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Abstract

Planetary terrain presents a number of issues that terrain rendering techniques

commonly fail to address: displaying a vast amount of data at both small and large

scales, using datasets in an appropriate map projection for the geographic area de-

picted, and rendering terrain features that rise from behind the horizon, such as

tall mountains. The utility of planetary terrain rendering increases with both the

availability of planetary data and the ubiquity of powerful, consumer-level GPUs. In

addition, the visualization of full-scale planetary bodies has benefits for education and

science. Projective Grid Mapping (PGM) is a GPU terrain rendering technique that

combines the advantages of ray casting and rasterization, providing gradual level-of-

detail transition and steady framerates. We formulate a version of the projective grid

mapping algorithm for planetary terrain; this involves the view-dependent creation

of reference spheres for ray casting and the construction of a sampling camera that

approximately samples the geographic area of the planet that could possibly affect

the final image. In addition, we reduce ray-sphere intersection to two dimensions,

which simplifies implementation on the GPU. In order to create a complete planetary

terrain renderer, we combine this spherical PGM technique with deferred texturing,

which composites overlapping datasets. The visualization operates on the desktop

and in two virtual reality displays. We achieve efficient framerates for various grid

and screen resolutions, and we demonstrate high-quality views of Mars for both the

equatorial and polar regions.



iii

Acknowledgments

This work is funded by NASA EPSCoR, grant # NSHE 08-51, and Nevada NASA

EPSCoR, grants # NSHE 08-52, NSHE 09-41, NSHE 10-69.

Thanks to my committee: Dr. Frederick C. Harris, Jr., Dr. Scott Bassett, Dr.

Daniel Coming, and Dr. Sergiu M. Dascalu. Thanks to my advisor, Dr. Frederick C.

Harris, Jr., for his patience in allowing the ideas within this thesis to evolve.

Cody White and Roger Hoang deserve many thanks for giving hours of discussion

and feedback and for contributing code to this project.

Thanks to Michael Leverington for showing me how problems are actually solved.

Thanks to all my friends, co-workers, and everyone from the High Performance

Computing and Visualization lab (HPCVIS) at the University of Nevada, Reno and

the Center for Advanced Computation Visualization and Modeling (CAVCaM) at

the Desert Research Instute for their encouragment throughout the various stages

of writing a thesis. Also, thanks to everyone who read this document and provided

feedback.

Finally, thanks to my family for supporting me throughout many years of college,

and especially to my mother for never letting me go home empty handed.



iv

Contents

Abstract ii

List of Figures vi

List of Tables x

1 Introduction 1

2 Background 6

2.1 CPU-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Irregular Meshes . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Semi-regular Meshes . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Batched Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Batching Using Quadtrees . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Batching Using Triangle Bintrees . . . . . . . . . . . . . . . . 18

2.3 GPGPU Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Geometry Clipmapping . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Planetary-scale Terrain Composition . . . . . . . . . . . . . . 23

2.3.3 Ray Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Projective Grid Mapping . . . . . . . . . . . . . . . . . . . . . 27

2.4 Planetary Terrain Rendering . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Map Projections . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Data Composition . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Projective Grid Mapping for Planetary Terrain 44

3.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Two-Dimensional Reduction . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Sampling Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Stretching and Shrinking . . . . . . . . . . . . . . . . . . . . . 52



v

3.3.2 Pertinent Area . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Reference Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Primary Reference Sphere . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Secondary Reference Sphere . . . . . . . . . . . . . . . . . . . 60

3.5 Sampling Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Corner Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.2 Corner Ray Transformation . . . . . . . . . . . . . . . . . . . 71

3.5.3 Frustum-Frustum Intersection . . . . . . . . . . . . . . . . . . 73
3.5.4 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Projective Grid Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6.1 Grid Points to Eye Rays . . . . . . . . . . . . . . . . . . . . . 81

3.6.2 Cross Section Coordinate System . . . . . . . . . . . . . . . . 81

3.6.3 Ray Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.4 Sphere Normal . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6.5 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.7 Deferred Texturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.7.1 Height Composition . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7.2 Rasterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.7.3 Color Composition . . . . . . . . . . . . . . . . . . . . . . . . 97

3.7.4 Atmosphere and Lighting . . . . . . . . . . . . . . . . . . . . 97

4 Data Processing 99

4.1 GPU Map Projections . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1.2 Equirectangular Projection . . . . . . . . . . . . . . . . . . . . 103

4.1.3 Polar Stereographic Projection . . . . . . . . . . . . . . . . . . 105

4.2 Normal Map Generation . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.1 Normals from Equirectangular Data . . . . . . . . . . . . . . . 107

4.2.2 Normals from Polar Stereographic Data . . . . . . . . . . . . . 107

4.3 Scene Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.1 Rasterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.2 Secondary Objects . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Implementation 112

5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 External Classes . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 Internal Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 118



vi

5.4 Display Environments . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Results 122
6.1 Experimental Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Visual Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Conclusions and Future Work 133

Bibiliography 136



vii

List of Figures

2.1 A regular grid of vertices form a triangle mesh. [33] . . . . . . . . . . 6

2.2 A set of successively refined meshes. [53] . . . . . . . . . . . . . . . . 8

2.3 A Delaunay triangulation. [21] . . . . . . . . . . . . . . . . . . . . . . 9

2.4 An edge collapse and a vertex split within a progressive mesh. [29] . . 10

2.5 A quadtree-based subdivision results in a semi-regular mesh. [53] . . . 11

2.6 Cracks result from unrestricted quadtree subdivision. [53] . . . . . . . 12

2.7 A smooth mesh results from restricted quadtree subdivision. [53] . . . 12

2.8 Dependency rules for vertices in a restricted quadtree. [53] . . . . . . 12

2.9 Five levels of a triangle bintree. [16] . . . . . . . . . . . . . . . . . . . 13

2.10 A triangulation of ROAM viewed from above. [16] . . . . . . . . . . . 14

2.11 A triangulation of ROAM with respect to the viewer. [16] . . . . . . . 14

2.12 A hierarchy of terrain patches. [65] . . . . . . . . . . . . . . . . . . . 16

2.13 Vertices at patch borders are collapsed to maintain continuity. [12] . . 17

2.14 Patch vertices are interpolated between LODs to avoid popping. [12] . 18

2.15 A vertical skirt hides cracks between patches. [65] . . . . . . . . . . . 18

2.16 A triangulation created using BDAM. [6] . . . . . . . . . . . . . . . . 19

2.17 Nested rectangular grids filled from a mipmap hierarchy. [2] . . . . . 21

2.18 As the viewer moves, L-shaped grid regions are refilled. [37] . . . . . . 22

2.19 Nested grids rendered over the resulting terrain. [2] . . . . . . . . . . 22

2.20 Subdividing a cube to approximate a sphere leads to distortion. [33] . 24

2.21 Subdividing an icosahedron minimizes distortion. [33] . . . . . . . . . 24

2.22 A ray may intersect the height field at multiple points. [19] . . . . . . 26

2.23 Incorrect ray intersections produce artifacts. [49] . . . . . . . . . . . . 26

2.24 The grid is projected onto the terrain base plane. [37] . . . . . . . . . 28

2.25 Mapping of grid points to terrain positions. [37] . . . . . . . . . . . . 29

2.26 The area under the camera must be sampled. [37] . . . . . . . . . . . 30



viii

2.27 Details missed due to undersampling. [37] . . . . . . . . . . . . . . . 30

2.28 An image of Mars’s south pole produced by Google Earth. [24] . . . . 33

2.29 Equirectangular projected data mapped to the sphere. [33] . . . . . . 35

2.30 Mars’s north pole displayed with mipmapping. . . . . . . . . . . . . . 35

2.31 Mars’s north pole displayed without mipmapping. . . . . . . . . . . . 36

2.32 A polar stereographic projection. [32] . . . . . . . . . . . . . . . . . . 37

2.33 Various buffers used for deferred shading. [54] . . . . . . . . . . . . . 38

2.34 The result of deferred shading. [54] . . . . . . . . . . . . . . . . . . . 38

2.35 Various buffers used for data composition. [33] . . . . . . . . . . . . . 40

2.36 The MOC (left) and Viking (right) global color datasets. . . . . . . . 42

3.1 The projective grid and its arrangement over the viewport. . . . . . . 45

3.2 The rays and their sphere intersections. . . . . . . . . . . . . . . . . . 45

3.3 The displaced mesh that represents the terrain. . . . . . . . . . . . . 45

3.4 The steps and data flow of the algorithm. . . . . . . . . . . . . . . . . 46

3.5 The two-dimensional reduction. [19] . . . . . . . . . . . . . . . . . . . 48

3.6 Rays and angles in the ray-circle intersection problem. . . . . . . . . 49

3.7 The ray-circle intersection problem. . . . . . . . . . . . . . . . . . . . 50

3.8 Ambiguous solutions using the law of sines. . . . . . . . . . . . . . . . 51

3.9 The minimum and maximum spheres. . . . . . . . . . . . . . . . . . . 53

3.10 The effects of stretching. . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.11 Stretching and shrinking within the visualization. . . . . . . . . . . . 54

3.12 The effects of shrinking. . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.13 The pertinent area of the sphere relative to the viewpoint. . . . . . . 55

3.14 The occluded area should be sampled. . . . . . . . . . . . . . . . . . 56

3.15 The occluded area problem from a third-person perspective. . . . . . 56

3.16 The area below the frustum could affect the final image. . . . . . . . 57

3.17 A mountain affecting the view frustum in the visualization. . . . . . . 57

3.18 The two methods for the primary reference sphere. . . . . . . . . . . 59

3.19 The upper bound of the normal angle. . . . . . . . . . . . . . . . . . 60

3.20 The tangent angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.21 The radius of the secondary reference sphere. . . . . . . . . . . . . . . 62

3.22 The occluded area is visible on the secondary reference sphere. . . . . 63

3.23 The attributes of the viewing frustum. [67] . . . . . . . . . . . . . . . 64

3.24 All of the eye rays for a given viewing camera. . . . . . . . . . . . . . 65

3.25 The pertinent rays below the frustum. . . . . . . . . . . . . . . . . . 65

3.26 The cone of rays that contains the visible part of the planet. . . . . . 66



ix

3.27 The intersection of the sets of rays, which contains all pertinent rays. 66

3.28 The cone of rays approximated with a frustum. . . . . . . . . . . . . 66

3.29 The sampling camera within the visualization. . . . . . . . . . . . . . 67

3.30 The sampling camera should fit the horizon. . . . . . . . . . . . . . . 67

3.31 The corner rays of the frustum intersect the near plane. . . . . . . . . 68

3.32 The visible sphere frustum can be rotated along its central axis. . . . 69

3.33 The view frustum may contain the entire planet. . . . . . . . . . . . . 70

3.34 The view frustum may contain part of the planet. . . . . . . . . . . . 70

3.35 The height of the visible sphere frustum. . . . . . . . . . . . . . . . . 71

3.36 The view frustum should fit the horizon. . . . . . . . . . . . . . . . . 72
3.37 Intersection could result in a rectangular base. . . . . . . . . . . . . . 73

3.38 Intersection could result in a polygonal base. . . . . . . . . . . . . . . 73

3.39 An example of bounding for intersection rays. . . . . . . . . . . . . . 74

3.40 Plane intersection does not always yield an intersection ray. . . . . . . 75

3.41 The corner ray of one frustum inside of the other. . . . . . . . . . . . 75

3.42 The ordering of planes and corner rays for an input frustum. . . . . . 76

3.43 A good near plane leads to an even ray distribution. . . . . . . . . . . 78

3.44 A bad near plane leads to an uneven ray distribution. . . . . . . . . . 79

3.45 The calculation of the ray angle. . . . . . . . . . . . . . . . . . . . . . 82

3.46 The intersection position in eye space. . . . . . . . . . . . . . . . . . 85

3.47 The vertex positions in sampling camera space. . . . . . . . . . . . . 87

3.48 A 16× 16 projected grid. . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.49 The goal of deferred texturing. . . . . . . . . . . . . . . . . . . . . . . 89

3.50 The sphere normal and position buffers from the PGM step. . . . . . 89

3.51 The accumulated heights buffer displayed as a red color channel. . . . 93

3.52 Incorrect interpolation of longitude across the prime meridian. . . . . 95

3.53 The screen-sized sphere normal and position buffers. . . . . . . . . . . 96

3.54 The accumulated color and surface normal buffers. . . . . . . . . . . . 98
3.55 The terrain with atmosphere and lighting applied. . . . . . . . . . . . 98

4.1 Geographic coordinates encode positions on the sphere. . . . . . . . . 100

4.2 The center of projection for an equirectangular projection. . . . . . . 101

4.3 Map coordinates originate in the image’s upper left corner. . . . . . . 102

4.4 Texture coordinates typically originate in the lower left corner. . . . . 102

4.5 The coordinate system of a north polar stereographic projection. . . . 106

4.6 The tangent coordinate system in a polar stereographic projection. . 109

5.1 The use cases for the library. . . . . . . . . . . . . . . . . . . . . . . . 115



x

5.2 The classes with which the user interfaces. . . . . . . . . . . . . . . . 116
5.3 The internal classes of the library. . . . . . . . . . . . . . . . . . . . . 118

5.4 A screenshot of the desktop version of the application. . . . . . . . . 120

5.5 A user interacting with the single wall display. . . . . . . . . . . . . . 121

5.6 An interactive virtual environment with six walls. . . . . . . . . . . . 121

6.1 The first test case is a global view of the planet. . . . . . . . . . . . . 124

6.2 The second test case includes low-resolution data. . . . . . . . . . . . 124
6.3 The third test case includes high-resolution data. . . . . . . . . . . . 125

6.4 Total FPS for all three cases. . . . . . . . . . . . . . . . . . . . . . . 126
6.5 The execution time in ms of the PGM step for the first test case. . . 129

6.6 The execution time in ms of the entire algorithm for the first test case. 129

6.7 Artifacts result from undersampling high-frequency terrain. . . . . . . 130

6.8 Victoria Crater from above and inside the crater. . . . . . . . . . . . 131
6.9 A HiRISE dataset using a polar stereographic projection. . . . . . . . 131

6.10 Using normals in a polar stereographic projection reduces artifacts. . 132



xi

List of Tables

5.1 Functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Nonfunctional requirements. . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Information about the datasets used for timing the algorithm. . . . . 123

6.2 Execution time in ms of the PGM step for the first test case. . . . . . 127

6.3 Execution time in ms of the entire algorithm for the first test case. . . 127

6.4 Execution time in ms of min mipmapping for the first test case. . . . 127

6.5 Performance of the entire algorithm in FPS for all three test cases. . . 128



1

Chapter 1

Introduction

Over the past three decades an imposing volume of terrain rendering research has

taken place. Despite this level of attention, only a portion of the research addresses

the obstacles of full-scale planetary rendering.

A critical aspect of modeling a planetary body is the use of numerous height

and color datasets. When two datasets share geographic regions, their data must

be combined. In addition, full resolution datasets are too large to fit in both core

memory and graphics memory. Therefore, data must be streamed from disk to core

memory to graphics memory as needed.

Planetary rendering requires a scale model that allows precision within one me-

ter. Therefore, the geographic location and extent of the datasets must be taken into

account. Also, a common problem in planetary visualization occurs when equirectan-

gular projected data, most accurate at the equator, is used for areas near the poles.

A suitable map projection must be used for the area depicted.

The scale requirement and the limitations of 32-bit floating point numbers present

precision issues at meter resolutions, specifically when the radius of the planet is on

the order of millions of meters. For example, the equatorial radius for Mars is about

3,396,000 meters [58], a number that uses the seven digits of precision afforded by

the IEEE 32-bit floating point data type [33]. Although recent GPUs support 64-bit

floating point values, they do so at reduced speed. Also, depth buffer precision and

rendering near and far objects along with the terrain are issues for scale models. In

particular, the triangles of the mesh should not exhibit z-fighting, and the terrain
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should have the ability to occlude other objects in the simulation.

Finally, most algorithms focus on the planar case in which vertices are displaced

vertically from a plane using a height map. However, a planet is more accurately

represented with a curved surface. In geographic mapping, a sphere is often used as a

datum or reference surface for geographic positions and elevations [32]. In addition,

ray-based terrain approaches [14, 17, 55] face the problem of capturing the terrain

features that rise from behind the horizon of the sphere, such as a mountain or a cliff.

Planetary terrain algorithms must also meet the standards of other terrain algo-

rithms with respect to continuous level of detail (CLOD). These algorithms commonly

generate different levels of detail based on the viewer’s position. Lindstrom et al. [36]

describe the criteria for CLOD: the generated mesh is smooth both spatially and tem-

porally, the transition between levels of detail is gradual, and the number of polygons

differs very little between frames as the viewer moves.

Another requirement relates to the appropriate use of graphics processing capa-

bilities. The steady improvement of graphics hardware has led to the communication

pipe between the CPU and the GPU becoming the application bottleneck. The algo-

rithms by Hu et al. [29] and Kooima et al. [34] are representative of the recent effort

to operate entirely on the GPU to reduce the effect of these bottlenecks. By moving

work to the GPU, the CPU is free for time-critical tasks that are unsuitable or im-

possible for the GPU, such as user interaction and I/O operations. The parallelism

of GPUs also makes representations on the GPU more flexible for image processing

operations, as required for data composition.

The method used to generate a terrain mesh affects the ability to modify the

mesh at run time. Cignoni et al. [5] describe a CPU-based algorithm that creates

a complex mesh hierarchy as a preprocessing step. The result is a mesh that is

appropriate for the current viewpoint. However, using a mesh hierarchy encumbers

data composition. Kooima et al. [34] describe a GPU-based algorithm that generates

a mesh almost entirely using the GPU. The generated mesh is stored and used as a

texture, and subsequent data composition operations generate the final image. These
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composition operations are implemented as a series of deferred texturing passes.

Projective Grid Mapping (PGM) [37, 38] is an algorithm that operates entirely

on the GPU and attempts to combine the advantages of ray casting and rasterization.

A screen-space grid is projected onto the terrain reference plane using ray casting,

where each grid point represents a vertex of the mesh. The vertices are offset by a

height map in graphics memory. The advantage of PGM is that it involves sparse

CPU/GPU communication because it operates only on GPU memory. It follows that

the GPU representation of the mesh allows for data composition. However, previous

PGM algorithms for terrain do not solve the problem of choosing a reference surface

for ray casting; this is typically a plane for most applications, but for planetary

rendering it is a sphere. In a scale planetary model, the minimum and maximum

heights can differ by tens of thousands of kilometers. The choice of reference sphere

affects how far the triangles are displaced with respect to the viewer and therefore

whether the resulting triangles are approximately pixel-sized in screen space.

We present a method of mesh generation using PGM that addresses most of the

issues of planetary rendering just described. A scheme for streaming data between

disk, core, and graphics memory is not included, however both Livny et al. [37] and

Kooima et al. [34] implement GPU caching algorithms that are compatible with our

approach. These streaming methods are compatible since they use a texture cache

on the GPU and integration with our algorithm would only require specifying the

portions of the texture cache to be used in the shader code. In addition, although

progress was made in addressing floating point precision, more can be done with this

algorithm to approach accurate visualization within a meter.

In our algorithm, the creation of the mesh occurs entirely on the GPU for each

frame, and the mesh is treated as a number of textures that remain in graphics

memory. The algorithm operates in approximate screen space for height composition

and screen space for color and normal composition. Additionally, programmable

vertex and fragment shaders are used, and these shaders can be implemented on

hardware that supports vertex texture lookups.
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This work includes several contributions:

• We adapt PGM for the sphere by using trigonometric functions to solve the

two-dimensional case for ray-sphere intersection. Working in two dimensions

simplifies shader logic and enables interpolation of ray attributes, a property

important for adequate sampling described later (Chapter 3).

• As noted previously, a reference sphere that minimizes the displacement distance

of mesh vertices should be used for PGM. We compare two methods for choosing

such a reference sphere (Section 3.4.1).

