interpret the values.  Multiple values for a 

given property could be specified, potentially making patterns long.  A “setpattern” command 

was introduced to allow a user to predefine a pattern and receive an integer ID for future 

reference to that pattern.  Finally, any property could be given a wildcard (‘*’) so that it would 

match any report. 

 

Figure 3.11 Extract data from multiple reports and converge the data based on time step. 

To help the user manage a high volume of reports, the ability to create subdirectories and 

switch between them was introduced by adding the “mkdir” and “setpath” commands.  By using 

these commands before launching an NCS simulation, the resulting report files would be placed 

in the current directory so that they could be kept separate, from the reports of previous 

simulations. 



40  

As the Single Socket Server was being developed, the Sun Grid Engine (SGE) and Portable 

Batch System (PBS) queuing system on Cortex were made available [1, 3].  These systems 

would allow parallel jobs to be queued up one after another and distributed to available nodes in 

the cluster without a user specifying them.  The launch command was updated so that it would 

use the queue instead of starting the simulation itself.  With the queue, the node file specifying 

which CPUs would no longer be needed, so that option was removed.  Although the Sun Grid 

Engine included a graphical interface, it expected users to write a shell script to be submitted to 

the queue.  This was rather absurd since writing the shell script would be a difficult task for our 

expected user base of medical and psychology students with little UNIX experience.  The Single 

Socket Server created and submited this script on behalf of the user after getting the same 

parameters it had before: simulation input file (name or contents), NCS application index, 

number of CPUs, and where to send standard output and standard error. 

A command similar to launch, called “exec,” was created to allow specified script programs 

to run.  The file “server.scripts” was added so that a list of available scripts would be read in at 

the server’s start up.  Each script was assigned an ID based on the order of appearance in the file.  

The user could then request that a script be started with a parameter set passed to the server.  The 

main goal of this new feature was to allow large simulation input files with repetitive structures 

to be created locally on the server’s system.  A user would send the unique features of the input 

file along with parameters that dictated how they repeated.  The script then took the parameters 

and created a large and complete input file.  This method saved the bandwidth that was 

consumed sending a very large input file had it been constructed on the user’s machine and then 

sent to the cluster. 
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The current version of BCS focuses primarily on the Autoport and Single Socket Server 

portions.  Although the original VOserver is still available for backwards compatibility, it is not 

used.  Autoport is primarily useful for jobs with a small number of connections (less than 1024), 

whereas the Single Socket Server is most useful for large jobs that require much interaction with 

outside clients. 
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Chapter 4: Results 

With BCS streaming communication back and forth between client programs such as IVO 

with NCS, experimentation results can be accumulated and analyzed.  This chapter first looks at 

assessing the original goal of replacing the file-based stimulus with the port-based stimulus.  

Next is an examination of BCS and its role in linking NCS and IVO together.  The changes made 

to NCS so that it could communicate with the server are outlined.  The development of IVO in 

working with the brain simulator is also covered. 

4.1 Server Metrics 

In interpreting the effectiveness of BCS, a comparison with the file-based stimulus 

generation is made.  This is not a definitive means of evaluating the performance of BCS, since 

subtle nuances need to be accounted for.  Figure 4.1 shows timing results for two brain models 

run on four 1.0 GHz Pentium III CPUs.  The first model has seven columns, each with five 

layers.  Each layer has a total of twenty excitatory cells and six inhibitory cells.  The layers are 

named L2, L3, L4, L5, and L6.  Stimulus is injected into L4 every 2.5 milliseconds.  The 

simulation lasts for three seconds, with each second divided into 10,000 time steps (30,000 time 

steps total).  The second simulation has the same column and layer setup, but the number of cells 

are increased by ten-fold.  Table 4.1 shows timing results from the two simulations. The timings 

are broken down into two situations.  The initialization time is when the objects the make up a 

brain are constructed and configured.  The thinking time is when actual simulation takes place, 

stimulus entering the system and action potentials moving through the system.  The initialization 

times show that a file-based system takes longer to start because it reads in the entire stimulus 
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file at the start.  In the first simulation, the thinking time is greater for the port- based stimulus 

since it incurs some overhead from the data transfer happening throughout the simulation.  For 

the larger simulation, the thinking times fluctuate enough that after some instances, the port-

based simulation finishes faster, other instances have the file-based finish faster.  The resulting 

average ultimately ended in favor of port-based, but that is not necessarily always the case.  