• Ray casting the sphere fails to capture the parts of the terrain that rise from

behind the horizon. We present a method for calculating an additional reference

sphere that, when ray cast, samples the area beyond the horizon for a given

reference sphere (Section 3.4.2).

• We generate a camera that approximately samples the portion of the planet

that affects the final image. This method involves intersection of infinite frusta

that share an apex (Section 3.5).

• We modify equations for two common map projections, equirectangular and

polar stereographic, from their formal descriptions into versions suitable for

programmable shaders (Section 4.1).

• In generating normal maps, we treat data in a polar stereographic projection

differently due to its unique data layout in relation to geographic coordinates

(Section 4.2).

• We describe a method for correctly occluding secondary objects with the terrain

for both small and large distances from the viewpoint. The goal is to avoid z-

fighting in both the terrain and the secondary objects, and render every surface

in the scene at the correct depth (Section 4.3).
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Our algorithm performs PGM and, similarly to Kooima et al. [34], applies a

number of deferred texturing passes to the resulting buffers (Chapter 3). First, the

algorithm determines two reference spheres and a sampling camera that lead to an

adequate sampling of the terrain. PGM is then performed by ray casting each grid

point in the projective mesh onto the two spheres and interpolating. After the grid

is projected onto the sphere, a series of deferred texturing passes are executed that

result in the final image.

Planetary terrain rendering involves various types of data processing (Chapter 4).

Equations for map projection are implemented on the GPU. These equations require

constants that are calculated for each dataset at initialization and uploaded to the

GPU during rendering. Normal maps that use a polar stereographic projection must

be reconciled with normals that use an equirectangular projection to correctly apply

lighting. Finally, a mechanism should be provided so that secondary objects, rendered

after the terrain, can be correctly occluded with the terrain.

We implemented the algorithm as a terrain rendering library in order to meet

a number of requirements (Chapter 5), and we found that the algorithm leads to

reasonable framerates for a number of standard screen resolutions (Chapter 6).



6

Chapter 2

Background

The defining feature of a terrain algorithm is how it generates a mesh that approxi-

mates the surface while minimizing the cost of rendering. An initial approach begins

with a regular grid of vertices that define a mesh, as shown in Figure 2.1, with the

input height and color maps defining the terrain surface.

A landform is described by height and color data, often stored as grids of data

called rasters. A height map contains one raster where the value of each pixel rep-

resents a height offset from the reference plane. A color map comprises one raster

for greyscale data and three rasters for full-color satellite imagery. In addition, each

pixel in a raster corresponds to a geographic area described by a pair of geographic

coordinates (λ, φ) which are, respectively, longitude and latitude.

Figure 2.1: A regular grid of vertices form a triangle mesh. [33]
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The mesh, originally a flat surface, is displaced according to the height map in

a technique called displacement mapping [9, 10]. This is possible since each vertex

corresponds to exactly one grid cell in the height map. Conceptually, the mesh begins

as a plane, and each vertex is displaced to the correct height. Planetary rendering,

however, must instead displace the mesh from a sphere.

Rendering the entire height map as a triangle mesh is inefficient. The entire mesh

is sent to the graphics system every frame even though not all of the terrain may be

visible. The visible triangles may appear so close and so large to the viewer that the

discrete nature of the surface is apparent. Alternatively, the visible triangles may be

so small that they affect less than a pixel of the final image, leading to an inefficient

use of the graphics system’s triangle throughput.

Advanced algorithms use various levels of detail (LODs) to reduce processing

time while maintaining image quality. Areas far from the viewer may be rendered

with lower detail using a few large triangles without a loss of image quality. Areas

close to the viewer must be rendered using many small triangles to maintain image

quality. The vertices of the generated mesh adequately sample the raster data, and

each triangle equally contributes to the image. LOD algorithms are usually qualified

as being “adaptive,” meaning that new LODs are generated as the view changes.

Hardware capability motivates the design of mesh generation algorithms. As

graphics hardware changes, the optimal strategy for rendering terrain changes. CPU-

based approaches (Section 2.1) are designed to generate the fewest triangles that

approximate the terrain to an error threshold. Batched approaches (Section 2.2)

take advantage of on-board graphics memory and triangle throughput of the GPU.

Approaches using programmable GPUs (Section 2.3) allow terrain representations to

be generated almost entirely on the GPU. These methods allow for composition of

multiple datasets and terrain deformation on the GPU. Composition is important for

removing distortion, which is common to planetary terrain rendering. In addition, the

CPU is free for time-critical tasks, such as streaming massive amounts of terrain data

from disk. These features are important for planetary terrain renderers (Section 2.4).
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2.1 CPU-based Approaches

Prior to 1999, the transformation and lighting stages of the graphics pipeline were

implemented in software, limiting the triangle throughput of the graphics system.

Terrain algorithms were designed to generate meshes with an optimal number of

triangles while maintaining a user-specified precision with respect to the input height

data.

The two formulations of these algorithms are mesh refinement and mesh decima-

tion [27]. Mesh refinement begins with a low-resolution mesh and adds triangles until

the specified maximum error threshold is satisfied. Mesh decimation works in the op-

posite direction, beginning with the highest resolution mesh and removing triangles.

Figure 2.2 demonstrates refinement from left to right and decimation from right to

left. Refinement and decimation are inverse operations as long as the same vertices

are added or removed from the mesh. The mesh resulting from these operations is

called a triangulation, named for the basic primitive that the graphics system uses.

Figure 2.2: A set of successively refined meshes. [53]

2.1.1 Irregular Meshes

An irregular mesh, also known as a triangulated irregular network (TIN), is an uncon-

strained surface representation. Algorithms involving TINs place few constraints on

the size and distribution of triangles in the generated mesh. Error metrics with a user-

provided error threshold guide the triangle selection process. A survey of irregular

mesh techniques is given in Heckbert and Garland [25].
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Garland and Heckbert [21] describe a mesh refinement algorithm using Delaunay

triangulation (Figure 2.3), which avoids thin sliver triangles by maximizing the min-

imum angle of all possible triangles from a given set of vertices. Such thin triangles

contribute little to the resulting image and provide overhead when they affect less

than a pixel in the final image. During each iteration of the algorithm, the vertex

with the highest error level is selected. This vertex is added to the set of vertices,

and the set is retriangulated. Cohen-Or et al. [8] divide the terrain into polygonal

patches, where each patch has its own Delaunay triangulation. A top-down traversal

of the resulting hierarchy allows for fast culling.

Figure 2.3: A Delaunay triangulation. [21]

Hoppe [28] adapts the progressive mesh representation of Hoppe [27] to terrain

rendering. A progressive mesh encodes a continuous sequence of LODs in a hierarchy

of refinement and decimation operations that operate on a small subset of triangles

within the mesh. The refinement operations are vertex splits, where a vertex is

replaced with two vertices. The decimation operations are edge collapses, where

one vertex replaces two vertices that define an edge. Figure 2.4 demonstrates these

operations.
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Figure 2.4: An edge collapse and a vertex split within a progressive mesh. [29]

Although these algorithms generate the fewest triangles that approximate the ter-

rain within a specified error threshold, the unconstrained nature of the mesh places

complex dependencies on the refinement of vertices. The nonuniform sampling of the

terrain does not match the uniform sampling of the terrain provided by the raster

data. Thus, techniques using irregular meshes have found more effective application

representing arbitrary meshes [29]. Also, preprocessing prevents dynamic modifica-

tion of the mesh at run time, thus composition and deformation are not possible with

these techniques.

2.1.2 Semi-regular Meshes

Techniques that generate semi-regular meshes place more constraints on the size and

arrangement of triangles than those that generate irregular meshes. These constraints

simplify the data structures involved, reducing the amount of memory required. Reg-

ular subdivision is accomplished using an adaptive quadtree-based subdivision, as

shown in Figure 2.5. The predictable structure of the generated mesh allows for the

creation of triangle strips, which are more efficient for rendering. The structure also

closely matches the regular nature of the input rasters, allowing for dynamic modifi-

cations to the height field at run time. A survey of this class of techniques is given

by Pajarola and Gobbetti [53].

Von Herzen and Barr [68] introduce the restricted quadtree. The traversal of
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Figure 2.5: A quadtree-based subdivision results in a semi-regular mesh. [53]

a restricted quadtree operates with the additional constraint that neighboring nodes

may differ by no more than one subdivision level. The triangulation of each node must

be performed with respect to its neighbors. These requirements ensure that the gen-

erated mesh is conformant, meaning that it is smooth and without cracks. Figure 2.6

demonstrates a noncomforant triangulation, while Figure 2.7 shows a triangulation

produced with these constraints.

Lindstrom et al. [36] propose the concept of operating on pairs of triangles within

a restricted quadtree. The algorithm begins with the full-resolution mesh and merges

triangle pairs to obtain a view-dependent triangulation of the terrain. A set of depen-

dency rules are given to guide the algorithm in merge operations in order to produce

conformant meshes. The dependency rules define for each vertex the vertices required

for the input vertex to exist in the triangulation. These rules, shown in Figure 2.8,

demonstrate that merging triangle pairs results in the same class of meshes as the

restricted quadtree subdivision.
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Figure 2.6: Cracks result from unrestricted quadtree subdivision. [53]

Figure 2.7: A smooth mesh results from restricted quadtree subdivision. [53]

Figure 2.8: Dependency rules for vertices in a restricted quadtree. [53]
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Triangle bintrees [6, 16] are related to restricted quadtrees and build upon the

concept of operating on triangle pairs. Triangle bintrees build a binary hierarchy of

triangles by subdividing a base triangle into two triangles using longest-edge bisection.

The longest edge of the base node’s triangle is divided into two edges, forming the

edges of the two child nodes’ triangles. The vertex added at the midpoint of the

longest edge is known as the base vertex. A merge operation removes the base vertex,

while a split operation adds the base vertex. Figure 2.9 demonstrates five levels of

such a subdivision. Triangle bintrees require the same subdivision dependencies as

Lindstrom et al. [36], implying that the two approaches produce the same class of

meshes.

Duchaineau et al. [16] present Real-time Optimally Adapting Meshes (ROAM).

The ROAM algorithm progressively refines and decimates a triangle bintree using a

dual priority queue approach. One queue references the nodes with the least error and

Figure 2.9: Five levels of a triangle bintree. [16]
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the other queue references the nodes with the most error. As the viewer’s position

changes, the nodes with the least error are merged, and the nodes with the most

error are split. This approach allows for progressive subdivision of the mesh, taking

advantage of processing done for previous frames. The error values are based on a

bounding volume called a wedgie. To determine a triangle’s geometric distortion,

its wedgie is projected into screen space and the maximum length of the wedgie’s

segments is stored. Figure 2.10 shows a ROAM triangulation from above, where the

viewer is on the left looking right. Figure 2.11 demonstrates how this triangulation

appears with respect to the viewer.

Figure 2.10: A triangulation of ROAM viewed from above. [16]

Figure 2.11: A triangulation of ROAM with respect to the viewer. [16]
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Four performance enhancements that collectively reduce frame time by an order

of magnitude are given by Duchaineau et al. [16]. They are view-frustum culling based

on wedgie intersection with the view-frustum, creating triangle strips incrementally

as splits and merges occur, deferring priority recomputation based on when it will

effect a split or merge decision, and progressive optimization which is the ability to

stop refinement once a maximum frame time is reached.

Pajarola [52] describes restricted quadtree triangulation, providing a number of

optimizations for the restricted quadtree algorithm. Algorithms for refinement and

decimation of a restricted quadtree are given. Pajarola also demonstrates how a

restricted quadtree can be implicitly described, where the layout of the hierarchy in

memory is contiguous and the node locations are defined mathematically. The implicit

description greatly reduces the storage costs. Finally, the concept of representing a

terrain using patches is described with respect to restricted quadtrees, a technique

that proceeding algorithms build upon. Each patch is a restricted quadtree and can

be independently refined or decimated. To maintain continuity between adjacent

patches, adjacent vertices are morphed to match each other.

As commodity graphics hardware improved by having increased on-board mem-

ory and the ability to apply transformation and lighting, techniques that take ad-

vantage of these capabilities were developed. These techniques build off semi-regular

triangulations.

2.2 Batched Approaches

The late 1990s marked a significant improvement in graphics hardware. With the

release of the Nvidia GeForce 256 line in 1999 and the ATI R100 line in 2000, graphics

systems gained the ability to offload the processing of vertices (transformation and

lighting) from the CPU to the GPU. Triangle throughput increased, allowing more

efficient strategies for generating a mesh.

Previous CPU-oriented algorithms optimize the number of triangles for graphics

systems with a limited triangle budget. The algorithms spend a large amount of CPU
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time generating an optimal number of triangles. However, with increased triangle

throughput, these algorithms do not use the graphics hardware to its potential, and

the processing power of the GPU goes unused. Also, increased on-board memory

and the limitations of CPU-to-GPU communication make retained mode graphics

desirable. In retained mode rendering, mesh information is stored and rendered from

GPU memory, as opposed to immediate mode rendering where the CPU sends data

to the GPU every frame.

To address these issues, the following algorithms optimally feed the graphics

hardware by processing large groups of triangles instead of individual triangles. These

batched techniques split the terrain into patches of various extent and resolution.

During preprocessing, detailed meshes for each patch are generated. At run time,

visible patches are determined to a specific resolution and selected for rendering.

Figure 2.12 shows a hierarchy of terrain patches [65].

Figure 2.12: A hierarchy of terrain patches. [65]

The granularity tradeoff of operating on aggregate sets of triangles implies that

more triangles must be rendered every frame. Despite an increased triangle count,

batched techniques see an improvement in speed because there is less CPU processing

occurring at run time to determine adequate levels of detail.

The challenge of these algorithms is to ensure that the borders between adjacent

patches match to avoid the appearance of cracks in the generated mesh. Also, the

effect of sudden transitions of patches between LODs as the view changes, called
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popping, must be mitigated.

Batched techniques are classified based on how patches are hierarchically man-

aged. Techniques that use quadtrees of patches take advantage of the regular nature

of raster data to generate the meshes for each patch at various LODs. Techniques

that organize patches into triangle bintrees use more complicated preprocessing to

generate high-quality meshes for each patch.

2.2.1 Batching Using Quadtrees

Approaches using quadtree subdivision for organizing patches take advantage of the

regular nature of the raster data to generate patches. Geomipmapping [12] views

geometry as a texture and applies mipmapping to the height data to produce a

quadtree of patches during preprocessing. At run time, visibility culling is applied

to determine which patches are inside of the view frustum. Patch LOD is selected

based on distance from the viewer. This selection process is accelerated using error

metrics created during preprocessing. To maintain a continuous mesh, vertices are

collapsed, creating elongated triangles. Popping is removed by gradually morphing

patch vertices between levels of detail as the viewer moves. Figure 2.13 demonstrates

stitching a node with its neighbor along its left border. Figure 2.14 show how a vertex

is morphed toward the triangle of a lower LOD patch.

Figure 2.13: Vertices at patch borders are collapsed to maintain continuity. [12]
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Figure 2.14: Patch vertices are interpolated between LODs to avoid popping. [12]

Chunked LOD [65] generalizes the approach of De Boer [12] and adds support for

compression. Cracks between adjacent patches are hidden using skirts (Figure 2.15),

which are meshes that extend vertically downward from the edges of patches. Skirts

must extend to the bottom of the full-resolution mesh. Although simple, this method

leads to texture stretching. Popping is handled as in De Boer [12] by using morphing.

An example of a chunked LOD mesh is given in Figure 2.12.

Figure 2.15: A vertical skirt hides cracks between patches. [65]

2.2.2 Batching Using Triangle Bintrees

ROAM Using Surface Triangle Clusters (RUSTIC) [56] uses the triangle bintree struc-

ture of the ROAM algorithm. In a preprocessing step, variable resolution patches are

generated using the ROAM algorithm. To ensure a smooth mesh without cracks, the

generated patches obey the edge constraint: adjacent tiles must have the same edge

boundaries. At run time, these patches are managed as part of the ROAM algorithm.

An analysis of the efficiency of the algorithm with respect to the size of each patch

is given, showing that patch sizes of less than 32 triangles are inefficient. The use of

the edge constraint limits the adaptivity of individual patches.

Batched Dynamic Adaptive Meshes (BDAM) [6] also use a triangle bintree to

organize patches. Each patch, however, contains a high-resolution TIN created offline.

The offline process can use any triangulation algorithm to maintain the quality of the



19

input data; however, the greedy Delaunay insertion algorithm (similar to Garland and

Heckbert [21]) is used. Figure 2.16 shows a triangulation created using the BDAM

algorithm, demonstrating the semi-regular organization of patches that each contain

an irregular mesh. BDAM is similar to RUSTIC, but it adds triangle stripping for

efficient rendering of patches, as well as out-of-core streaming of large datasets.

Figure 2.16: A triangulation created using BDAM. [6]

Planetary BDAM (P-BDAM) [5] adapts the BDAM algorithm for planetary ren-

dering. Large terrain databases are managed and rendered using the batching ca-

pabilities of the GPU. The planet is divided into a number of tiles, where each tile

corresponds to an individual triangle bintree. Accuracy issues presented by high-

resolution planetary datasets are resolved using GPU hardware. P-BDAM uses a

technique called “speculative prefetching,” in which the areas of terrain needed for

future frames are streamed into memory based on viewer movement. The preprocess-

ing algorithm is distributed and designed to work with out-of-core datasets.

Batched techniques mark the transition from CPU-oriented algorithms to GPU-



20

oriented algorithms. Although they take advantage of increased triangle throughput,

these algorithms require lengthy preprocessing to generate meshes for each patch.

Preprocessed complex data structures complicate run-time composition and defor-

mation. Although the coarse-grained simplification of Lauritsen and Nielsen [35] has

been adapted for terrain deformation by Brandstetter et al. [4], the technique has

not been extended to work in the spherical domain required for planetary terrain

rendering.

2.3 GPGPU Approaches

Until 2001, GPU functionality was fixed, meaning that the application programmer

had little control over the GPU besides that provided by the graphics API. Graphics

techniques that required functionality beyond what the hardware provided had to be

implemented for the CPU or had to be implemented via API workarounds, if at all

possible. The release of the Nvidia GeForce 3 and ATI R200 series of graphics cards

expanded the possibilities for computing; these GPUs introduced programmability

and opened the parallel processor, highly optimized for graphics rendering, to general

purpose computation as well as advanced graphics techniques. The use of the GPU

for such a task is called general purpose GPU (GPGPU). The concept of GPGPU

computation can be applied even to graphics algorithms, where the GPU is used for

computation closely related to rendering but not the actual rendering itself.

In the context of terrain rendering, algorithms can exploit programmability to

generate real-time, view-dependent representations of the terrain on the GPU using

on-board memory, freeing the CPU for time-critical tasks important to terrain ren-

dering applications, such as streaming portions of terrain data from disk that cannot

fit entirely in CPU or GPU memory. GPU-oriented approaches also open the way

for advanced operations upon GPU-resident data, such as decoding of compressed

terrain data [14, 39] and composition operations that allow for high-quality planetary

rendering [33, 34].
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2.3.1 Geometry Clipmapping

Geometry clipmaps [2, 39] build a view-dependent representation of the terrain at

run time using GPU programmability. The texture clipmap [61], originally used for

color textures, is adapted for height fields. Height data is prefiltered into a mipmap

pyramid, where each successive level represents a version of the previous level at

four times less resolution. At run time, nested rectangular grids are filled with data

from the mipmap pyramid around the viewer’s position, as shown in Figure 2.17. As

the viewer moves, the location of the grids shift, and the resulting L-shaped regions

are incrementally refilled. Previous data that remain within the bounds of the grids

are left within, while data that has been shifted out of the grids are replaced with

new data. This is possible using toroidal addressing of grid memory. Figure 2.18

demonstrates the shifting and update of data within the nested grids. Figure 2.19

shows how the nested grids appear with respect to the viewer.

As with batched techniques, the borders of adjacent clipmap regions must be

smoothly interpolated. This is accomplished with programmable vertex shaders.

While the original implementation in Losasso and Hoppe [39] takes advantage of

programmability only for blending the area between grid levels, Asirvatham and

Hoppe [2] describe a more GPU-intensive version of the algorithm.

Figure 2.17: Nested rectangular grids filled from a mipmap hierarchy. [2]
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Figure 2.18: As the viewer moves, L-shaped grid regions are refilled. [37]

Figure 2.19: Nested grids rendered over the resulting terrain. [2]
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Despite the use of programmability, data decompression occurs on the CPU,

causing an eventual CPU bottleneck as the amount of data increases. Also, the

rectangular grids do not map well to the spherical domain required for planetary

rendering. Although Clasen and Hege [7] adapted geometry clipmaps for spherical

rendering, no methods are given for reducing the distortion of spherically projected

data.

2.3.2 Planetary-scale Terrain Composition

Kooima et al. [34] present a technique for rendering large planetary terrain databases

using the GPU for most of the computation. The algorithm is oriented towards

compositing many planetary datasets that use various map projections.

The first problem addressed is tesselating the surface of a sphere such that a uni-

form sampling is produced. Kooima [33] argues that a recursively subdivided cube,

as used in Cignoni et al. [5], results in a nonuniform sampling of the spherical surface

that leads to distortion at key vertices, as shown in Figure 2.20. Thus, the algorithm

begins with an icosahedral subdivision of the sphere. Subdividing an icosahedron is

shown to produce the maximum possible regularity for spherical subdivision, where

most vertices have degree six. An example icosahedral subdivision is given in Fig-

ure 2.21. Icosahedral subdivision results in a sphere made up of spherical triangle

patches, and a refinement algorithm similar to ROAM is used on the CPU to deter-

mine coarse-grained visibility and tessellation of the base mesh. The visible patches

are then uploaded to the GPU for fine-grained refinement. On the GPU, each patch

is subdivided the same number of times. However, patches resulting from the coarse-

grained subdivision on the CPU are of various size, resulting in a mesh that remains

view dependent.

After the view-dependent mesh is generated on the GPU, a number of compo-

sition operations involving each of the height maps used to describe the planet are

applied to the positions in the mesh. The compositing operations are detailed in

Section 2.4.2.
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Figure 2.20: Subdividing a cube to approximate a sphere leads to distortion. [33]

Figure 2.21: Subdividing an icosahedron minimizes distortion. [33]
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The approach of Kooima [33] is unique in that it includes a tessellation algorithm

specifically for spherical terrain and it demonstrates that advanced composition al-

gorithms are possible when data for the terrain resides entirely within color buffers,

whether this data is geometry or photographic imagery of the planet surface. CPU

processing is necessary for geometry generation, although this processing is described

as having a minimal effect on efficiency.

2.3.3 Ray Casting

Ray casting of height fields has been performed on the GPU in the form of relief map-

ping [49] and parallax occlusion mapping [62] among other techniques. The advantage

of ray casting is that the complexity of the algorithm scales with the size of the frame-

buffer rather than the size of the dataset. Assuming the ray-height field intersection

algorithm finds the correct intersection point, an accurate, view-dependent image is

generated, obviating the need for mesh generation and the preprocessing of complex

hierarchies. Ray casting for surface detail lies within the class of algorithms known

as displacement mapping, and a survey of such algorithms is given in Szirmay-Kalos

and Umenhoffer [60].

The general approach is to cast a ray in a fragment shader for each pixel that

the displaced surface could possibly affect. If the ray intersects the height field, the

intersection point, described by texture coordinates, is used to query color and normal

maps for the surface. Because a ray could intersect the height field at multiple points

(Figure 2.22), most algorithms move along the ray in various ways to find the first

intersection.

Besides being computationally intensive, this approach presents a problem when

rays enter the volume of the height field at low, grazing angles. Horizontal rays parallel

to the height field maximize the amount of height field that could be erroneously

skipped, leading to artifacts. Figure 2.23 demonstrates artifacts resulting from rays

missing the first intersection, visible along the visible edges of the surface, and artifacts

resulting from large step sizes that cause early intersections, visible within the surface.
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Figure 2.22: A ray may intersect the height field at multiple points. [19]

Figure 2.23: Incorrect ray intersections produce artifacts. [49]
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Numerous acceleration techniques for finding the first ray hit point have been

developed [15, 17, 55, 63], but most require non-trivial preprocessing of the height

field. However, Tevs et al. [63] show that maximum mipmaps of the height field

are a simple acceleration structure that results in accurate intersections. Maximum

mipmaps can be efficiently generated on the GPU.

Dick et al. [13] demonstrate an algorithm that ray casts large-scale terrain data

using maximum mipmaps. A tile-based hierarchy of height field patches is used to

apply visibility culling before the ray casting operation. For each visible tile, the back

faces of the tile’s bounding box are rasterized to instantiate the fragment shader for

each possible pixel that the tile affects. Ray casting proceeds using the maximum

mipmap of the tile, which is computed during the preprocessing stage. The ray casting

algorithm is compared with a rasterizer using the same tile-based hierarchy, and it

is shown that rasterization performs better than ray casting at moderate height field

resolutions. However, ray casting provides more consistent framerates and performs

better for large height field resolutions.

The results of Dick et al. [13] show that terrain ray casting could be effectively

applied to large planetary-scale datasets. The application of ray casting to planetary

data involves reformulating the ray casting algorithm for the spherical domain. A

difficulty of ray casting a sphere for high-resolution planetary data lies in floating

point precision issues, as described in Kooima [33]. Ray casting of a displaced sphere

requires referencing the radius of the sphere. However, for planetary data the radius

is a number of an order of magnitude that uses nearly all the precision of a single-

precision floating point value. Computations involving such a number reduce the

available precision for high resolution data down to a meter close to the viewer.

2.3.4 Projective Grid Mapping

The advantages of both ray casting and rasterization motivate the use of projective

grid mapping [37, 38]. In comparison to ray casting, rasterizing a mesh takes ad-

vantage of the graphics hardware, which is designed and optimized for rasterization.
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However, the advantage of ray casting is the creation of a view-dependent image.

PGM attempts to combine the benefits of both approaches by generating a mesh

using ray casting, and the mesh is then rasterized. The ray casting operation can be

implemented on the GPU. Although Hu et al. [29] generate a mesh on the GPU us-

ing the progressive mesh algorithm, the technique requires complicated traversal and

management of data structures in parallel and is most effective for arbitrary surfaces.

The algorithm originated in wave animation [26, 31]. It begins by creating a

regular grid that extends across the camera’s view plane, where the points on the

grid constitute a regular mesh as in Figure 2.1. Livny et al. [37] refer to this grid

as the “persistent grid” owing to its static resolution, however the term “projective

grid” is also used within the literature [38]. Figure 2.24 shows how the projective grid

appears on the view plane. The grid points are two-dimensional vertices that exist in

clip space, where the x and y values range from −1 to 1.

Figure 2.24: The grid is projected onto the terrain base plane. [37]

During rendering, a ray is cast from the view point through each grid point to

the base plane of the displaced surface (usually z = 0). For this operation, the inverse

projection of the grid point’s clip space position is used to create a ray in world space.

Where each ray intersects the base plane, the height value is obtained by querying the

texture. The intersection point is displaced along the normal of the base plane by the
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height value and used as the position of the corresponding grid vertex in the mesh.

Figure 2.25 illustrates this process. The projection of the grid onto the terrain base

plane in Figure 2.24 demonstrates how this mapping leads to an adaptive sampling of

the terrain where close regions of the terrain are sampled at a higher frequency than

far regions.

Figure 2.25: Mapping of grid points to terrain positions. [37]

Projecting a grid has various advantages [57]. The projection of each grid point

is independent of the other grid points and can be performed in parallel on the GPU.

In addition, the grid can be cached in GPU memory for efficient retained mode

rendering. Triangles project to approximately the same area in screen space. If the

projected grid is sized to the viewport, then each triangle is approximately pixel sized.

This is the optimal scenario described by Pajarola and Gobbetti [53]. The number

of triangles rendered is consistent, allowing the mesh resolution to be resized for the

specific hardware. Also, the constant size of the mesh leads to steady frame rates.

The technique also presents a number of challenges. The computation of vertex

normals required for lighting must be performed each frame as the mesh changes.

This is not a problem if a normal map generated from the height map is available,

because the normals of the original height field can be applied to the mesh instead

of the normals produced from the mesh, which is only an approximation. Projected

grid points that do not intersect the terrain base plane are invalid and, if not handled

correctly, cause artifacts such as incorrect intersection points. In addition, the area

below the view frustum may need to be sampled due to peaks that could intersect
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the frustum, as shown in Figure 2.26. If the maximum height of the terrain is known

beforehand, a sampling camera separate from the viewing camera is defined such that

the sampling camera contains only those parts of the terrain that could possibly affect

the viewing camera [31]. Finally, at low horizontal angles the sampling of distant

features is extremely sparse, and features could be missed, as shown in Figure 2.27.

In addition, as the camera moves, the already undersampled regions of the terrain

become resampled and a wave-like effect appears. This is not a problem for wave

animation where rippling effects in the surface are expected. However, it is a problem

for terrain rendering.

Livny et al. [37] apply projected grids to terrain rendering and address their

drawbacks. A sampling camera shares the view position of the viewing camera, but

it is given an orientation and field of view such that it samples only the area of

the base plane that could possibly affect the viewing camera when imaged. This is

Figure 2.26: The area under the camera must be sampled. [37]

Figure 2.27: Details missed due to undersampling. [37]
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accomplished using a maximum mipmap of the height data. The maximum mipmap

allows the maximum height beneath the camera to be known. To mitigate the effects

of undersampling for areas far from the viewer, the vertex shader selects an LOD

from a mipmap hierarchy constructed with the height map. The higher levels in the

mipmap exhibit a lower frequency, reducing the effects of sparse sampling.

Loffler et al. [38] extend PGM in an attempt to better account for undersampling.

The importance-based warping method of Dachsbacher and Stamminger [11] is used

to shift the horizontal rows of the projected grid such that the sampling of the terrain

base plane is uniform. During the projection of the grid points, an object-space error

measure for each grid point is calculated and projected to screen space, resulting

in a rasterized error buffer along with the rasterized mesh. For any pixel with a

corresponding error value in the error buffer that is above a user-defined threshold, a

ray casting operation is performed to obtain an accurate color value for the pixel.

Using PGM to produce acceleration information for ray casting is a unique ap-

proach. However, the importance-based warping that occurs before projection of the

grid must be done on the CPU, and uniformly sampling the terrain base plane coun-

teracts the goal of the projected grid, which is to adaptively sample the terrain, as

shown in Figure 2.24.

Schneider et al. [57] apply the projected grid technique to the spherical domain

for procedurally generated terrain. The grid is projected onto a plane, where each

point on the plane is mapped to an angular position on the sphere. The occluded

area of the sphere that could possibly rise above the horizon is not accounted for, and

Schneider et al. [57] notes that the use of fog can obscure these missing details. The

use of the projected grid in this way is sufficient for a procedural terrain generation

application where fidelity to real-world datasets and accurate visualization is not

necessary.

To effectively apply PGM to the spherical domain, three previously unadressed

issues must be solved. First, a scheme must be invented for sampling the area beneath

the viewing camera on the sphere that could possibly affect the viewing camera.
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Second, a strategy must be developed for sampling the portion of the occluded side of

the planet that could rise above the horizon and affect the image. Finally, a reference

sphere should be chosen so that the projected mesh, when displaced, does not result

in large triangles. An appropriate reference sphere leads to approximately pixel-sized

triangles when the grid points are ray cast and displaced from the sphere.

2.4 Planetary Terrain Rendering

Correct planetary rendering requires attention to various issues. Kooima et al. [34]

address many aspects of planetary rendering that are not considered in terrain algo-

rithms that focus on planar terrain. The map projections used affect how datasets

should be mapped to the sphere and how they should be sampled. The composition

operations described by Kooima et al. [34] remove the effects of distortion at the

poles and provide an important functionality for terrain renderers intended for use in

scientific visualization. Finding sources of planetary data suitable for the application

is another problem for rendering planets.

2.4.1 Map Projections

A common problem of planetary terrain renderers is distortion at the poles [33].

Figure 2.28 shows a screenshot from Google Earth 5.1 [24] taken of Mars’s south

pole, which demonstrates visible distortion in the form of lines of latitude converging

at the pole. This complication is partially a result of the map projection used to

organize data in the image.

Geographic information is transformed onto the 2D plane of an image by a pro-

cess known as map projection [32]. Specifically, a map projection entails two sets

of equations that transform between geographic coordinates (λ, φ) to cartesian coor-

dinates (x, y) of the map projection, henceforth called projection coordinates. The

forward mapping equations transform geographic coordinates to projection coordi-

nates, and the inverse mapping equations constitute the inverse transformation. The

forward mapping equations are more useful in planetary rendering since each vertex
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Figure 2.28: An image of Mars’s south pole produced by Google Earth. [24]

in the generated mesh owns a pair of geographic coordinates, and we want to transfer

this to coordinates of the images that we want to overlay onto the planet.

Graphical modeling necessitates a further transformation from projection co-

ordinates (x, y) to texture coordinates (s, t) or pixel coordinates (i, j) of the image.

Although planetary data sources include documentation on the map projections used,

equations for obtaining texture coordinates are not given because this is a domain-

specific issue. Our method of transforming projection coordinates to texture coordi-

nates is given in Section 4.1.

A map projection can distort geographic information with respect to any of the

following criteria [32]:

• An equal-area map projection preserves the surface area of the reference surface.

• An equidistant map projection preserves the length of lines on the reference
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surface.

• A conformal map projection preserves the angles between lines on the reference

surface.

The center of projection (λ0, φ0) is the origin of projection coordinates and the loca-

tion where the scale of the map is true and the distortion is minimized.

There are many map projections, but there are two that are commonly used for

visualization. The equations for these two are detailed by Eliason [18]. The equirect-

angular projection maps longitude and latitude directly to projection coordinates

(x, y), as demonstrated in Equations 2.1 and 2.2. R is the radius of the reference

ellipsoid at the center of projection. Owing to the simplicity of these equations, the

equirectangular projection is preferred for reasons of efficiency and precision. In addi-

tion, the equirectangular projection shows little distortion near the equator; however,

much distortion exists near the poles. A special case occurs when the latitude of the

center of projection φ0 = 0 and is referred to as the simple cylindrical or Plate Carrée

projection.

x = R (λ− λ0) cos(φ0) (2.1)

y = Rφ (2.2)

The distortion in this map projection is a combination of two causes. Because the

equirectangular projection mostly preserves area at the equator and poorly preserves

area at the poles, the pixels of the image have a rectangular shape at the equator

and a deformed shape at the poles, as shown in Figure 2.29. The nature of this

projection is that the middle line of pixels in the image describe the entire equator,

while the top line of pixels describe the North Pole, a comparatively small region of

the planet. Thus it is important to note that although distortion exists in the image,

a relatively abundant amount of data about the poles exists in the equirectangular

projected image.

The second cause of the distortion problem is the use of rectangular filters for

mipmapping. Because of the nature of mipmap construction, mipmapping uses a
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Figure 2.29: Equirectangular projected data mapped to the sphere. [33]

rectangular filter for averaging areas of the image. For equirectangular projected

data near the equator, this filter closely fits the shape of each pixel. Near the poles,

however, the pixels assume a deformed shape, and the rectangular filter no longer

approximates the shape of the pixels. The result is incorrect filtering as demonstrated

in Figure 2.30. The same polar region of Mars is shown without mipmapping in

Figure 2.31.

Figure 2.30: Mars’s north pole displayed with mipmapping.

The solution is to use data in a map projection that sufficiently minimizes dis-
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Figure 2.31: Mars’s north pole displayed without mipmapping.

tortion in the covered area. For this purpose, the polar stereographic projection ap-

proximates polar regions well. Equations 2.3 and 2.4 represent the forward mapping

equations [18]. Rp is the polar radius of the reference ellipsoid. Unlike the equirectan-

gular projection, the polar stereographic projection results in a rectangular shape of

pixels around the center of projection. An example of a polar stereographic projection

is shown in Figure 2.32.

x = 2Rp tan(
π

4
− φ

2
) sin(λ− λ0) (2.3)

y = −2Rp tan(
π

4
− φ

2
) cos(λ− λ0) (2.4)

As a general guideline, regions within ±60 degrees latitude are mapped using the

equirectangular projection, and regions above or below these parallels are mapped

using the polar stereographic projection. With these map projections Kooima [33] im-

plements data composition, described next, which allows the use of multiple datasets

in differing map projections.
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Figure 2.32: A polar stereographic projection. [32]

2.4.2 Data Composition

Kooima et al. [34] present a GPU-based technique for combining overlapping datasets

at run time. Datasets are composited via deferred texturing, a process similar to

deferred shading.

Deferred shading is a rendering technique that avoids lighting calculations for

fragments that are ultimately discarded due to failing the depth test [54]. Objects

in the scene are rasterized, and information such as the normal, color, specular, and

depth for each fragment are written into as many buffers. These buffers are collectively

termed the G-buffer and describe the visible surfaces in the scene. Figure 2.33 shows

the buffers that make up the G-buffer. From the top left are the normal, color,

specular, and depth buffers. In the last step, for each light source, lighting calculations

are applied over the pixels in the G-buffer to create the final image in Figure 2.34.

The situation is similar in deferred texturing for planetary rendering: multiple

compositing operations, instead of multiple lighting operations, are applied. Before

the height compositing operations, the buffers describing the terrain mesh are gen-
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Figure 2.33: Various buffers used for deferred shading. [54]

Figure 2.34: The result of deferred shading. [54]
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erated using a GPU mesh refinement algorithm. The information in these buffers

includes a set of vertices that constitute the mesh, a set of sphere normals for each

vertex, and a set of geographic coordinates for each vertex. The vertices in the mesh

are positions on the reference sphere that have yet to be offset by values in the height

maps.

Height composition proceeds by executing a composition operation for each

height map. A single step begins by binding the current height map and rendering

a quad over the mesh texture. For each fragment in the framebuffer, the geographic

coordinates corresponding to the fragment are used to read a value from the height

texture. The corresponding vertex is offset by the sphere normal scaled by the height

value. The resulting mesh and supporting information is rasterized into screen-sized

buffers, creating the equivalent of a G-buffer in deferred shading. The color and nor-

mal composition operations take place in screen space. Instead of offsetting vertices

as in height composition, the accumulated results of color and normal composition

are written to a pair of accumulation buffers.

Because a texture cannot be read from and written to at the same time, two

accumulation buffers are used. During each step of the algorithm, one of these buffers

is bound for reading, and the other is bound for writing. At the end of a step, the

buffers swap roles: the write buffer becomes the read buffer, and the read buffer

becomes the write buffer. The use of two buffers in this manner is referred to as

“ping ponging.” Once the colors and normals have been composited, the algorithm

applies lighting calculations using each pixel from the final color and normal buffers.

The entire process is illustrated in Figure 2.35. From the top and left to right,

the buffers shown are the generated mesh, the mesh after height composition, the

rasterized geographic coordinates, the accumulated surface normals, the accumulated

colors, and the final image with atmosphere and lighting applied. In the first two

images, the buffers are rendered for the purpose of demonstration. Also, the values in

the third image are scaled by a factor of 100 to make the granularity of the geographic

coordinates more apparent.
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Figure 2.35: Various buffers used for data composition. [33]
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Although the results of composition could be saved and used across multiple

frames, composition is performed each frame due to the restriction that geometry

must be generated and operated upon in eye space. Working in eye space overcomes

the floating point precision issues caused by using world-space coordinates with the

center of the planet as the origin.

Finally, to ensure that distorted pixels do not affect the final image, a weighting

factor is calculated. The weighting factor is used to mix the incoming height values

and the currently accumulated height values.

2.4.3 Data Sources

A vast amount of data exists for many planetary bodies and is freely available on the

Internet. In particular, NASA’s Planetary Data System (PDS) [42] indexes data from

all past and present missions in an attempt to ensure the longevity of NASA data.