Figure 4.1 shows a graph of the timing results of the first simulation to illustrate the differences. 

Table 4.1 Average run times for a small and large simulation 

Initialization Thinking Total

Simulation 1

Port-Based 0.32 88.32 88.64

File-Based 2.04 78.36 80.41

Simulation 2

Port-Based 2.45 2007.60 2010.05

File-Based 4.21 2011.08 2015.29  
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Figure 4.1 Timing differences of a small simulation 

There are several things to take note of when analyzing the table and graph.  When using a 

file-based system, NCS must terminate and restart in order to take on new stimulus.  Meanwhile, 

the port-based input can be fed continuously to a simulation.  This means that for finer control of 
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the simulation, a file-based system would need to shut down more often and be restarted.  This 

can be seen in experiments done with CARL, where new data collected would have no effect 

until the next start and stop cycle.  Using the port-based system means no delay in interpreting 

new information. 

4.2 Interaction of NCS and IVO  

4.2.1 Expansion of NCS Input File 

As BCS evolved, the input file that was used to construct an NCS simulation adapted to 

allow a user access and control over the new features.  Table 4.2 shows keywords added to NCS 

for use with VOserver.  These keywords formed the basis for future expansions so that as new 

modifications were made, users would not need to add new keywords to the NCS vocabulary.  

Rather, the values given to the keywords changed to reflect new capabilities of the latest server 

program. 

Table 4.2 New and Updated keywords of NCS for VOserver 

Object Keyword Value Purpose

Port Integer Specify the port where commands 

for NCS can be read

Server Hostname Specify the IP address of Voserver

Port Integer Specify the port where this report 

sends data

Filename Hostname Specify the IP address of 

Voserver

Port Integer Specify the port where this 

stimulus reads data

Filename Hostname Specify the IP address of 

Voserver

Brain

Report

Stimulus

 

With the VOserver, the user needed to specify only a few parameters.  The Hostname was 

required to be specified in any object that used the server, but never changed.  Port values could 

range in value, but as described in Chapter 3, became difficult to configure properly.  Table 4.3 
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shows the changes made to the NCS input file to accommodate the Autoport server.  The 

primary brain object was expanded to contain the master server address and port value.  The 

normal Port keyword could now accept the value AUTO so that it would know to use the 

Autoport’s automatic configuration capabilities.  The Job and Type fields that already served 

purposes in the original NCS input file had their duties expanded so that they would make report 

and stimulus streams have descriptive names. 

Table 4.3 New and updated keywords for NCS for Autoport 

Object Keyword Value Purpose

Port AUTO Request that Autoport server 

manage the Brain's command 

stream.

Server Hostname Specify the IP address of 

Autoport server

Server_Port Integer Specify the port of Autoport 

server for all objects (Brain, 

Reports, Stimulus).

Job Name Descriptive name to attach to 

streams

Type Name Descriptive name to attach to 

streams

Port AUTO Request that Autoport server 

manage this report's data 

stream.Filename Report Name The name sent to Autoport 

for reference of this report

Port AUTO Request that Autoport server 

manage this stimulus's data 

stream.

Filename Stimulus Name The name sent to Autoport 

for reference of this stimulus

Stimulus

Brain

Report

 

With the development of the Single Socket server, only minor refinement needed to be made 

to the NCS input file.  Table 4.4 shows the final revision to the input file such that the Port 

keywords were again updated to allow for the value SINGLE to be given by the user.  This 
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would dictate that a common socket be created by the brain and shared among any sending or 

receiving objects. 

Table 4.4 New and updated keywords of NCS for Single Socket Server 

Object Keyword Value Purpose

Port SINGLE Request the Brain's command stream 

use the single socket.

Server Hostname Specify the IP address of Single 

Socket server

Server_Port Integer Specify the port of Single Socket 

server for all objects (Brain, Reports, 

Stimulus).  Also used for Autoport 

connections.