Each dataset from NASA comes with a PDS label that describes the map projection

used, geographic extents, and other useful information. Furthermore, the Geospatial

Data Abstraction Library (GDAL) [23] and associated command-line utilities are able

to read PDS labels, simplifying data processing.

The planetary bodies that are possibly of most interest are Earth, the Moon,

and Mars, and there a number of NASA missions that have produced data using the

equirectangular projection and the polar stereographic projection. NASA missions for

Earth include the Shuttle Radar Topography Mission (SRTM) [44] mapped elevation

data for almost the entire area of Earth between ±60 degrees latitude. Landsat Image

Mosaic of Antarctica (LIMA) [41] and the MODIS Mosaic of Antarctica (MOA) [47]

are mapped using polar stereographic projections.

The primary test case for this work is Mars. The Mars Orbiter Laser Altimeter

(MOLA) [43] data maps the topography of Mars and provides data for both global and

polar data. The MOLA instrument is a device on the currently nonoperational Mars

Global Surveyor (MGS) satellite. MOLA provides global height maps of the areoid,

a model of the general shape of Mars determined by the overall gravitational field of
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Figure 2.36: The MOC (left) and Viking (right) global color datasets.

the planet. The areoid also serves as a datum for topographic measurements, and is

analagous to the Earth’s geoid [32]. The maximum resolution offered by MOLA is

128 pixels/degree (0.463 km/pixel) for the entire planet and 512 pixels/degree (0.116

km/pixel) for either pole.

The High Resolution Imaging Science Experiment (HiRISE) [45] camera is a de-

vice on the Mars Reconnaissance Orbiter (MRO). HiRISE provides high-resolution

imagery for focused areas of the planet in both equirectangular and polar stereo-

graphic projections. For the purpose of comparison, an image of Victoria Crater has

a resolution of 237,099 pixels/degree (0.25 m/pixel) [46]. In addition, digital terrain

models are generated by the HiRISE team from pairs of images taken of the same

area.

Global color mosaics of Mars also exist, although they are typically not directly

provided by NASA. A global mosaic of images created from NASA’s Viking program

is available through many channels [66]. Despite its apparent popularity, the dataset

uses a planetographic coordinate system which differs from the planetocentric coordi-

nate system used in recent missions [22]. The difference between the two is whether

the calculation of latitude is performed with respect to an ellipsoid or a sphere [64].

As a consequence, the Viking imagery does not match MOLA or HiRISE. A global

greyscale mosaic of images from the Mars Orbiter Camera (MOC) [40] on the MGS

satellite is available [66]. It uses the more recent planetocentric coordinate system
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and matches MOLA and HiRISE. Figure 2.36 demonstrates the difference between

these two global color datasets. The left image is of the planet without lighting; the

red area on the left side is the MOC, and the brown area on the right is the Viking

dataset. In the right image, lighting is turned on. Since the normals used for lighting

are generated from MOLA, which MOC matches, there is no apparent error in MOC

area of the image. However, Viking does not match MOLA, and therefore the craters

appear twice in the Viking area of the image.
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Chapter 3

Projective Grid Mapping for
Planetary Terrain

GPU-based algorithms powerfully address the problems of planetary rendering. CPU-

based algorithms, however, are not suitable; most focus on planar terrain, store a

static mesh, and require lengthy preprocessing. In contrast, algorithms that take

advantage of modern graphics hardware easily perform planetary rendering tasks

such as data composition. For example, Kooima [33] stores the mesh in GPU memory,

treating both height and color data as textures. Since each texel represents a scalar

value, geographically overlapping texels are trivially combined. The GPU allows

algorithms to manage the large amount of processing required for planetary rendering.

Consequently, we choose to modify projective grid mapping for planetary render-

ing. PGM provides a steady framerate and allows throttling based on the dimensions

of the projective grid. Also, PGM can be implemented on any graphics hardware

that supports vertex shaders, fragment shaders, and vertex texture lookups.

Our algorithm begins with a grid of points that spans the viewport (Figure 3.1).

Each grid point corresponds to a ray that originates at the viewpoint. The grid points

are projected along these rays onto a sphere, which serves as a reference surface for

displacement. The result is a grid stretched across the sphere (Figure 3.2). Subse-

quently, each grid point is displaced by various height textures. During rasterization,

the projected and displaced grid is interpreted as a mesh that approximates the visible

terrain (Figure 3.3).
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Figure 3.1: The projective grid and its arrangement over the viewport.

Figure 3.2: The rays and their sphere intersections.

Figure 3.3: The displaced mesh that represents the terrain.
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3.1 Algorithm Overview

Our algorithm is a combination of PGM and deferred texturing. As shown in Fig-

ure 3.4, the algorithm is divided into five steps, in which each step produces data

buffers that are used in later steps.

Figure 3.4: The steps and data flow of the algorithm.

The algorithm begins with PGM. Prior to projecting the grid, however, we must

ensure that the planet will be adequately sampled. Two special entities, the refer-

ence sphere and the sampling camera, are used to achieve adequate sampling. When

projecting the grid, a sphere is required as a reference for intersecting rays, for cal-

culating geographic coordinates, and for displacing grid points. The ideal reference

sphere closely approximates the terrain with respect to the average visible height and

the geographic area of the planet that could affect the final image. In addition, the

area beyond the horizon should be sampled to handle the case of a distant mountain

that rises from behind the horizon. To meet these goals, two reference spheres are

selected, and the results of ray intersection are interpolated. These are called the

primary and secondary reference spheres.

In addition to the reference spheres, a camera that adequately samples the pri-

mary reference sphere is required. The ideal sampling camera produces all of the rays
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that intersect the area of the primary reference sphere that could be displaced into

view. The sampling camera is based on the viewing camera and the visible area of the

primary reference sphere. Selecting reference spheres and calculating the sampling

camera are both view-dependent tasks, so they occur for every frame that the viewing

camera changes.

With the reference spheres and the sampling camera, PGM proceeds by generat-

ing a ray for each grid point. Each ray is intersected with both reference spheres. As

an optimization, ray-sphere intersection is reduced to the two-dimensional case of a

ray and a circle, leading to simple and direct methods for selecting reference spheres

and calculating the sampling camera. In addition, the two-dimensional intersection

reduces the amount of shader code for ray intersection. The results are interpolated

to achieve a gradual transition between detail at close range and detail from behind

the horizon. Floating point precision issues are mitigated by generating positions

relative to the viewpoint, which reduces the distance to the origin.

As shown in Figure 3.4, PGM outputs two buffers, which hold the positions and

the sphere normals at those positions. These buffers constitute the projected grid

and determine the area of the planet for which data is required. Using the projected

grid, the next four steps accomplish deferred texturing, the goal of which is to sample

and combine the height and color textures that affect this area.

The first of these steps is height composition, which accumulates height values

for each height dataset over all of the projected grid points. To sample geographic

data, this step uses the sphere normals, which correspond to geographic locations.

The next step is rasterization, which uses the accumulated height buffer to displace

the mesh and render it into screen-sized buffers. The color composition step uses

the screen-sized position and sphere normal buffers to accumulate colors and surface

normals, which are different from sphere normals in that they describe the surface of

the terrain for lighting equations. In the last step, optimized versions of atmospheric

equations by Sean O’ Neil [51] and Phong lighting equations [1, 289-304] are applied

using the accumulated color and normal buffers. The final buffer is drawn to the
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screen.

3.2 Two-Dimensional Reduction

Adequately sampling the planet with respect to a viewpoint and a reference sphere

is a difficult three-dimensional problem; therefore, it is helpful to work in two dimen-

sions. For this we refer to Fourquet et al. [19] who show that ray-terrain intersection

with a spherical underlying surface can be reduced to two-dimensional cross sections

consisting of a ray and a circle, as demonstrated in Figure 3.5. The cross section is

formed by the plane containing the ray and a special ray called the nadir, the unit

vector that points toward the center of the sphere. In the figure, the nadir is the ray

that goes through the point CoPv.

Figure 3.5: The two-dimensional reduction. [19]

Although Fourquet et al. [19] give equations to map points on the view plane to

geographic coordinates, we elect to derive a trigonometry-based equation that results

in less function calls when implemented on the GPU.

The goal of PGM is to calculate a ray-sphere intersection point and its corre-

sponding sphere normal for each grid point. A typical approach would be to use

a ray-sphere intersection algorithm to get the intersection point and then calculate
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the sphere normal at that point. However, we use the two-dimensional reduction to

derive a trigonometric equation that directly calculates the sphere normal. Although

the intersection point must eventually be calculated, the direct sphere normal equa-

tion is useful for selecting reference spheres and calculating the sampling camera.

As described in Section 3.6, we use the sphere normal and the altitude to get the

intersection point.

We derive the trigonometric equation that maps the elevation of an eye ray to

the elevation of the sphere normal at the ray-sphere intersection point, as shown in

Figure 3.6. The angle ω is the angle between the eye ray r̂ and the nadir n̂, and the

angle γ is the angle between the sphere normal ŝ and the antinadir â, the opposite of

the nadir. All vectors are assumed to be unit vectors unless otherwise noted.

O C

I

ω
γ

r̂

n̂ â

ŝ

Figure 3.6: Rays and angles in the ray-circle intersection problem.

The concept of the two-dimensional reduction is important because it is used

to select the reference spheres, calculate the sampling camera, and project the grid

points onto the reference spheres. We work in radians since standard implementations

of trigonometric functions use radians.

Given the ray angle ω, we will now show how to calculate the normal angle γ

at the ray-circle intersection point. In Figure 3.7, the length r is the radius of the
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Figure 3.7: The ray-circle intersection problem.

circle, and d is the distance between the ray’s origin O and the circle’s center C. The

intersection problem produces 4OCI for which we know the length of two sides (d

and r) and an angle (ω). Therefore, the law of sines can be used to obtain an equation

for a second angle ε in the triangle, written as

r

sinω
=

d

sin ε
.

Solving this equation for ε results in

ε = asin(
d

r
sin ω). (3.1)

With two angles of 4OCI, the third angle is

γ = π − ω − ε,

which is the normal angle.

However this is, in fact, not the angle we set out to find. An ambiguity with

respect to the law of sines leads to two possibilities, as shown in Figure 3.8. Unless

the ray is tangent to the circle, it intersects the circle twice: once as it enters and again

as it exits, corresponding to the front facing and the back facing intersection points

respectively. The ambiguity results in two triangles 4OCI1 and 4OCI2. These
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triangles share two side lengths (r and d) and an angle (ω). Conversely, the triangles

differ by two angles and a side, the first angles being ε1 and ε2 in each triangle and

the second angles being γ1 and γ2 in each triangle.

O C

I1

I2

ω γ1

γ2ε1

ε2

d

r

Figure 3.8: Ambiguous solutions using the law of sines.

This ambiguity is resolved using the observation that ε2 in 4OCI2 is acute and

ε1 in 4OCI1 is obtuse and their sum is π [59]. The acute angle ε2 is a direct result

of Equation 3.1 given previously. The obtuse angle ε1 and is found using

ε1 = π − ε2. (3.2)

The calculation of the normal angles γ1 and γ2 for both triangles remains the same:

γ1 = π − ω − ε1,

γ2 = π − ω − ε2.

Finally, we use substitution to find equations for the normal angle as a function of

the ray angle. The equation for γ1 can be simplified by substituting ε1 for Equation 3.2

to get

γ1 = π − ω − (π − ε2),

which reduces to

γ1 = ε2 − ω.
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Substituting ε2 with Equation 3.1, we obtain the direct equation for the front facing

intersection. Similarly, we substitute Equation 3.1 into γ2 = π− ω− ε2 to obtain the

direct equation for the back facing intersection. Together, the front facing and back

facing equations are:

γ1 = asin(
d

r
sin ω)− ω, (3.3)

γ2 = −asin(
d

r
sin ω)− ω + π. (3.4)

3.3 Sampling Issues

Using the two-dimensional reduction, we now address three obstacles that affect sam-

pling. To achieve adequate sampling, grid points should not be excessively displaced

toward the viewer and should never be displaced away from the viewer. In addi-

tion, only the area of the planet that could possibly affect the final image should be

sampled.

3.3.1 Stretching and Shrinking

The first obstacle is stretching, which occurs when grid points are excessively dis-

placed toward the viewer and away from the center of the planet. The greater the

displacement distance, the larger the triangles of the mesh appear in screen space.

Another consequence is that parts of the mesh fall outside of the view frustum.

The effects of shrinking are apparent in the extreme case where the mesh is

maximally displaced. The minimum and maximum radii of the planet, known a

priori, define all of the possible positions of a vertex, as shown in Figure 3.9. Consider

the extreme case where the reference sphere is equal to the minimum sphere and the

entire mesh is displaced to the height of the maximum sphere, as demonstrated in

Figure 3.10. The arc length of the non-displaced mesh M1 is smaller than the arc

length of the maximally displaced mesh M2.
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Figure 3.9: The minimum and maximum spheres.
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Figure 3.10: The effects of stretching.

Additionally, Figure 3.11 demonstrates the effects of stretching within the visu-

alization. In the left image, the mesh is shown before height displacement, and the

viewing frustum, marked with red lines, approximately fits the mesh. In the right

image, however, the mesh is shown after height displacement. Because the left side

of the mesh is displaced toward the viewer, some edges of the mesh extend beyond

the viewing frustum. Since our objective is to generate approximately pixel-sized

triangles that do not fall outside of the viewing frustum, the displacement distance

must be minimized by choosing an appropriate reference sphere.
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Figure 3.11: Stretching and shrinking within the visualization.

The second obstacle is shrinking, which occurs when grid points are displaced

away from the viewer and toward the center of the planet. The effect of shrinking

is that the edges of the mesh fall within the view frustum and are visible to the

viewer. This problem is illustrated in Figure 3.12. Also, Figure 3.11 demonstrates

shrinking within the visualization. In the right image, the right side of the mesh is

displaced away from the viewer and into the viewing frustum. Although shrinking

can be solved by using the minimum sphere as the reference sphere, this results in a

large amount of stretching. A method of choosing a reference sphere that solves both

of these problems must be devised.

C
M1 M2

ŝ

ŝ

Figure 3.12: The effects of shrinking.
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3.3.2 Pertinent Area

The pertinent area is the geographic area of the planet that affects the final image.

The third obstacle comprises undersampling and oversampling this area. The eye

rays that intersect the pertinent area on the sphere are referred to as pertinent rays.

The pertinent area is divided into three parts, as shown in Figure 3.13. The

frustum is represented by the solid line segments. The tangent ray t̂ separates the

group of eye rays that intersect the planet and the group of eye rays that do not. The

visible area, marked in green, is contained within the view frustum. The area marked

in red is the occluded area; it is the part of the sphere that could rise from behind

the horizon. The occluded area is determined by the maximum radius.

n̂

t̂

Figure 3.13: The pertinent area of the sphere relative to the viewpoint.

Using the appropriate reference sphere and sampling the entire pertinent area

allows mountains within the occluded area to be seen in the visualization, as shown

in Figure 3.14. In the top image, the mesh is partially projected onto the geographic

area of the mountain; as a result, the far edge of the mesh is visible when the mesh

is displaced. In the bottom image, however, the mesh is projected over enough of

the mountain’s geographic area so that the far edge is not visible when the mesh is

displaced. Figure 3.15 illustrates these situations from a third-person perspective.
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Figure 3.14: The occluded area should be sampled.

Figure 3.15: The occluded area problem from a third-person perspective.
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Similarly to the occluded area, the blue region below the view frustum in Fig-

ure 3.13 is not visible; however, it could also be displaced into view, as Figure 3.16

illustrates. This area begins at the point that the nadir n̂ intersects the sphere and

ends where the bottom of the frustum intersects the sphere.

n̂

I

Figure 3.16: The area below the frustum could affect the final image.

Figure 3.17 demonstrates this situation within the visualization. The viewing

camera is marked in blue, and the ideal camera that samples the area below the

viewing camera is marked in red. In the left image, the projected mesh is not dis-

placed, and it is clear that the viewing camera does not sample the mountain directly

below. In the right image, the mesh is displaced and the mountain below the view-

ing camera rises into view. Although Livny et al. [37] use a plane as an underlying

surface, their discussion on sampling the area below the frustum is similar.

Figure 3.17: A mountain affecting the view frustum in the visualization.
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In preparing for PGM, the reference spheres ensure that no stretching or shrinking

occurs and that the pertinent area is visible, while the sampling camera ensures that

all of the pertinent rays are generated.

3.4 Reference Spheres

Two reference spheres are selected. The primary reference sphere minimizes stretch-

ing and avoids shrinking. The secondary reference sphere, when ray cast, produces

intersection points that represent the occluded area. The PGM step projects the grid

points on both spheres and interpolates the results. A reference sphere is defined by

a center and a radius. Because the center of the planet is the same for both spheres,

we are concerned only with the radii. Calculation of the radii occurs on the CPU

before PGM.

3.4.1 Primary Reference Sphere

We give two methods for selecting the radius of the primary reference sphere. The

first method uses a global raster that resides in core memory. This raster contains

the distance from the center of the planet, called the planetary radius, over the entire

surface of the planet. At the beginning of the program, the raster is loaded. During

rendering, the geographic location (λ, φ) of the viewer is calculated from the antinadir

â, which always points from the center of the planet toward the eye.

λ = atan2(âx, âz)

φ = asin(ây)

This geographic location is used to query the global raster for the planetary radius of

the terrain at the viewer’s position. This value suffices as an estimate and is efficient

to compute. However, if the global raster is of low resolution and detailed height

maps are active, this value is inexact relative to the high-resolution data and may

lead to shrinking. In addition, this method is not suitable for extreme cases where the
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planetary radius at the viewpoint is much different from the terrain being rendered,

such as when the user is looking down from a cliff.

The second, more precise method is to use the minimum visible planetary radius

from the previous frame. During the rasterization step (Section 3.7.2), the planetary

radius for each fragment is written to a screen-sized buffer. To calculate the minimum

value in the buffer, a min mipmap is constructed on the GPU. A min mipmap is similar

to an average mipmap, except that a texel represents the minimum of the four texels

in the previous mipmap level. After the min mipmap is constructed, the texel in the

highest level of the mipmap is read from the GPU to the CPU and saved for the next

frame.

The value obtained for the primary sphere radius results in a more robust ren-

dering that minimizes stretching while avoiding shrinking. In addition, in the future

it may be possible to use the min mipmap for collision detection with the composited

terrain.

Figure 3.18 demonstrates the difference between the two methods. The user is

positioned at the top of a cliff looking into a deep valley. The first image shows the

Figure 3.18: The two methods for the primary reference sphere.
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result of using the local radius, which is the radius of the cliff, and the second image

shows the result of using the minimum visible radius. In the first image, the edges of

the mesh are visible on the sides, while in the second image the edges are not.

3.4.2 Secondary Reference Sphere

The goal of the secondary reference sphere is to capture the occluded area of the

primary reference sphere. Although the projected grid points could be stretched

beyond the horizon of the primary reference sphere, such an operation would ruin the

view-dependent nature of ray casting and require additional shader code. A better

method is to find a second reference sphere that allows the occluded area to be ray

cast.

To calculate the radius of the secondary reference sphere, the extent of the oc-

cluded area is needed. This extent is defined by the maximum possible normal angle.

This upper bound is dependent on the viewpoint, the primary reference sphere, and

the maximum sphere. To find the upper bound, the tangent ray of the primary ref-

erence sphere is intersected with the maximum sphere. The upper bound is then the

normal angle for the back facing intersection point, as shown in Figure 3.19. Let the

angle τ be the angle of the tangent ray t̂ to the primary reference sphere P. The ray

intersects the maximum sphere M, and the vector ŝ represents the sphere normal at

O C

t̂

ŝ

ŝ
τ

γ0

P M

Figure 3.19: The upper bound of the normal angle.
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the back facing intersection point. The normal angle for ŝ is γ0. Consider an eye

ray that is just above t̂, that is, a ray with a ray angle greater than τ . Because the

maximum sphere limits the distance of displacement, no point on the sphere could

be displaced so as to affect this ray.

To calculate the upper bound of the normal angle, the angle of the tangent ray

to the primary reference sphere is used, as shown in Figure 3.20. The tangent ray t̂

forms a right angle to the line segment CI. The right triangle implies that sin τ = r/d,

which can be rewritten as

τ = asin(r/d). (3.5)

To calculate the upper bound of the normal angle γ0, we use the tangent angle τ

and Equation 3.4 to calculate the normal angle at the back facing intersection of the

tangent ray with the maximum sphere.

O C

I

d

r

t̂

τ

Figure 3.20: The tangent angle.

With the upper bound we will now show that, in most cases, there exists a

smaller sphere that allows the occluded area of the primary reference sphere to be

ray cast, and we will give a method for calculating the radius of the smaller sphere.

As Figure 3.21 shows, the ray t̂p is tangent to the primary reference sphere P and

intersects the maximum sphere M as it exits the sphere. The back facing intersection

produces the normal angle γ0 that represents an upper bound on all normal angles for

this viewpoint. The secondary reference sphere S should be the sphere with a tangent
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S P M

Figure 3.21: The radius of the secondary reference sphere.

ray t̂s that results in a normal angle of γ0 when intersected with S. The distance d

to the center of the planet is the same for all spheres, and the ray t̂s forms a right

triangle with respect to S. Therefore, the radius rs of the secondary reference sphere

is included in the equation cos γ0 = rs/d, which can be written as

rs = d cos γ0. (3.6)

When the tangent ray t̂s is intersected with S, it produces the normal angle that

represents the farthest possible point on P that could rise into view.

Figure 3.22 demonstrates how the occluded area of the primary reference sphere

becomes part of the visible area on the secondary reference sphere. The red area

on the primary reference sphere is a subset of the visible geographic area on the

secondary reference sphere.

The secondary reference no longer exists when Equation 3.6 returns a negative

value for the radius. Because the ratio between the minimum sphere and the maxi-

mum sphere for actual planets is small, the distance at which this occurs is sufficiently

far away to replace the planet with an impostor.
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Figure 3.22: The occluded area is visible on the secondary reference sphere.

3.5 Sampling Camera

The viewing camera consists of a position, an orientation, and a frustum. The position

of the viewing camera is simply the viewpoint. The orientation is a coordinate system

that defines coordinates relative to the camera. This coordinate system is typically

called eye space. The three basis vectors that make up this coordinate system form

a matrix, called the view matrix, which transforms points and vectors from world

space to eye space. Finally, the viewing camera’s frustum contains all of the visible

objects in the scene; a special matrix called the projection matrix transforms points

into the canonical view volume, where visible objects exist within the cube defined

by (−1,−1,−1) and (1, 1, 1).

The sampling camera also consists of a position, an orientation, and a frustum.

Although the sampling camera and the viewing camera are both positioned at the

viewpoint, the sampling camera has a different orientation and frustum. The orien-

tation defines the coordinate system relative to the sampling camera, called sampling

camera space. The matrix that transforms points and vectors from world space to

sampling camera space, called the sampling camera matrix, is constructed from this
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coordinate system. Finally, the sampling camera’s frustum contains the parts of the

sphere that should be sampled. The attributes of the frustum are defined with re-

spect to the near plane in sampling camera space, as Figure 3.23 demonstrates. These

attributes are left, right, bottom, top, near, and far.

Figure 3.23: The attributes of the viewing frustum. [67]

Sampling camera generation is concerned with two goals. The first is to find the

three basis vectors that define the sampling camera’s orientation; these vectors are

used to construct the sampling camera matrix. The second goal is to find the frustum

attributes, which are used to calculate a projection matrix for the sampling camera’s

frustum. The inverse of the projection matrix is used in PGM to convert a grid point

to its corresponding eye ray.

The ideal sampling camera generates all possible pertinent rays for a given view-

point and reference sphere. The set of all pertinent rays is the intersection of two sets

of rays. The first set consists of all rays generated by the view frustum, as shown in

Figure 3.24. In addition, the first set also contains the group of all rays between the

nadir and the bottom of the view frustum, as shown in Figure 3.25.
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Figure 3.24: All of the eye rays for a given viewing camera.

Figure 3.25: The pertinent rays below the frustum.

The second set of rays contains all possible rays originating from the viewpoint

that intersect the reference sphere. These rays define an infinite cone, as shown

in Figure 3.26. The intersection of these two sets is illustrated in Figure 3.27. In

practice, it is difficult to intersect a cone with a frustum. Instead, we approximate

the cone of all possible eye rays with a frustum that entirely contains the cone, as

shown in Figure 3.28. This frustum is known as the visible sphere frustum since it

includes the entire visible area of the reference sphere.

Our algorithm finds the intersection between the visible sphere frustum and the

view frustum. If this frustum does not already contain the nadir, the frustum is

extended to include the rays between the nadir and the bottom of the view frustum.

If this frustum already contains the nadir, then no extension is made.

We observe that these two frusta share an apex, namely the viewpoint. This

greatly simplifies finding their intersection. With the set of intersection rays, we gen-

erate both the view matrix and the projection matrix. The view matrix is generated

by choosing a forward direction based on the intersection rays. The projection matrix



66

Figure 3.26: The cone of rays that contains the visible part of the planet.

Figure 3.27: The intersection of the sets of rays, which contains all pertinent rays.

Figure 3.28: The cone of rays approximated with a frustum.

is generated by intersecting the intersection rays with the near plane, defined by the

near distance and sampling camera space. The minimum and maximum values for x

and y of the intersections are found and used as a parameters to build a frustum.

Figure 3.29 illustrates how the sampling camera should operate within the visu-

alization. In the left image, the viewer is looking along the nadir. The frustum of the

sampling camera, marked in red, is aligned with the sides of the screen. The right

image shows this situation from a third-person perspective. The edges of the mesh

appear jagged where the rays no longer hit the secondary reference sphere; however,

these jagged edges are not visible from the viewer’s perspective because the mesh ends

within the occluded area. Additionally, Figure 3.30 shows the case where the viewing

camera is pointed up and right from the nadir. Here, the sampling camera should be
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oriented so that the top of the frustum is tangent to the horizon in the direction of

view. This rotation minimizes the number of eye rays that miss the reference sphere

when near the surface. Although no difference is made when viewing the entire planet

(left image), many rays are excluded at the surface (right image).

Figure 3.29: The sampling camera within the visualization.

Figure 3.30: The sampling camera should fit the horizon.
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3.5.1 Corner Rays

Frustum-frustum intersection requires that each frustum be defined by the rays that

form its corners. There are four corner rays per frustum, and each ray has the

viewpoint as its origin. Therefore, the first step of the sampling camera algorithm is

to calculate the corner rays of the view frustum and the visible sphere frustum.

The corner rays of the view frustum are obtained by calculating their coordinates

on the near plane, which is chosen in advance. The near plane is parallel to the

xy-plane and is defined by the distance n along the negative z-axis. As shown in

Figure 3.31, the corners of the view frustum are rays that intersect the near plane

at the coordinates (l, b,−n), (r, b,−n), (r, t,−n), and (l, t,−n) in eye space, where

l, r, b, t, n, and f correspond to left, right, bottom, top, near, and far, respectively.

These components are chosen by the application programmer, but they can also be

obtained from the projection matrix of the viewing camera using special equations.

Figure 3.31: The corner rays of the frustum intersect the near plane.

The visible sphere frustum is calculated as follows. This frustum has a different

orientation than that of the view frustum; therefore a coordinate system must be

created that describes the orientation. Later, a transformation matrix derived from

this coordinate system will be used to transform the visible sphere frustum’s corner

rays into the same coordinate system as the view frustum’s corner rays.
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We ensure that the visible sphere frustum is always oriented directly along the

nadir, so the central axis of the frustum is the same as the nadir. However, the

visible sphere frustum can have any rotation about the nadir (Figure 3.32). The view

frustum, drawn in red, represents the viewport and the final image.

Figure 3.32: The visible sphere frustum can be rotated along its central axis.

In choosing this rotation, we consider the case in which the entire planet can be

seen by the viewer (Figure 3.33) and the case in which the viewer is standing on the

surface of the planet (Figure 3.34). The view frustum is marked in green. In the

first case, the rotation does not matter because the visible sphere frustum is entirely

within the view frustum; the intersection of the two frusta cannot exclude any eye

rays that miss the sphere. Yet in the second case, the rotation should be chosen so

as to minimize the number of rays in the visible sphere frustum that do not intersect

the sphere. Although a rotation that is not aligned with the view frustum results

in many rays that miss the sphere, an aligned visible sphere frustum minimizes the

number of rays that miss the sphere.

A rotation aligned with the view frustum is obtained by using the viewing cam-

era’s forward vector along with the nadir to form the coordinate system of the visible

sphere frustum. Using the viewing camera’s forward vector f̂ and the nadir n̂, the

basis vectors are

b̂ = −n̂,

r̂ = ‖ n̂× f̂ ‖, and

û = ‖ r̂ × n̂ ‖,
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Figure 3.33: The view frustum may contain the entire planet.

Figure 3.34: The view frustum may contain part of the planet.

where the backward vector b̂, right vector r̂, and up vector û correspond to the z-,

x-, and y-axes. We assume a right-handed coordinate system with the camera facing

down the negative z-axis by default.

Now that we have the coordinate system relative to the visible sphere frustum,

we need to find the corner rays of the visible sphere frustum. We now present a

method for finding the corner rays relative to this coordinate system.

The visible sphere frustum is symmetrical about all three axes. As such, the

corner rays form a square on the near plane relative to the coordinate system of the

visible sphere frustum. To get the corner rays’ coordinates on the near plane, half of

the length s of the square’s side is needed. In order to find this value, note that each

of the four sides of the frustum correspond to a plane that is tangent to the reference

sphere. Within each plane there exists an eye ray that is tangent to the sphere. We

intersect this tangent ray with the near plane to find its distance from the center of
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projection on the near plane, i.e. the intersection of the nadir and the near plane.

This distance corresponds to h = s/2.

The distance h is calculated using the angle τ made by a tangent ray. Figure 3.35

demonstrates that a right triangle is formed by the tangent ray and the line segment

from the center to the tangent point. The tangent angle τ is found using Equation 3.5.

A right triangle is formed with the near plane, implying that tan τ = h
n
. Therefore,

the equation

h = n atan τ

can be used to calculate the tangent distance h from the z-axis. The four corner rays

are (−h,−h,−n), (h,−h, n), (h, h, n), and (−h, h, n) in coordinates relative to the

visible sphere frustum.

n

h

τ

Figure 3.35: The height of the visible sphere frustum.

3.5.2 Corner Ray Transformation

The next step transforms the corner rays for both frusta into the same coordinate

system. This is necessary for frustum-frustum intersection.

We choose to intersect the frusta in a coordinate system called rotated eye space.

The best rotation for the viewing camera is one that is aligned with the horizon; this

can be achieved by rotating the viewing camera so that the yz-plane includes the

center of the planet, as shown in Figure 3.36. Rotated eye space is the same as eye

space, except that it is rotated so that the yz-plane includes the center of the sphere.
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Figure 3.36: The view frustum should fit the horizon.

The purpose of this rotation is to ensure that the top edge of the sampling camera’s

frustum is parallel to the horizon, minimizing the number of rays cast that do not

intersect the sphere.

First, the corners of the view frustum are transformed into rotated eye space.

This coordinate system is found by building a set of three basis vectors from the

forward direction of the camera f̂ and the nadir n̂, both in eye space. This is similar

to the coordinate system of the visible sphere frustum, except that rotated eye space

retains the forward direction of the viewing camera. The three basis vectors of the

rotated eye frame are b̂, r̂, and û and are calculated as follows:

b̂ = −f̂

r̂ = ‖ b̂× n̂ ‖

û = ‖ b̂× r̂ ‖

These vectors are used to build a transformation matrix that transforms points and

vectors from eye space to rotated eye space. Each of the view frustum corner rays

are multiplied by this matrix to obtain their equivalent in rotated eye space.

Next, the corner rays of the visible sphere frustum must be transformed into

eye space before being transformed into rotated eye space. A transformation matrix

is constructed that takes vectors from the coordinate system relative to the visible

sphere frustum to world space. This matrix is built using the three basis vectors for

the visible sphere frustum found previously. We then use the view matrix and the

rotated eye matrix to transform the corner rays into rotated eye space.
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3.5.3 Frustum-Frustum Intersection

With the corner rays for each frustum represented in the same coordinate system,

frustum-frustum intersection can be accomplished.

Although each frustum consists of four corner rays, the frustum that results from

their intersection can have between zero and eight corner rays. Similarly, each frustum

has a rectangular base, but their intersection can have an arbitrary polygonal base.

For example, Figure 3.37 shows the intersection of the bases of frusta A and B. In

this case, the intersection, marked in red, forms another frustum with a rectangular

base. In Figure 3.38, however, the intersection forms an irregular frustum with a

polygonal base made up of eight corner rays.

These figures demonstrate the two ways in which intersection rays, the corner rays

of the resulting frustum, are determined. Let A be the view frustum represented by

Figure 3.37: Intersection could result in a rectangular base.

Figure 3.38: Intersection could result in a polygonal base.



74

the set of the view frustum’s four corner rays, and let B be the frustum represented

by the the set of the visible sphere frustum’s four corner rays. First, intersection

rays arise from the intersection of the planes of A with the planes of B. All of the

intersection rays in Figure 3.38 are the result of plane-plane intersection. This is only

possible if the two frusta share an apex, implying that all rays under consideration

originate at this apex and that all frustum planes intersect at this apex.

An important property of this type of intersection ray is demonstrated in Fig-

ure 3.39. Given a particular intersection ray î that results from the intersection of

planes PA3 and PB4, î is a valid intersection ray if it is bounded by the opposite

planes in both A and B. For A the bounding planes are PA2 and PA4, and for B the

bounding planes are PB1 and PB3.

Figure 3.39: An example of bounding for intersection rays.

Figure 3.40 shows a case where the ray resulting from plane-plane intersection is

bounded by the opposite planes of A but not the opposite planes of B. Therefore,

this ray is not an intersection ray.

The second type of intersection ray is demonstrated in Figure 3.41. The inter-

section ray î1 is a corner ray of B that exists within A, i.e. it is a ray that is bounded
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Figure 3.40: Plane intersection does not always yield an intersection ray.

Figure 3.41: The corner ray of one frustum inside of the other.

by all four planes of A. Similarly, î2 is a corner ray A that exists within B.

Before the algorithm can be described in detail, it is important to explain how a

ray is determined to be bounded by a plane. A plane can be described by the normal

to its surface. The angle between a ray and a plane is

θ = asin(r̂ · n̂). (3.7)

This is conceptually similar to Equation 3.9 in Section 3.6.3, which calculates the

angle of an eye ray to the nadir. Instead of an up vector k̂, here we have the plane

normal n̂ and the ray r̂. Note that the arcsine function outputs values in the range
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[−π
2
, π

2
]. If the resulting angle θ is positive, then the ray is on the side of the plane

that the normal points away from. This calculation can be simplified by noting that

r̂ ·n̂ > 0 when the two vectors are acute, which signifies that the ray is on the normal’s

side of the plane.

Therefore, the algorithm that finds all of the intersection rays consists of four

steps. All rays that are properly bounded are added to a list of intersection rays.

1. Calculate the normals of the planes in A and B.

2. Intersect the planes of A with the planes B.

3. Find the rays of A that exist within B.

4. Find the rays of B that exist within A.

The first step calculates the plane normals needed for determining whether a ray

is bounded. For a particular frustum, we label the corner rays from ĉ1 to ĉ4 and the

planes from P1 to P4, as shown in Figure 3.42. The plane normal n̂1 corresponds to

the plane P1 and is found with the equation

n̂1 = ‖ ĉ2 × ĉ1 ‖.

ĉ1 ĉ2

ĉ3ĉ4

P1

P3

P2 P3

Figure 3.42: The ordering of planes and corner rays for an input frustum.
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Similarly, n̂2 is found using the cross product of ĉ3 and ĉ2, and so on. This pattern

results in plane normals that point into the frustum, causing positive angles from

Equation 3.7 for rays that exist inside the frustum.

Next, we intersect each plane of A with each plane of B. The intersection between

two planes is the result of the cross product between the normals of the planes. A

check is made to ensure that all rays are pointing in the negative z direction; if not,

the ray is negated. This is necessary since the camera is directed along the negative

z-axis, and all eye rays must point in this direction. Each of the resulting rays are

then tested against the four opposite planes, two from A and two from B. If the ray

is bounded by these planes, then it is added to the list of intersection rays.

The third and fourth steps are similar to each other. To find the corner rays of

A that exist within B, each corner ray of A is tested against each plane of B. If the

corner ray is bounded by all four planes, it is added to the list of intersection rays.

A similar process is used to find the corner rays of B that exist within A. The list

of intersection rays now represents the frustum resulting from the intersection of the

two frusta A and B.

Finally, if there happens to be no intersection between the two frusta, as in the

case that the viewer is looking directly away from the planet, we simply use the visible

sphere frustum as the sampling camera. The disadvantage of this approach is that

the terrain is oversampled.

3.5.4 Matrices

In the final step, we use the set of intersection rays to calculate the sampling camera’s

orientation matrix and projection matrix. The sampling matrix and its inverse are

used to transform between world space and sampling camera space. The inverse of

the projection matrix is used to generate eye rays from the grid points during PGM.

The sampling camera matrix S is formed from the concatenation of the view

matrix V, the rotated eye matrix R, and the matrix O that transforms rotated eye
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space to sampling camera space. The equation

S = O×R×V

performs post multiplication in the correct order to produce S.

The matrix O is generated by building a coordinate system from the set of

intersection rays. Specifically, the sampling camera’s forward vector orients the near

plane of the camera. The orientation of the near plane affects which eye rays are

generated from the projective grid, which can negatively affect the distribution of

eye rays. A near plane that leads to an even distribution of eye rays is given in

Figure 3.43. The grid points are spread evenly across the frustum and result in a

balanced set of eye rays. Alternatively, Figure 3.44 demonstrates a near plane that

leads to an uneven distribution of eye rays. The grid points are distributed evenly

across the near plane, but due to the near plane’s tilt relative to the sampling camera,

the set of eye rays is not balanced across all possible eye rays.

Figure 3.43: A good near plane leads to an even ray distribution.
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Figure 3.44: A bad near plane leads to an uneven ray distribution.

To obtain a near plane that well approximates the possible eye rays, we calculate

the forward vector of the sampling camera as the average of the intersection rays.

In addition, we must maintain the requirement that the sampling camera is oriented

with the horizon, or more specifically, the yz-plane must include the center of the

planet. Therefore, the y and z components of the forward vector are calculated as

the average of the y and z components of the intersection rays, and the x component

of the forward vector is set to zero.

With the new forward vector, we calculate the basis vectors that constitute the

orientation of the sampling camera relative to rotated view space. As before, we use

the nadir n̂.

b̂ = −f̂

r̂ = ‖ b̂× n̂ ‖

û = ‖ b̂× r̂ ‖

These vectors are used to construct the matrix O that transforms from rotated eye

space to sampling camera space, allowing the sampling matrix S to be calculated.

Creation of the projection matrix requires the left, right, bottom, top, near, and

far attributes for constructing a frustum. The near and far attributes are defined by

the application programmer. The other attributes are found by intersecting the inter-

section rays with the sampling camera’s near plane. Because the frustum attributes
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are defined relative to the sampling camera, we transform all of the intersection rays

to sampling camera space before intersecting them with the near plane.

For each intersection ray ĉ, the point of intersection on the near plane is deter-

mined by the intersection time t of the ray, which is calculated using the equation

t = −n/ĉz.

This is a result of the law of similar triangles. The point of intersection P is then

P = t ĉ.

The z component of each intersection point P is the near value, but the x and y

components are coordinates on the near plane that are unique to each intersection

ray. The minimum and maximum (x, y) components correspond to (left, bottom) and

(right, top), which are the frustum attributes needed to build a projection matrix.