Job Name Descriptive name to attach to streams

Type Name Descriptive name to attach to streams

Port SINGLE Request that Single Socket server 

manage this report's data stream.

Filename Report Name The name sent to Single Socket server 

for reference of this report

Port SINGLE Request that Single Socket server 

manage this stimulus's data stream.

Filename Stimulus Name The name sent to Single Socket server 

for reference of this stimulus

Stimulus

Brain

Report

 

4.2.2 Runtime Commands for NCS 

As experimentation occurred with the IVO, greater control was needed over the simulation.  

NCS was extended to allow it to accept certain commands which affected how the brain 

responded and behaved as it received stimulus and engaged in neural network activity. 

The ability to activate and shut off long-term learning for specific synapses allowed greater 

observation into the impact of Hebbian learning on the virtual organism.  Another command 

allowed a predefined stimulus object to be injected at arbitrary times.  Normally, stimulus was 

applied at predefined times, using regular intervals.  By allowing stimulus to be applied only 
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under certain circumstances, the effect of reward and punishment on specified regions of cells 

could be created.  Corresponding to the ability of arbitrary stimulus was reporting at arbitrary 

times.  This allowed the user to look at cells more closely when the simulation’s activity picked 

up and seemed interesting, but keep the reports small and manageable if certain regions of cells 

did not need to be viewed.  A Save command was created so that as experiments showed 

promising results, the state of the brain could be preserved and reused under different conditions.  

Finally, when the simulation fulfilled some goal, an Exit command allowed NCS to shut down 

and close open connections in a stable manner.  Table 4.5 outlines these commands and the 

parameters passed into NCS so that it could execute them. 

Table 4.5 Commands that may be sent to NCS during runtime 

Command Parameters Description

SetHebbian <synapse name> <setting>

Specify the name of the Synapse to 

change.  The settings are: NONE, 

BOTH, +Hebbian, -Hebbian.

AppendStim
[flags] <stimulus name> 

<TimeStart> [TimeStop]

Specify any flags: a = automatic 

TimeStop after 2.5 ms, s = times 

specified in seconds, t = times 

specified in timesteps. The Stimulus 

name.  The new start time.  The new 

stop time (if not automatic).

AppendReport
[flags] <report name> <TimeStart> 

[TimeStop]

Specify any flags: a = automatic 

TimeStop after 2.5 ms, s = times 

specified in seconds, t = times 

specified in timesteps. The Report 

name.  The new start time.  The new 

stop time (if not automatic).

Save <filename>
Specify a filename to store brain 

state.

Exit Program stops simulation and exits  

4.2.3 Demonstration of IVO 

The IVO was developed using Matlab with the aid of the TCP/UDP/IP Toolbox 2.0.5 [31].  

This library allowed for TCP/IP communication with BCS using provided function calls to 
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establish connections as well as send and receive data. 

The goal of the IVO was to move along a linear gradient during training.  Figure 4.2 shows 

how the IVO was positioned in the center of this gradient and through movement with 

corresponding reward and punishment, the IVO was to learn to move toward the side of greater 

intensity.  The gradient was calculated as a function along the x-axis and used as the stimulus 

that was sent to NCS. 

 

Figure 4.2 The IVO needed to move from the center towards the right 

The earliest IVO experiments attempted to interpret NCS reports received through BCS in a 

variety of ways to determine what motor response to make depending on the output for a series 

of time steps called the “motor interval” from selected cells.  For example, by looking at the 

number of action potentials fired in a report, a response of “left”, “right”, or “stand still” could be 

interpreted.  Another method looked at the average voltage to determine appropriate action.  

Figure 4.3 shows that initial attempts to get IVO to behave in the expected way were not 

successful.  In the figure, the x-axis shows the IVO's current position with respect to time 

elapsed in the simulation (y-axis).  Periodically, the IVO would not use the calculated motor 

response, but instead would 'explore' such that it would move randomly one way or the other.  

This would ensure that it did not stand still for the entire simulation as shown in Figure 4.4 of an 

early IVO run.   