3.6 Projective Grid Mapping

The PGM algorithm operates mostly on the GPU. For a given grid point, an eye ray is

generated. In order to work in the two-dimensional cross section, a coordinate system

is required. This coordinate system consists of three basis vectors that describe points

and vectors relative to the plane of the cross section.

Using this basis, we calculate the angle of the eye ray to the nadir. This ray angle

is used to calculate the normal angle at the ray-circle intersection point. Once we have

the normal angle, we must calculate the sphere normal in eye space. To accomplish

this, we use a linear combination of the basis vectors calculated previously.

Finally, the normal angle is used to calculate the position of the ray-circle inter-

section. The position is generated in eye space to mitigate floating point precision

issues that would result from measuring the position relative to world space, which

has an origin at the center of the planet.
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3.6.1 Grid Points to Eye Rays

The PGM algorithm first binds the two target buffers for rendering. These buffers

hold sphere normals and positions in sampling camera space and are both 32-bit

floating point RGB textures. The sampling camera matrix and the inverse of the

sampling projection matrix are uploaded to the GPU. A fullscreen quad is rendered

in order to generate a fragment for each pixel in the target buffers.

The rest of the algorithm takes place in the fragment shader. The first task

is to find the eye ray associated with the current fragment. The current fragment

coordinate, in space of pixels, ranges from (0, 0) in the lower left corner of the screen to

(width, height) in the upper right corner of the screen, where width and height are the

dimensions of the target buffers. It is available in the fragment shader. The fragment

coordinate is transformed into its clip space coordinate, which ranges from [-1, 1] on

all axes and represents everything contained within the frustum. The equations for

this are simple linear transformations.

The inverse of the projection matrix of the sampling camera is then used to

transform the clip space coordinates into sampling camera coordinates. After the

matrix multiplication, a perspective divide is performed, just as would be necessary

if we were to use the projection matrix to transform sampling coordinates into clip

coordinates. Since the origin of sampling coordinates is the eye, the position of the

grid point in sampling coordinates is also a vector from the eye to the grid point. The

position is seen as a vector and is normalized to get the eye ray for the grid point.

3.6.2 Cross Section Coordinate System

The next step is to calculate the local coordinate system that we will use to generate

sphere normal vectors from the normal angle. This calculation begins with calculating

the right vector from the cross product of the eye ray and the nadir, transformed into

sampling camera space by the sampling camera view matrix. The cross product of

the right vector with the nadir produces the up vector of the coordinate system. The

nadir is taken to be the forward vector of the coordinate system.
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We calculate the three basis vectors using the eye ray r̂ and the nadir n̂, both

expressed in eye space. This coordinate system will be used to transform between

coordinates of the cross section to coordinates of the viewing camera.

The three basis vectors of the coordinate system are î, ĵ, and k̂, corresponding

to the x-, y-, and z-axes. The nadir n̂ is taken to be the first basis vector î. Next,

the cross product of î and r̂ produces the right vector ĵ. Finally, the cross product of

ĵ and î produces the up vector k̂. The results of the cross products are normalized

to obtain unit vectors, simplifying later calculations.

3.6.3 Ray Angle

Before calculating the normal angle, we must first calculate the ray angle ω. Working

in the plane of the two-dimensional cross section, we use the dot product and a

trigonometric identity.
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Figure 3.45: The calculation of the ray angle.

Figure 3.45 shows the angle ω between the ray r̂ and the nadir n̂, as well as the

angle α between r̂ and the up vector k̂. Recall that k̂ and r̂ are unit vectors. Then

the equation

r̂ · k̂ = cosα (3.8)

relates r̂ and k̂ to the angle α between them. Using the knowledge that k̂ is perpen-
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dicular to î, we note that

ω =
π

2
− α.

The trigonometric identity cosα = sin(π
2
− α) implies that

cosα = sin(
π

2
− α) = sinω.

Substituting this result into Equation 3.8, we get

r̂ · k̂ = sinω,

allowing us to find

ω = asin(r̂ · k̂). (3.9)

Although the angle ω could be calculated using the dot product between r̂ and

î, the arccosine function in most standard libraries outputs values in the range [0, π].

Our expression uses the arcsine function, which outputs values in the range [−π
2
, π

2
].

This signed range of values is more useful since it includes the angles of all possible

rays that could intersect the circle. In addition, our use of arcsine results in an

important simplification, described next.

3.6.4 Sphere Normal

Next we use Equation 3.3 and the ray angle to find the normal angle at the front

facing intersection point for both reference spheres.

When Equation 3.3 is implemented on the GPU, the ratio c = d/r can be pre-

computed. Additionally, let u = r̂ · k̂ where r̂ is the eye ray and k̂ is the up vector.

Then substituting Equation 3.9 for ω in Equation 3.3 results in

γ1 = asin(c sin(asin(u)))− asin(u),

which reduces to

γ1 = asin(c u)− asin(u). (3.10)
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Avoiding the sine function call improves execution time as well as precision since it

results in less floating point operations.

Next, we calculate a blending factor to use to mix the two results of intersection

with the two reference spheres. A user-defined threshold ζ is chosen to define the

range of rays to use for blending. The threshold ranges from [0, 1] and is a percentage

of the total range of possible eye ray angles from the nadir.

The minimum value for a ray angle is 0, corresponding to the nadir, and the

maximum value for a ray angle is equal to the tangent angle, which can be found

using Equation 3.5. A user-defined constant ζ defines what percentage of the range

of positive ray angles to use for interpolation. A value of ζ = 0.9 corresponds to 90%

of the range of positive ray angles. Let b = ζ τ0 be the beginning angle of the range,

where the result of interpolation is entirely from the primary reference sphere. The

blending factor is calculated with the following equation:

f = (ω − τ0)/(b− τ0) (3.11)

where ω is the ray angle.

For example, if a given ray angle is 95% of the tangent angle with ζ = 0.9%,

the resulting intersection point is the average of the ray-circle intersection between

the primary and secondary spheres. If a given ray is equal to the tangent angle,

the resulting intersection point will be only the intersection point found using the

secondary reference sphere. A factor of zero corresponds to using only the primary

reference sphere intersection, and a factor of one corresponds to using only the sec-

ondary reference sphere intersection.

With the blending factor, we calculate the ray used to intersect the secondary

reference sphere. The factor is used to mix between the beginning ray angle and the

angle of ray tangent to the secondary reference sphere. With the new ray angle, a ray

vector is calculated. The dot product between the new ray and the up vector in the

local coordinate system is taken. With this information, we can calculate the normal

angle with the new ray and the secondary reference sphere.
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To get the final normal angle, we use the blend factor again to mix between

the normal angle from the primary reference sphere and the normal angle from the

secondary reference sphere. The normal angle γ along with the up vector k̂ and the

antinadir â allow us to calculate the sphere normal ŝ.

The expression cos γ represents the horizontal component of the sphere normal

with respect to the antinadir, while sin γ represents the vertical component. There-

fore, calculation of the sphere normal is accomplished using sine and cosine in a linear

combination of the vectors:

ŝ = â cos γ + k̂ sin γ (3.12)

If â and k̂ are vectors in eye space, the resulting vector ŝ will also be a vector in eye

space.

3.6.5 Position

Next, we generate the position of intersection from the normal. To maintain precision,

the position is generated in sampling camera space as opposed to world space. World

space positions suffer from floating point imprecision issues since the origin of the

world frame is the center of the planet. Our method of generating positions in sam-

pling camera space uses the law of sines. Consider Figure 3.46. The altitude a, ray r̂,

ray angle ω, and normal angle γ are known. Although there are two reference spheres,
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Figure 3.46: The intersection position in eye space.
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the altitude a is the viewer’s distance from the primary reference sphere. This does

not make a difference for grid points that are a result of interpolating intersection

results of the two reference spheres since the normal angle γ describes a position on

the planet independent of either reference sphere. The angle χ is calculated from the

angle γ using

π = 2χ+ γ

χ =
π

2
− γ

2

when we observe that any triangle formed from an arc is an isosceles triangle. The

angle ρ is then

ρ = π − χ

ρ = π − (
π

2
− γ

2
)

ρ =
π

2
+
γ

2

With the angle ρ, we can now calculate the distance t to the intersection point using

the law of sines.

a

sinχ
=

t

sin ρ

t = a
sin ρ

sinχ

The distance t and the eye ray vector r̂ are then used to calculate the position in

sampling camera space.

P = t r̂

The sampling camera space vertex positions that result from this calculation are

demonstrated in Figure 3.47. In the left image, the 16×16 projected mesh is rendered

from the perspective of the viewer and without height displacement. The viewer is

looking at the center of the planet. In the right image, the same mesh is shown in

wireframe. A consequence of sampling camera space positions is that, when looking

directly at the center of the planet, the grid is aligned with the screen.
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Figure 3.47: The vertex positions in sampling camera space.

Figure 3.48: A 16× 16 projected grid.
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Figure 3.48 shows the result of the PGM step within the visualization. The

projected mesh is rendered along with the sampling camera, marked in red. The

top image shows the mesh with fully textured polygons, while the bottom image

shows the mesh in wireframe. Note that the size of the polygons gradually increases

as the distance from the viewpoint increases, which corresponds to a gradual LOD

transition. Also, the projected mesh is curved on its sides due to the interpolation of

intersection results from the primary and secondary reference spheres.

3.7 Deferred Texturing

Deferred texturing comprises the last four steps of the algorithm, and its purpose is

to composite data over the geographic area of the projected grid. We implement the

deferred texturing algorithm given by Kooima [33] with a few differences, described

in this section. A figure accompanies each step, demonstrating the step’s visual

results. Figure 3.49 illustrates the end result. The left image shows the terrain with

atmosphere and lighting. The camera is pointed up and right from the center, as

demonstrated in the right image, which shows the sampling camera rotated slightly

clockwise to match the viewing camera’s direction.

The output of PGM consists of two buffers: the sphere normals and the positions,

as shown in Figure 3.50. The sphere normals in the left image and the positions in

the right image are scaled to the range [0, 1] in order to be displayed as colors. The

sphere normals buffer contains the sphere normal at each grid point, and the positions

buffer contains the position of each grid point. In these buffers, the sphere normals

and positions are represented with respect to sampling camera space.

The sphere normals are used to sample height and color maps because each sphere

normal corresponds to a position in geographic coordinates. The positions are used

for rasterizing the projective grid as a mesh.

These buffers have the same dimensions as the projective grid since there is a

one-to-one relationship between grid points, sphere normals, and positions. Also,

note that the dimensions of the projective grid are not necessarily the same as the
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Figure 3.49: The goal of deferred texturing.

Figure 3.50: The sphere normal and position buffers from the PGM step.

dimensions of the screen, an observation necessary for a later optimization. Finally,

observe that the shape of the planet in Figure 3.49 does not match the shape of the

planet in Figure 3.50. This is because the buffers from PGM match the sampling

camera, not the viewing camera. In addition, the planet appears elongated in the
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PGM buffers since the sampling frustum has a rectangular base, as opposed to the

viewing frustum which has a square base.

3.7.1 Height Composition

The goal of height composition is to iterate over all the height maps and combine

the height values for each grid point. The accumulated height values are stored in a

buffer of 32-bit floating points that has the same dimensions as the projective grid.

On the CPU, one composition pass occurs for each height map. During a pass, the

current height map is bound for reading on the GPU. Next, the constants used for

the projection equations are uploaded to the GPU. The projection equations and the

calculation of these constants are described in Section 4.1.

Every composition pass needs to read from and write to the accumulation buffer;

on the GPU, the current accumulation value is mixed with the value from the current

height map and written back to the accumulation buffer. Because a texture cannot

be read from and written to at the same time, a technique called ping ponging must

be used. In this approach, two buffers are used instead of one. The buffers alternate

between being the input buffer and the output buffer. Before each pass, the buffers

swap roles, and the output buffer from the last step becomes the input buffer for the

next step, while the input buffer from the last step becomes the output buffer for the

next step.

After the accumulation buffers switch roles, a full screen quad is rendered in

order to trigger a fragment for each grid point. The rest of the algorithm takes place

on the GPU.

Each fragment corresponds to a grid point. The first step for the fragment shader

is to convert the grid point’s sphere normal to geographic coordinates so that the

currently bound height map can be sampled. Given a sphere normal n̂, the equations
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for geographic coordinates are

λ = atan2(n̂x, n̂z),

φ = asin n̂y.

The standard implementation of atan2 results in a longitude λ in the range [−π, π].

Because the projection equations require [0, 2π] for longitude, we add π to shift the

range of λ. The latitude φ is in the range [−π
2
, π

2
] as a result of the equation, and this

is the range required for the projection equations. A sphere normal equal to the zero

vector represents an eye ray that missed the planet. In this case, the value from the

input buffer is copied to the output buffer, and the fragment shader ends execution.

Note that PGM outputs the sphere normal in sampling camera space; before being

converted to geographic coordinates, the sphere normal must be transformed into

world space.

Next, the geographic coordinates are converted to texture coordinates using the

projection equations appropriate for the current map. If the position described by

the geographic coordinates lies within the geographic area of the current map, the

resulting texture coordinates are in the range [0, 1]. Alternatively, if the position does

not lie within the geographic area of the height map, then it should not be sampled.

In this case, the shader ends execution similarly to when the sphere normal is equal

to the zero vector.

If the position lies within the geographic area of the height map, the height map

is sampled. A minimum and maximum height value are defined for each height map;

if the sampled value is outside the range of values for the current height map, the

shader ends execution. Height data comes in a variety of data types and units, so we

choose to convert ahead of time all height maps to 32-bit floating point values. For

the purpose of our visualization of Mars, the units are in meters relative to Mars’s

average equatorial radius of 3, 396, 000 m, since this is the convention that the MOLA

dataset uses [43].

Next, the sampled height value is combined with the input height value depending
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on the composition operation specified for the current height map. We define three

operations: average, replace, and add. The average operation is used for most data,

especially in the case of overlapping height and color maps. The replace operation

is used for the first composition pass in order to initialize the output accumulation

buffer, which will be used as input in the next pass. Finally, the add operation is

used for the areoid (or geoid in the case of Earth). The global topographic heights

provided by the MOLA dataset are measured as offsets from the areoid height at their

geographic locations. When the areoid height map, also provided by MOLA, is added

to the topographic heights, the correct planetary shape is obtained. In contrast to our

simple composition operations, Kooima [33] uses a sophisticated weighting function

based on the map projection.

The output buffer for the last pass is used as the accumulated heights buffer.

This buffer is shown in Figure 3.51, with the height values scaled to the range [0, 1]

for display as colors. Note that features such as mountains and canyons are rotated

counterclockwise in relation to their appearance in the final image, shown in Fig-

ure 3.49. This is again a result of the sampling camera being rotated clockwise to fit

the horizon in the direction of the viewing camera.

3.7.2 Rasterization

The sphere normals buffer, positions buffers, and accumulated heights buffer describe

the final terrain mesh. At this point, we could proceed to composite colors and nor-

mals into buffers with the same dimensions as the previous three buffers; however,

in order to decouple the performance of PGM from the performance of deferred tex-

turing, we rasterize the grid-sized buffers into screen-sized buffers, an optimization

described by Kooima [33]. This optimization accomplishes performance throttling by

allowing grid size to differ from screen size. In addition, if parts of the projective grid

lie outside of the screen or the projective grid is larger than the screen, this decoupling

leads to a definite speed improvement since there are ultimately fewer fragments to

process working with screen-sized buffers than with grid-sized buffers.
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Figure 3.51: The accumulated heights buffer displayed as a red color channel.
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In order to use the three buffers as geometry, we render a triangle strip where

each vertex corresponds to a grid point in the projective grid, or alternatively, a texel

in one of the three buffers. Each vertex in the triangle strip has an (x, y) position

equal to the corresponding grid point’s texel coordinates within the three buffers.

The vertex shader reads the position of the incoming vertex and determines which

texel to read from each of the three buffers. The resulting sphere normal, position, and

height value are used to determine the vertex’s final position. The position is displaced

along the sphere normal scaled by the height value. Before the height value can be

used, it must be converted to units of the visualization. As noted in the previous

section, this height value is in units of meters relative to the average equatorial radius

3, 396, 000 m. We convert this value to kilometers and apply an optional scaling

value. In addition, another offset must be accounted for. The position of the grid

point is calculated as the intersection of an eye ray and the primary reference sphere

(Section 3.6.5), and therefore the position’s distance from the center of the planet

is the primary reference sphere’s radius. However, the accumulated height value (in

kilometers) is relative to the average equatorial radius 3, 396 km, not the primary

reference sphere’s radius. Unless the primary reference sphere’s radius is equal to

3, 396 km, we must account for the difference between these radii. Given the input

height value h, the scaling value s, and primary reference sphere radius r, the offset

to use for calculating the final position is

o = h× (
1 km

1000 m
)× s+ (3396 km− r).

Using the sphere normal n̂, position P , and offset o, the equation for the final position

of the vertex is then

V = P + o× n̂.

Because both the sphere normal and the position are in sampling camera space, the

final position is a point in sampling camera space.

Next, the vertex shader outputs the sphere normal, final position, and height

value. These three values are interpolated and sent by the fragment shader to the
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appropriate output buffer for rasterization. The sphere normal is transformed to

world space since it is no longer needed in sampling camera space. The final position

is transformed to eye space, since this is required later for the lighting equations. The

height value is rasterized in order to perform minimum mipmapping (Section 3.4.1)

for the purpose of finding the primary reference sphere radius to use in the next frame.

The interpolation that occurs in the rasterization step is the motivation for using

the sphere normal to sample the datasets in the height and color composition steps, as

opposed to having the PGM step output a geographic coordinates buffer. Although

using a geographic coordinates buffer would save having to convert the sphere normal

multiple times, the interpolation of geographic coordinates leads to errors across the

prime meridian where longitude goes from 359◦ to 0◦.

This situation is demonstrated in Figure 3.52. In the left image, longitude is

rendered for each terrain point, where green corresponds to 0◦ longitude and yellow

corresponds to 360◦ longitude. In the right image, the terrain is textured according to

these longitude values. The correct result would be that interpolated longitude values

instantaneously change to 0◦ as soon as 360◦ is exceeded. However, because triangles

lie across the prime meridian, one vertex is close to 360◦ and another vertex is close

to 0◦, and interpolating between these two values leads to a longitude transition from

360◦ through 180◦ and downward to 0◦.

Figure 3.52: Incorrect interpolation of longitude across the prime meridian.
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This problem is solved by interpolating sphere normals across the prime merid-

ian. Because sphere normals are three dimensional, there is no sudden transition as

in longitude. The next step, color composition, can then convert the sphere normals

to geographic coordinates and correctly sample the datasets. Note that it is possi-

ble to use a grid-sized geographic coordinates buffer generated during PGM and a

screen-sized geographic coordinates buffer generated in the fragment shader during

rasterization. This would save having to recompute geographic coordinates from the

sphere normal. However, this incurs an additional memory cost on the GPU.

The output sphere normal and position buffers are shown in Figure 3.53. Due to

rasterization, the shape of the planet is apparent in these buffers; note the mountain

on the horizon in the upper left corner and the slight depression of the canyon on

the right side. The silhouette of the planet now matches that of the final image in

Figure 3.49 since these buffers are in screen space and show the planet relative to the

viewing camera.

Figure 3.53: The screen-sized sphere normal and position buffers.
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3.7.3 Color Composition

Color composition is similar to height composition. Because colors and surface nor-

mals use three components, the same CPU and GPU code can be used for each of

these types of data, and we perform the composition for colors and surface normals

together. The normal maps composited in this step are generated from the height

maps beforehand (Section 4.2). The accumulated color and surface normal buffers

are shown in Figure 3.54.

3.7.4 Atmosphere and Lighting

The final step is to render the outer atmosphere and combine the accumulated color

and surface normal buffers using standard Phong lighting equations with atmospheric

effects. The shaders for rendering the outer atmosphere and adding atmospheric

effects to the terrain are given by Sean O’ Neil [51]. Figure 3.55 shows the result of

this step.
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Figure 3.54: The accumulated color and surface normal buffers.

Figure 3.55: The terrain with atmosphere and lighting applied.
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Chapter 4

Data Processing

In order for deferred texturing to work, a number of operations on the data must occur

before and during the simulation. In this chapter, we cover three such operations.

First, during the height and color composition steps, geographic coordinates must

be converted to texture coordinates using projection equations on the GPU. Second,

the atmosphere and lighting step requires surface normals generated from the original

height maps. Finally, after the terrain has been rendered, other objects may need to

be rendered along with the terrain at near and far distances. The scale of the planet

prevents the use of a single depth buffer; therefore, a method must be devised to

correctly occlude objects with the terrain.

4.1 GPU Map Projections

The map projection equations are required for the height composition step and the

color composition step, both of which occur on the GPU using the fragment shader.

In addition, the map projection equations given by Eliason [18] involve multiplica-

tion by either the equatorial radius or the polar radius. This is unsuitable for the

GPU since planetary radii are large numbers and floating point precision is limited.

Moreover, no equations are given by Eliason to obtain texture coordinates since this

is a specific need of graphics applications. Therefore, we reformulate the map projec-

tion equations given for implementation on the GPU. First, we describe the various

coordinate systems and transformations that are required to go from geographic co-
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ordinates to texture coordinates. Next, we describe how these transformations are

calculated from the Planetary Data System (PDS) label information (described in

Section 2.4.3) for each dataset and how the transformations are implemented on the

GPU. Methods for both the equirectangular projection and the polar stereographic

projection are given.

4.1.1 Coordinate Systems

In either of the composition steps, the input texture is queried for each projected grid

point’s geographic location. This location is encoded as a pair of geographic coordi-

nates (λ, φ) corresponding to longitude and latitude. In order to read the texture,

these coordinates must be converted to texture coordinates. There are four coor-

dinate systems involved in this transformation: geographic coordinates, projection

coordinates, map coordinates, and texture coordinates.

Figure 4.1: Geographic coordinates encode positions on the sphere.

The origin of geographic coordinates exists at the intersection of the equator and

the prime meridian, as shown in Figure 4.1. The red axis represents longitude and

the green axis represents latitude. Longitude values are in the range [0◦, 360◦] and

latitude values are in the range [−90◦, 90◦]. The output of PGM is a sphere normal

for each grid point; during either composition step, the sphere normal is converted
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to geographic coordinates, and the longitude and latitude values are ensured to be

within these ranges.

The geographic coordinates for a grid point must be transformed into the pro-

jection of the texture to be queried. This new coordinate system is called projection

coordinates. The transformation from geographic coordinates (λ, φ) to projection

coordinates (p, q) depends on the type of map projection used to create the texture.

The origin of projection coordinates, called the center of projection, is indepen-

dent of the geographic extent of the texture. Instead, the origin depends on the map

projection used and is usually chosen to be at the equator, the north pole, or the south

pole depending on the map projection. Figure 4.2 shows a possible center of projec-

tion for the equirectangular projection. The red axis represents the x-coordinate and

the green axis represents the y-coordinate.

Figure 4.2: The center of projection for an equirectangular projection.

Projection coordinates are converted to map coordinates (x, y) based on the

position of the center of projection relative to the origin of map coordinates. Map

coordinates originate in the upper left corner of the image, as shown in Figure 4.3.

The scale of map coordinates is the same as that of projection coordinates; only

the origin differs. The concept of map coordinates is useful for obtaining texture

coordinates.

The range of texture coordinates is [0, 1] in both dimensions. Let the point D be

the lower right corner of the image in map coordinates, which represents the width



102

Figure 4.3: Map coordinates originate in the image’s upper left corner.

and height of the image since the origin is the upper left corner. Any point in map

coordinates can be converted to texture coordinates by dividing by the components

of D.

The origin of texture coordinates is commonly chosen to be the lower left corner

of the texture. In this case, the horizontal component of texture coordinates remains

the same as that of map coordinates, but the vertical component is reversed, as

shown in Figure 4.4. To remedy this, the vertical component needs to be subtracted

from one before being used as a texture coordinate. However, if the origin of texture

coordinates is chosen to be the upper left corner of the texture, the texture coordinates

can be used directly after conversion from map coordinates.

Figure 4.4: Texture coordinates typically originate in the lower left corner.
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We will now describe the process of converting from geographic coordinates to

texture coordinates for both the equirectangular projection and the polar stereo-

graphic projection, including the equations implemented on the GPU and the con-

stants in these equations that need to be uploaded to the GPU.

4.1.2 Equirectangular Projection

The transformation from geographic coordinates to projection coordinates is accom-

plished using the forward mapping equations. The forward mapping equations for

the equirectangular projection, given by Eliason [18], are

p = R (λ− λ0) cosφ0,

q = Rφ,

where λ is longitude, φ is latitude, λ0 is the longitude of the center of projection, φ0 is

the latitude of the center of projection, and R is the radius at the center of projection.

We simplify these equations by removing the multiplication by R. Although this

changes the scale of projection coordinates, it does not affect the geographic area

that can be represented. This simplification removes the need to multiply by a large

number on the GPU, improving precision.

The center of projection (λ0, φ0) for an image with a PDS label can be obtained

from the center latitude and center longitude fields for λ0 and φ0, respectively. We

convert these values from degrees to radians for use on the GPU, where the trigono-

metric functions operate with angles in radians.

The transformation from projection coordinates to map coordinates is accom-

plished using the equations

x = p+ Cx,

y = −q + Cy,

where (Cx, Cy) is the center of projection in map coordinates. The vertical component

is negated since the vertical axis of map coordinates points in the opposite direction

of the vertical axis of projection coordinates.
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The point (Cx, Cy) is obtained from the sample projection offset, line projection

offset, and map resolution fields of the PDS label. The sample projection offset S

and the line projection offset L represent the center of projection in pixel coordinates

(i, j) of the image. The PDS convention is that (0.5, 0.5) represents the upper left

corner of the upper left pixel, however in computer graphics (0, 0) is commonly used.

Although it is given in pixel coordinates, the center of projection is not necessarily a

position within the image. The map resolution is the scale of the map at the center

of projection and is given in units of pixels/degree; however, we convert to units

of pixels/radian. The scaling value M is the inverse of the map resolution, which

is in units of radians/pixel. This allows the conversion of pixel coordinates to map

coordinates by multiplying by M . The equations for Cx and Cy are then

Cx = (S − 0.5) ∗M,

Cy = (L− 0.5) ∗M.

The sample and line projection offsets are subtracted by 0.5 so that the position of

the upper left corner of the upper left pixel is (0, 0).

The transformation from map coordinates to texture coordinates requires the

location of the lower right corner in map coordinates (Mx,My), which will be used

to scale the input map coordinates to the range [0, 1] for texture coordinates. This

point is obtained using the width W and height H of the texture in pixels, which is

available in the PDS label. We multiply these dimensions by the scaling value M ,

which is similar to how the center of projection was converted to map coordinates.

This is demonstrated in the equations

Mx = W ∗M,

My = H ∗M.

On the GPU, we convert map coordinates (x, y) to texture coordinates (s, t) using
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the equations

s = x/Mx,

t = y/My.

For efficiency, the inverses of Mx and My are calculated on the CPU and uploaded to

the GPU.

4.1.3 Polar Stereographic Projection

We modified the forward mapping equations for the polar stereographic projection

from Eliason [18] to allow the center latitude (either 90◦ for the north pole or −90◦

for the south pole) to affect whether the equations produce projection coordinates for

a south or north polar stereographic projection. The forward mapping equations are

p = c sin(λ− λ0),

q = −c s cos(λ− λ0),

where s = sin(φ0) is the scaling value equal to −1 for the south pole or 1 for the

north pole and c is a factor similar to both equations and calculated using

c = 2 tan(
π

4
− sφ

2
).

Note that the scaling value s is used in the calculation of c. As in the equirectangular

projection, we omit the multiplication by the polar radius, which is usually present

in polar stereographic projection equations. Without this multiplication, the range

of projection coordinates is essentially the unit circle, where c determines the dis-

tance from the center of projection and the sine and cosine components represent the

rotation from the line longitude 0◦, the prime meridian.

The coordinate system of projection coordinates relative to the image is shown in

Figure 4.5. In this example, topographical data from MOLA [43] for Mars’ north pole

is used. The center of projection in this case is the center of the image. Longitude

0◦ extends downward from the center, and longitude 90◦ extends to the right. For
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Figure 4.5: The coordinate system of a north polar stereographic projection.

a south polar stereographic projection, longitude 0◦ extends from the center toward

the top of the image and longitude 90◦ extends to the right.

The transformation to map coordinates is similar to the equirectangular projec-

tion, except a different scale value M is used to calculate the center of projection

(Cx, Cy) in map coordinates. The map scale field of the PDS label is used instead of

the map resolution field. The map scale field is similar to the map resolution field

except that it encodes the scale of the map in units of kilometers per pixel. The scale

value M is calculated as C/R, where C is the value of the map scale field and R is

the polar radius. The center of projection is then calculated as before, and projection

coordinates are transformed into map coordinates using the same equations as before.

The transformation to texture coordinates is similar to the equirectangular pro-

jection except that the calculation of the lower right corner (Mx,My) in map coordi-

nates uses the special scale factor described previously.
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4.2 Normal Map Generation

Accurate lighting requires surface normals. Although surface normals could be cal-

culated at runtime from the projected and displaced mesh, the PGM-generated mesh

tends to vary slightly as the camera moves. Instead, we precompute surface normals

from each of the input height maps in a separate preprocessing step. This program

uses the fragment shader to quickly build the normal map and then writes the normal

map to an image file. The normal map has the same dimensions as the height map

used to create it. In this section, we will describe the process used for calculating

normals for both projections.

4.2.1 Normals from Equirectangular Data

To encode normals in the normal map, we use the standard coordinate system for

tangent space where is x is longitude, y is latitude, and z is up. This coordinate system

is the same used for the equirectangular projection, shown previously in Figure 4.2.

To calculate the surface normal for a pixel (i, j), we use a method similar to

Angel [1, 492-495]. The normal is based on the surface defined by the neighboring

four height values of (i, j). Specifically, the normal is calculated from the cross product

of two vectors. The first vector is the tangent and goes from the left texel (i − 1, j)

to the right texel (i + 1, j). The second vector is the bitangent and it goes from the

bottom texel (i, j − 1) to the top texel (i, j + 1). We take the cross product of the

tangent and the bitangent and normalize the result to obtain the normal for pixel

(i, j).

4.2.2 Normals from Polar Stereographic Data

The tangent coordinate system matches the equirectangular projection in that the

tangent basis vector points in the direction of positive longitude and the bitangent

basis vector points in the direction of positive latitude, that is, toward the north

pole. However, in the polar stereographic projection, the top of the image no longer
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corresponds to the north pole. Instead, the center of projection may be located

anywhere, although commonly it is in the center of the image as in Figure 4.5.

In the case of the polar stereographic projection, all calculated normals need to be

rotated into the same tangent coordinate system as that used for the equirectangular

projection. Although this could be performed on the GPU at runtime, it is more

efficient to do this rotation directly after the normal is computed and store the rotated

normal inside of the normal map.

The normal is calculated using the same method used for the equirectangular

projection. Next, a set of three basis vectors representing the tangent coordinate

system at the pixel (i, j) is constructed. First, the bitangent, the basis vector cor-

responding to the y direction in an equirectangular projected image, is calculated as

the vector pointing from the pixel (i, j) towards the center of projection. The center

of projection is obtained from the PDS label as before. The tangent basis vector,

corresponding to the x direction, is calculated as the cross product of the bitangent

and the up vector (0, 0, 1), which corresponds to the sphere normal at pixel (i, j).

The tangent, bitangent, and up vector are placed into a rotation matrix. The com-

puted normal is post multiplied with the rotation matrix to rotate it into the tangent

coordinate system used by the equirectangular projected normal maps.

Figure 4.6 demonstrates the tangent coordinate system for four points in a polar

stereographic projection. The up basis vector is not shown since it points directly out

of the figure. The center of projection is in the center of the image, and it corresponds

to the north pole. Notice that for each point, the bitangent, marked in green, points

towards the north pole as it would in the equirectangular projection, demonstrated

previously in Figure 4.5.

4.3 Scene Composition

A typical obstacle in rendering a planet to scale is the limited precision of the depth

buffer, which is used for occlusion testing. When terrain is rendered at both a close

distance (e.g. 1 meter) and a far distance (e.g. 10, 000 kilometers), the 24- or 32-bit
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Figure 4.6: The tangent coordinate system in a polar stereographic projection.

floating point values used to store the depth of each fragment are insufficient for

accurate occlusion testing, leading to a flickering artifact known as z-fighting.

To solve this problem, we use a multipass approach similar to Brandstetter [3].

The terrain is rendered twice with two different frusta: the near frustum and the far

frustum. First, the close regions of the terrain are rendered by setting the current

frustum to the near frustum, which has a near plane distance on the order of 1

centimeter and a far plane distance on the order of 1 kilometer. Second, the distant

regions of the terrain are rendered by setting the current frustum to the far frustum,

which has a near plane distance on the order of 1 kilometer and a far plane distance

on the order of 10, 000 kilometers. Depth values are written to a unique depth buffer

for each pass.

Although this method solves the problem, it presents a challenge with respect to

rendering other objects along with the terrain. An object falls within either the near
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frustum or the far frustum, and it should be occluded correctly with the terrain in

either region.

We present a method of rendering other objects after the terrain that uses both

depth and stencil buffers to correctly determine which fragments of the other objects

are occluded by the terrain at both near and far distances. During the rasterization

step, information for the near terrain and far terrain is written into depth and stencil

buffers. After the atmosphere and lighting step, the framebuffer contains the final

image of the terrain, and other objects are rendered over the terrain with proper

occlusion testing by using the depth and stencil buffers.

4.3.1 Rasterization

We now describe how the depth and stencil buffers are written for each pass of the

rasterization step. The terrain is first rendered with the near frustum, near depth

buffer, and near stencil buffer enabled. Whenever a fragment is written, a value of

1 is written to the stencil buffer in order to mark the fragment as falling within the

near region of the terrain. The depth buffer is written as normal. At the end of this

pass, the near stencil buffer marks all of the fragments that were written.

Before the terrain is rendered with the far frustum, the near stencil buffer is

copied to the far stencil buffer. During rasterization of the terrain using the far

frustum, the stencil test is set to pass for any fragment that does not have a value of

1 inside the far stencil buffer. At the end of rasterization, the far stencil buffer marks

all the fragments that the second pass affected.

4.3.2 Secondary Objects

Using the near and far stencil buffers, an object can be rendered along with the

terrain in either the range of the near frustum or the range of the far frustum by

using the appropriate depth and stencil buffers. When an object in the range of the

near frustum is to be rendered, the current frustum is set to the near frustum, and

the near depth buffer is copied to the default framebuffer’s depth and stencil buffers.
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The object is then rendered as normal.

When an object in the range of the far frustum is to be rendered, the current

frustum is set to the far frustum, and the far depth buffer and the far stencil buffer

are copied to the default framebuffer’s depth and stencil buffers. The stencil test is

set to pass whenever the destination fragment is not marked by the stencil buffer as

having near data written to it. If the object attempts to overwrite a pixel that the

far stencil buffer marks as containing fragments written during the near pass, the

fragment is discarded.

Distant objects that will always be occluded by the planet, such as stars, can be

safely rendered before the terrain. The algorithm will not modify any pixels that the

planet does not cover.
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Chapter 5

Implementation

This chapter describes the implementation of our algorithm as the Hesperian library.

We explain the motivation behind this library’s software architecture, including the

functional and non-functional requirements, and discuss the salient features of the

exposed classes.

5.1 Requirements

Mars is the planetary body to be visualized using our algorithm. To allow visual-

ization on multiple platforms and display environments, a number of requirements

are addressed. The core terrain rendering algorithm is implemented as a library so

that it can be reused in each application developed for a particular display envi-

ronment. In addition, the library is implemented using cross-platform APIs, such

as OpenGL, to facilitate porting to different platforms. Other APIs used include

GDAL, which is useful for loading map projected images, and FreeImage [20], which

is useful for loading a variety of color data formats. Both GDAL and FreeImage are

cross-platform and thread safe. Also, the library is thread safe and rendering context

safe. Thread safety can be ensured by using mutexes and other functionality pro-

vided by the pthread API. Rendering context safety means creating and managing

rendering-context-specific data for each rendering context involved in the visualiza-

tion. A rendering context is the set of all OpenGL state and data, including texture

objects and vertex buffer objects allocated to the context via the OpenGL API. Mul-
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tiple rendering contexts are a major requirement for virtual reality simulations where

multiple screens and multiple eyes for each screen are involved.

Although Mars is the focus of the visualization, the library allows different plan-

etary bodies to be rendered. Therefore, the library accepts a standard data format

for height, color, and normal data. The planetary radius differs for each body, so

the library accepts the reference radius for height data, as well as the minimum and

maximum possible height values relative to the reference radius.

Because the goal is to model real planetary bodies, the library is able to use

data released by NASA. Among many other types of planetary data, NASA provides

height and color data along with an informative PDS label. This label contains

important information about a dataset; the library is able to use the label information

to correctly render this image. In addition, the library can combine overlapping

datasets using our algorithm, since there could be many datasets for a particular

planet and these datasets likely overlap.

The user of the library is the application, so the library provides a simple and

direct interface for initializing and rendering the planet. The output screen resolution

is modifiable to allow for different displays and window sizes. In addition, the capa-

bility of each display varies, so the dimensions of the projective grid is also modifiable

to allow for performance adjustment.

As the visualization is running, the viewing camera’s position and orientation

will change. In addition, the viewing camera’s frustum will vary based on the display

environment. To simplify the usage of the library with respect to the variability of

the viewing camera, the library infers camera attributes from the current OpenGL

state instead of having the user explicitly state the viewing attributes. Therefore,

the library reads the current modelview and projection matrices when rendering and

update its camera information if necessary. The user may need to enable and disable

datasets for rendering. To obviate the need for the visualization to be restarted,

the library is able to enable and disable datasets at runtime. In addition, the display

environment has a limited amount of memory, so the library loads and unload datasets
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as they are enabled or disabled. Because many datasets are involved, the user may

also want to disable entire groups of datasets; the library provides this functionality.

Finally, it is useful to scale the height values with respect to their real-world values

in order to see subtle height variations. Therefore, the library allows a height scaling

value to be set during the visualization.

These functional and nonfunctional requirements are summarized in Table 5.1

and Table 5.2, respectively.

F01 The library will read a standard data format for height data.
F02 The library will read standard data formats for color and normal data.
F03 The library will accept a reference radius for height data.
F04 The library will accept a minimum and a maximum height offset.
F05 The library will display data in the correct geographic area.
F06 The library will composite overlapping datasets of the same type.
F07 The library will allow the output screen size to be changed.
F08 The library will allow the projective grid size to be changed.
F09 The library will read viewing camera information directly from OpenGL.
F10 The library will allow datasets to be enabled or disabled for rendering.
F11 The library will allow groups of datasets to be enabled or disabled.
F12 The library will load data from the GPU when it is enabled.
F13 The library will unload data from the GPU when it is disabled.
F14 The library will accept a height scaling value.

Table 5.1: Functional requirements.

N01 The terrain renderer will be implemented as a library.
N06 The library will be implemented using C++.
N02 The library will be thread safe.
N03 The library will be rendering context safe.
N04 The library will use OpenGL.
N05 The library will use GLSL.
N06 The library will use GDAL for loading height data.
N07 The library will use FreeImage for loading color data.

Table 5.2: Nonfunctional requirements.
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5.2 Use Cases

The use cases are shown in Figure 5.1. Before the visualization can take place,

the library must be informed about each dataset to be used in the visualization.