As the IVO moved along the line, commands were sent to NCS to control aspects of the 
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simulated brain.  When punishments and rewards were to be used, the Hebbian learning of 

synapses could be turned on.  Then, based on the IVO's action, a command to initiate the 

rewarding or punishing stimulus was sent to NCS.  A reward occurred when the IVO moved in 

the correct direction and involved a current injection that depolarized a group of cells, increasing 

their membrane voltage so that it would be easier to reach threshold.  A punishment occurred 

when the IVO moved in the wrong direction and involved a current to hyperpolarize a group of 

cells, lowering their membrane voltage and suppressing attempts to reach threshold. 

 

Figure 4.3 Initial IVO experiments worked with interpreting reports 

As the IVO experiments progressed, the stimulus and report data exchanged was better 

interpreted, and the synaptic learning accumulated as brain states were saved and restored.  

Figure 4.5 shows that the later experiments successfully had the IVO move toward the goal as 

the stimulus generated from the IVO's current position on the gradient induces a motor response 
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of right movement from NCS. 

 
Figure 4.4 Without an explore function, the IVO might not move 

 
Figure 4.5 As the simulations was fine-tuned, the IVO behaved as desired 
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Chapter 5: Conclusions and Future Work 

5.1 Contribution 

With the current incarnation of BCS, communication between NCS and another client can 

occur dynamically.  No longer does a mass of stimulus need to be collected before it can be sent 

as one large clump to NCS.  This makes NCS more responsive since it can react to events as they 

happen instead of giving a motor response for events in the past.  Motor responses carried out 

from older information could have become invalid during the delay.  Also, NCS does not need to 

shut down in preparation for the arrival of stimulus, only to rebuild the same structures it had 

created moments before.  Needing to redo initializations repeatedly wastes valuable time.  Under 

the file-based system, the duration of the simulation could be shortened to try and keep stimulus 

from becoming too old, but this would only exacerbate the accumulating delay caused from 

initialization. 

BCS has been designed specifically for NCS.  The overhead associated with transferring data 

has been limited.  This will help to prevent communication from becoming a major bottleneck 

and slow the simulation.  Methods for connecting to the server have been implemented in Matlab 

and C/C++ so that they can easily be reused in applications beyond IVO.  Additionally, the code 

structure and functions developed have been documented for extensibility if the needs of NCS 

change.   

Although there is still much research to be done with IVO, the existence of a server prepares 

for the development of new applications that could aid in making NCS better, or in making NCS 

more usable in other industries. 
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5.2 Potential Applications 

5.2.1 Visualization 

With extensions made to NCS that allow it to assign realistic coordinates to neurons and 

substructures, software able to better visualize the simulation can be constructed.  These 

visualization tools could be designed to work with the server to allow a user to have greater 

control during a simulation.  Figure 5.1 shows an image from an older attempt at designing a 

visualization program.  Although it allowed the user to see the events happening within a brain 

simulation, the viewing occurred after the simulation had been completed and closed.  With the 

ability to control the simulation through BCS, a user making observations could rapidly alter 

connections or internal dynamics in order to shift the simulation’s performance in one direction 

or another.  

 

Figure 5.1 Screenshot from early NCS visualization software 
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5.2.2 NCS Tutorial Program 

As a simulation tool, NCS is intended for use by people from various fields such as medicine 

and psychology.  As mentioned in previous sections of this thesis, students have already used 

NCS for research projects.  However, some of these students had never been exposed to a UNIX 

environment and faced a difficult learning curve not only in understanding the usage of NCS, but 

also how to work in the text-based operating environment. 

Some work has been done in the past to try and develop a more intuitive software system to 

help users with NCS through both web-based systems [35] and java-based systems [21].  Figures 

5.2 and 5.3 show screenshots of these applications.  By integrating communication with BCS 

into these projects, users will have a more interactive experience while learning NCS to help 

speed their familiarity with the simulator.  Access to the cluster’s queuing software will be easier 

when used through a graphical user interface.  In addition, these applications help to ensure that 

the simulation objects are created correctly without dealing with minor syntax issues.  Users can 

then start the simulation and collect the reports as they are written, or request them later. 

 

Figure 5.2 A web based interface to create NCS input files 
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Figure 5.3 Instinct: a java-based tutorial program for NCS 
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