Therefore, the user is able to specify information about each dataset, including the

file path, PDS label information, and texture settings. When all the datasets have

been specified, the user then initializes the terrain, an operation that should happen

once for the entire visualization. Next, the user initializes the graphical information

for each rendering context.

Figure 5.1: The use cases for the library.

During execution of the program, the user specifies when the terrain should be

rendered during the frame. In addition, during the update step the user can toggle a

raster or a group of rasters for rendering, which either enables or disables the rasters

based on their current state. Also, the user may change the height scaling value

during the update step.
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5.3 Classes

In order to fulfill the requirements while maintaining usability and readability of

code, the library requires the application programmer to interact with as few classes

as possible. This section describes the external classes, which are meant to be used

directly, and the internal classes, which divide the tasks required to render the terrain

to improve cohesion.

5.3.1 External Classes

The external classes and their relationships are illustrated in Figure 5.2. The Ter-

rain class serves as the primary interface between the user and the library. The

initialization of Terrain is divided into two steps: initialization and rendering context

initialization. The former must occur once for the entire execution of the simulation,

and the latter must occur once for each rendering context involved. The initializa-

tion step requires the user to specify information about each dataset to be rendered.

The user accomplishes this by requesting from Terrain a reference to an uninitial-

ized HeightRaster or ColorRaster object. The Terrain class creates this object and

returns the reference, and then the user uses the reference to modify the object with

information about the dataset.

Figure 5.2: The classes with which the user interfaces.

The rendering context initialization step requires the user to make each rendering

context current and call the rendering context initialization method, which signals to

the terrain to create rendering-context-specific data, such as texture objects, for the

currently active rendering context. In order to render the terrain, the user must set
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the current modelview matrix with the viewing camera’s position and orientation.

Then, the user must call render function of the Terrain class.

During the update step, the user can change a number of options about how the

terrain is rendered. The user can change the height scaling value, which changes the

relative heights of the terrain, in addition to disabling height displacement entirely.

The user also has access to debug options through the Terrain class, such as enabling

wireframe mode and disabling the mesh update step.

The Label structure holds PDS label information for a particular dataset. After

obtaining a reference to a Raster object from Terrain, the user populates an instance

of the Label structure with fields from the dataset’s PDS label. This allows the appli-

cation program to implement its own parser for the PDS label file, modify the PDS

label (e.g. to scale the dataset at runtime), or supply different PDS label information

as needed.

The Raster class provides an abstract interface and reusable class methods for

both height and color datasets. During the initialization step, the user obtains a

reference to an uninitialized Raster object from the Terrain class. When requesting

a Raster, the user specifies whether a HeightRaster or ColorRaster object should be

created. The Raster class allows the user to pass in a Label structure, specify the

file path, and set the texture state to be used for the raster. Besides providing an

abstract interface, the Raster class also contains functionality for the Terrain class

to calculate uniforms required by the map projection equations on the GPU. For

the purpose of enabling and disabling rasters during the visualization, the user can

maintain the references to Raster objects obtained during the initialization step. The

RasterGroup class further improves this functionality by allowing the user to store

in an instance of RasterGroup multiple references to Raster objects. The user may

then use the RasterGroup to enable or disable with a single function call each Raster

object for which the RasterGroup has a reference.



118

5.3.2 Internal Classes

The internal classes perform functions necessary to the operation of the terrain ren-

derer. Although the application programmer does not interact with these classes,

they are important for narrowing the focus of each component of the system, thus

improving cohesion. The relationships among these classes and some of the external

classes are shown in Figure 5.3.

Figure 5.3: The internal classes of the library.

Although there are many graphics utility classes used within the library, the

ContextData class deserves special mention. This class is used by any class that stores

rendering-context-specific data, including Terrain, HeightRaster, and ColorRaster. It

is a template class that allows any datatype to be specified; memory is allocated

for one instance of this datatype for each rendering context. A unique identifier is

assigned to each rendering context, and this identifier is used to get the instance of

the datatype for a particular rendering context. Ideally, the graphics system should

provide this identifier; however, in the case of a desktop application with a single

rendering context, an identifier of zero can be used. Thread safety is ensured by

using locks.
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The Grid class is used to store a vertex buffer and index buffer for use in the

rasterization step. The index buffer specifies a triangle mesh using each vertex in

the grid. During initialization, it creates this grid of vertices, in which each vertex

corresponds to a pixel in the position and sphere normal buffers. The RadiusRaster

class derives the Raster class. It contains a global, low-resolution raster that contains

the planetary radii for each point on the surface of the planet. This raster is not used

for rendering; instead, it is used to efficiently query the height on the CPU.

The ReferenceSphere class and SamplingCamera class are responsible for deter-

mining adequate sampling. The ReferenceSphere class calculates the reference sphere

attributes for both the primary and secondary reference spheres, and the Sampling-

Camera class uses the ReferenceSphere class along with information about the viewing

camera to generate the sampling camera. The SamplingCamera class stores a mod-

elview and projection matrix that represent the position, orientation, and frustum of

the sampling camera.

5.4 Display Environments

Using the Hesperian library along with cross-platform APIs, the Mars visualiza-

tion program was developed for three display environments. The cross-platform and

hardware-independent nature of the APIs, along with the architectural design of Hes-

perian, simplified the implementation of the visualization program for each display

environment.

The first display environment is standard desktop application, as shown in Fig-

ure 5.4. This version uses Qt for window management and user interaction. Naviga-

tion is achieved by using the mouse as a virtual trackball in order to rotate about the

planet.

The other two display environments are virtual reality displays that render 3D

images using stereo projectors. In order to handle the management of multiple display

windows, the Hydra library [30] was used. Hydra is a virtual reality library that

abstracts details about the display environment. It creates the necessary rendering
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Figure 5.4: A screenshot of the desktop version of the application.

contexts for each display and assigns a unique identifier to each rendering context.

The second display environment for which a visualization program was developed is

a single-screen virtual reality display, as shown in Figure 5.5. This display is back

projected using two projectors, one projector for each eye and uses passive stereo. The

third display environment is DRIVE6, an interactive virtual environment (IVE) with

six walls, which fully encloses the user. DRIVE6 is located at the Desert Research

Institute, Reno, Nevada campus. Figure 5.6 shows a user interacting with the Mars

visualization inside this display environment.
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Figure 5.5: A user interacting with the single wall display.

Figure 5.6: An interactive virtual environment with six walls.
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Chapter 6

Results

6.1 Experimental Method

To test the execution time of the algorithm, we used a machine with an Intel Core

i7 processor running at 2.8GHz and 8GB of RAM. In addition, we used an Nvidia

GeForce GTX 480 graphics card with 480 shader cores clocked at 1.4MHz per core,

along with 1536MB of graphics memory.

For these tests, the amount of texture data residing in GPU memory is kept

constant. This is because no data streaming method is included with the algorithm,

and in order to provide a fair performance estimate, we chose a static set of textures

that represents a reasonable amount of terrain data to have on the GPU at one

time. Although the textures do not represent all possible views of the planet to the

highest fidelity, the types of data used reflect a typical usage scenario for the tested

viewpoints.

The first dataset used is a 128.0MB global height map from MOLA [43]. In

addition, a 63.3MB areoid height map, also from MOLA, is added to the global height

map in order to correct for the oblong shape of the planet. An 8.3MB height map

of Victoria Crater is used to demonstrate height composition for a focused region of

the planet. This height map is a digital terrain model generated from HiRISE stereo

image pairs [45]. As noted earlier, all of the height maps are converted to 32-bit

floating point data.

Three color datasets are used. The first two of these datasets are tiles of the
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global MOC dataset [40]. Each tile is 192.0MB and covers 180◦ of longitude in order

to provide color data for the entire planet. In addition, these tiles have been tinted

to provide a photorealistic visualization of the planet. Next, a 28.4MB color map of

the Victoria Crater from HiRISE is used [45]. Finally, a 96.0MB global normal map,

generated from the global MOLA height map, is used for lighting. In total, 708.0MB

of texture data are used for the test. Table 6.1 lists detailed information about all

of the datasets used, including the map scale in kilometers per pixel, which describes

the resolution of the dataset at the center of projection.

Name Scale (km/px) Width (px) Height (px) Size (MB)
MOLA Global 2.606 8192 4096 128.0
MOLA Areoid 3.705 5760 2880 63.3
Victoria Heights 0.001 1279 1694 8.3
MOC Tile 1 1.302 8192 8192 192.0
MOC Tile 2 1.302 8192 8192 192.0
Victoria Colors 0.002 3635 8192 8.3
MOLA Normals 2.606 8192 4096 96.0

Table 6.1: Information about the datasets used for timing the algorithm.

In order to understand the performance of separate parts of the algorithm, we

measure just the PGM step as well as the entire algorithm. Also, we separately

measure the algorithm using each of the methods for determining an approximating

radius; these methods are described in Section 3.4.1. In order to see how the view

affects the efficiency of the algorithm, we use three different views. The first view

(Figure 6.1) encapsulates the entire planet from a distance. The second view (Fig-

ure 6.2) places the camera near the planet and at a steep angle. This view does not

include high-resolution data. The final view (Figure 6.3) is similar to the second view,

except that it includes high-resolution data of Victoria Crater.

Finally, the problem size is varied with respect to two variables: the grid size

and the screen size. Five resolutions of grid size and screen size are used: 256×256,

256×512, 512×512, 512×1024, and 1024×1024. These resolutions were chosen to

demonstrate how the algorithm responds when the number of pixels in the grid or
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Figure 6.1: The first test case is a global view of the planet.

Figure 6.2: The second test case includes low-resolution data.
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Figure 6.3: The third test case includes high-resolution data.

screen is doubled. Resolutions of 640×480, 1024×768, 1280×800, and 1920×1200

were also tested in order to show the algorithm’s performance with standard screen

resolutions. Also, each test case represents the average time in milliseconds over

10,000 frames.

6.2 Results and Analysis

We begin our analysis by observing how the framerate differs between the test cases.

Figure 6.4 graphs the framerate in frames per second (FPS) for all three cases. This

graph shows that all three cases respond similarly to changes in grid size and screen

size. In addition, the graph shows that the second test case runs faster than the first

test case and the third test case runs faster than the second test case. This pattern is

exaggerated as both grid size and screen size approach 1024×1024. The first test case

performs the slowest because it is a global view, and all of the datasets are visible.

The second and third test cases are close to the terrain, meaning that texture lookups

are limited to the same textures and cover a smaller area of each texture. This leads
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Figure 6.4: Total FPS for all three cases.

to more of a performance benefit from the caching of texture reads.

Next we observe the difference between the performance of separate parts of the

algorithm. Table 6.2 shows the execution time in milliseconds of the PGM step for

the first test case. Screen size increases from left to right, and grid size increases

from top to bottom. In comparison, Table 6.3 shows the execution time for the entire

algorithm. These data show that PGM accounts for a small portion of the execution

time. With the grid size and the screen size set to 1024×1024, the PGM execution

time is 17.6 times less than the execution time for the entire algorithm, or 5.6% of

the overall execution time. These observations can be generalized for all three test

cases since they show a similar performance degradation with respect to grid size and

screen size.

The large difference in execution time between the PGM step and deferred tex-

turing means that the most opportunity for optimization lies in deferred texturing.

Our particular implementation of deferred texturing is suboptimal since a composi-

tion pass is performed for each dataset whether it is visible or not. Although the
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fragment shader ends early depending on whether the texture coordinates are out of

bounds, this test alone is not sufficient. Instead, it is better to test for the dataset’s

visibility on the CPU, as Kooima [33] does. In addition, a significant amount of

processing outside of PGM is devoted to building a min mipmap in order to find the

smallest visible height for each frame, as described in Section 3.4.1. Table 6.4 shows

the execution time for only the min mipmapping operation, which primarily depends

on the size of the screen since a screen-sized buffer is used as a starting point. For

a grid size and a screen size of 1024×1024, the min mipmapping operation accounts

for 32.7% of the execution time.

256×256 256×512 512×512 512×1024 1024×1024
256×256 0.16 0.15 0.15 0.16 0.16
256×512 0.18 0.19 0.19 0.19 0.20
512×512 0.23 0.23 0.24 0.23 0.24
512×1024 0.35 0.34 0.34 0.35 0.34
1024×1024 0.55 0.55 0.55 0.56 0.56

Table 6.2: Execution time in ms of the PGM step for the first test case.

256×256 256×512 512×512 512×1024 1024×1024
256×256 5.52 5.97 5.62 6.17 6.75
256×512 6.00 5.70 5.77 6.42 7.05
512×512 5.80 6.19 6.21 6.63 7.45
512×1024 6.78 7.03 7.15 7.55 8.10
1024×1024 8.64 9.01 9.05 9.55 9.85

Table 6.3: Execution time in ms of the entire algorithm for the first test case.

256×256 256×512 512×512 512×1024 1024×1024
256×256 2.96 3.42 3.01 3.46 3.20
256×512 3.43 3.14 3.13 3.69 3.17
512×512 3.23 3.60 3.57 3.66 3.19
512×1024 3.82 3.92 3.80 3.67 3.08
1024×1024 3.78 4.01 3.83 3.85 3.22

Table 6.4: Execution time in ms of min mipmapping for the first test case.
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The PGM step is unaffected by the dimensions of the screen because of the

nature of the PGM algorithm. This observation is shown in Figure 6.5, where the

execution time shows small variations with increasing screen size but large variations

with increasing grid size. However, both the grid size and the screen size affect the

overall performance of the algorithm, as shown in Figure 6.6. This graph shows that

although deferred texturing operates on screen-sized buffers, an increase in grid size

affects the overall execution time of the algorithm more than an increase in screen

size. This is because the rasterization step requires the entire projected grid to be

rendered as a triangle mesh at once, thus testing the triangle throughput of the GPU.

Finally, Table 6.5 shows the performance of the algorithm in FPS for standard

screen resolutions. In each of these cases, the grid size is equal to the screen size. The

algorithm performs reasonably well for these resolutions.

Resolution Test Case 1 Test Case 2 Test Case 3
640×480 154.9 159.4 159.0
1024×768 113.6 120.4 120.7
1280×800 101.2 105.8 106.5
1920×1200 64.5 70.2 72.1

Table 6.5: Performance of the entire algorithm in FPS for all three test cases.
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Figure 6.5: The execution time in ms of the PGM step for the first test case.

Figure 6.6: The execution time in ms of the entire algorithm for the first test case.
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6.3 Visual Results

This section describes the benefits and drawbacks with respect to image quality.

Although a grid size that is equal to or less than the screen size leads to reasonable

framerates, artifacts result from undersampling the terrain in areas of high frequency.

Figure 6.7 displays a close-up of a sharp peak, exaggerated five times in order to

clearly show the effect. For low-frequency areas of the terrain and for terrain without

height scaling, these artifacts are less apparent. This problem can be mitigated by

using a grid size larger than the screen size, but at the cost of more processing time.

Figure 6.7: Artifacts result from undersampling high-frequency terrain.

Figure 6.8 demonstrates height and color maps using the equirectangular projec-

tion. The datasets used show the Victoria Crater and were obtained from HiRISE [45].

The left image shows the crater from above. The right image shows the crater from

inside; note that without correct occlusion testing with the near and far regions of the

terrain, the far regions would be visible in front of the crater wall. Also, Figure 6.9

demonstrates the rendering of a HiRISE dataset that uses a polar stereographic pro-

jection at Mars’s north pole.
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Figure 6.8: Victoria Crater from above and inside the crater.

Figure 6.9: A HiRISE dataset using a polar stereographic projection.
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Finally, Figure 6.10 demonstrates the difference between using a global normal

map and a polar normal map. In the image on the left, a normal map generated from

the global MOLA height data is used. The lighting is blurred around the cliffs and

there is a clear pattern of lines extending in the direction of the pole. In the image

on the right, a normal map generated from the north polar height map is used, which

resolves the lighting artifacts in the first image.

Figure 6.10: Using normals in a polar stereographic projection reduces artifacts.
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Chapter 7

Conclusions and Future Work

The advantage of PGM is that it operates on the GPU, generating the terrain mesh

in GPU memory and removing the need for terrain data to move between the CPU

and the GPU before rendering. With the parallelism of modern GPUs, PGM is a

relatively efficient operation. Although PGM presents the challenge of adequately

sampling the terrain, the use of reference spheres and an appropriately positioned

and oriented sampling camera can accomplish this sampling. The primary difficulty

presented by PGM is the brute-force rasterization of the entire projected grid during

each frame. In addition, the most effective but costly method of determining the

primary reference sphere radius accounts for more than a third of the processing

time. Performance throttling is possible with PGM by changing either the grid size

or the screen size; however, depending on the frequency of the terrain function, a grid

size larger than the screen size may be necessary to mitigate undersampling.

We have applied the PGM technique to planetary rendering. In formulating a

spherical version of PGM, we presented a method for obtaining an adequate sampling

of a spherical reference surface. This includes the reduction of ray-sphere intersection

to the two-dimensional problem of ray-circle intersection, which leads to simple and

direct GPU code to project each grid point onto the reference sphere. Also, we

explained the methods by which reference spheres for ray casting are selected, and

described the algorithm for calculating a sampling camera that generates all of the

necessary eye rays.

In addition to spherical PGM, we gave a method for transforming geographic
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coordinates to texture coordinates for two commonly used map projections. Also,

we provided a technique for handling polar projected normal maps uniformly with

equirectangular projected normal maps. Finally, we described how secondary objects

could be correctly occluded with the terrain, even when using two passes to render

the near and far portions of the terrain.

Based on the analysis of our results, there are three ways in which the perfor-

mance of our algorithm could be improved. First, the entire projected grid is raster-

ized as a triangle mesh every frame; generating a hierarchical triangle mesh based on

the grid points normals and height values may prove beneficial if it can be efficiently

implemented on the GPU. Second, the min mipmapping approach for selecting the

radius of the primary reference sphere is effective but slow since the mipmapping al-

gorithm uses exponentially fewer shader cores as it approaches the lower levels of the

mipmap hierarchy. This approach could be optimized using CUDA [48] to manage

the usage of shader cores and perform the reduction of the last mipmap levels on

the CPU, or an alternative approach for finding the minimum visible height could be

developed. Finally, our implementation of deferred texturing does not organize the

datasets into a spatial data structure; using a structure such as a bounding volume

hierarchy and testing for visibility, entire composition passes could be eliminated.

There is also an opportunity for performance gain by reusing the processing from

previous frames since consecutive frames exhibit coherence in the geographic areas

visualized. This optimization is currently precluded by the generation of ray-sphere

intersections relative to the eye, which we do in order to mitigate floating point

precision issues. Similarly, splitting the work of the algorithm across multiple frames

in a process called amortization would also lead to an improvement in framerate and

give another variable for performance throttling.

Our approach focuses on PGM. However, we do not provide any method for

streaming data from disk to RAM and from RAM to GPU memory. Such a method

would also include mipmapping various levels of the height and color textures used

in the visualization. A drawback of the GPU-focused approach to terrain rendering
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is that the generated mesh cannot be used for tasks other than rendering, such as

collision detection. In order to efficiently perform collision detection on the GPU,

multiple collision checks would have to be batched and processed together on the

GPU. Deformation is another operation that should be implemented on the GPU in

order to avoid transferring the mesh from the GPU to the CPU.

Just as we have extended PGM to use a sphere instead of a plane as the underlying

surface, the algorithm could be further extended to support nonspherical bodies.

This could be accomplished by projecting the grid onto an ellipsoid or collection of

ellipsoids that approximate a nonspherical body. Also, the precision of floating point

numbers remains a problem when it comes to sampling textures since the projection

equations require the use of trigonometric functions. The effect of this problem could

be reduced by using a look-up table or reformulating the projection equations.

Finally, as mentioned earlier, our method of PGM suffers from artifacts due to

undersampling. For the purpose of rigorous application to scientific visualization,

a method for measuring the error of the generated terrain mesh is required. In

addition, the use of an error metric could be used to dynamically adjust the grid size

and distribution of grid points to provide a more accurate sampling of the terrain.
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