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Abstract

The NCS brain simulator is a tool that allows neuroscientists to create biologically-

realistic simulations of neurons and neural networks. NCS, while powerful, is written

in C++/CUDA, and by itself would not be easy or desirable for a neuroscientist

with hardly any programming experience to create a model in this kind of low-level

environment. To facilitate the use of less-technical means of interacting with the

simulator, some kind of intermediary is needed to interact with the brain simulator

and turn high-level concepts neuroscientists are familiar with into a lower-level format

that the simulator can use. To do this, we have created a service that interacts with

external programs and services using a RESTful HTTP interface. This service handles

the operation of the NCS simulator, access control, session management, data storage

and retrieval, and other functions related to the operation of the brain simulator.

Implementing the service as a RESTful interface allows for the easy integration of

other technologies such as Javascript and Python. Using this interface, we have

created a suite of browser-based tools, as well as a Python client library to work with

the simulator. These tools provide a higher-level method of building, reporting, and

visualizing simulations, which are critical for neuroscientists to be able to effectively

use the simulator.
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Chapter 1

Introduction

Experiments in the field of neuroscience have traditionally been conducted using

invasive physical methods including in vivo (using a living organism) and in vitro (in

an artificial laboratory environment) methods. These methods, while effective in small-

scale experiments, become impractical for performing experiments on a larger scale

and are often times quite expensive. To combat these problems, neuroscientists have

turned to in silico methods to perform experiments, a field known as computational

neuroscience. To create neurological experiments in a computer environment, a number

of neural simulators that allow researchers to model biologically realistic neurons and

neural networks have been created[21]. These neural simulators allow researchers to

build, run, and output the results of a simulation. While each simulator has the same

goal in mind, they each have a different set of features and limitations. Researchers

must choose which simulator provides the most appropriate set of functionality for

their experiments [6].

The University of Nevada has created its own neural simulator called NCS, or

Neo-Cortical Simulator. NCS tends to focus on larger scale simulations that involve

large numbers of neurons and synapses. Performance was also a key consideration

when designing NCS, and as a result the simulator was designed to be as fast as

possible without adding features that would create additional computational overhead.

By ensuring that the simulator is as fast as possible, NCS can run a million-cell model

in realtime [17].

Although very fast and scalable, the NCS simulator by itself does not provide a
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convenient way for researchers to perform common tasks surrounding the simulation

in an intuitive way. NCS provides a thin and feature-limited Python layer that allows

it to be used with Python-based programs. This thin layer exposes the minimal

features that NCS provides, such as adding neurons and synapses to the simulation.

To make the NCS simulator a more useful tool for neuroscientists, additional higher-

level features must be added that augment the minimalist approach to designing

NCS. These features should provide neuroscientists the ability to easily create models,

configure simulations, manage the data generated by simulations, and visualize their

results.

To accomplish this task, we have created a suite of tools that surround the NCS

simulator in the form of a web-based interface and higher-level Python interface that

gives a much more intuitive medium for interacting with the brain simulator. The web-

based interface provides the ability for neuroscientists to create simulations without

programming experience, and the Python interface provides high-level access using an

easy-to-use Python library. This thesis covers the development and implementation of

these tools, as well as the architectural and design choices that were made when creating

them. The rest of this thesis is formatted as follows: Chapter 2 discusses background

topics surrounding these tools; Chapter 3 details the design and implementation of

the software; Chapter 4 presents conclusions and discusses possible future work that

could be implemented in the software.
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Chapter 2

Background

2.1 Other Simulators

There are a few neural simulators other than NCS that should be discussed in order to

justify such a solution. The first of which is NEURON[6], which is developed at Yale

and Duke. Unlike NCS, NEURON tends to focus on relatively small simulations, as it

uses accurate, albeit computationally-expensive formulas to model neural interactions.

NEURON was created in C/C++/FORTRAN and uses a scripting language called

Hoc to describe models and create the simulation. NEURON currently supports

simulating using a single machine or multiple machines using MPI to distribute the

workload. Simulations can be run from the graphical user interface (which generates

Hoc code), a shell session using Hoc directly or Python script using the neuron Python

package. The NEURON GUI consists of a multi-windowed environment in which users

can create models, execute simulations and view the results[6]. The NEURON user

interface is shown in Figure 2.1 and example Hoc code is shown in Figure 2.2[6, 8].

Another simulator, called GENESIS (GEneral NEural SImulation System)[6],

is similar to NEURON in that it mostly models smaller neural networks including

interactions within a single neuron[4]. GENESIS uses a proprietary scripting language

as well as formatted data files to create and run simulations. GENESIS can use MPI

or PVM to parallelize its computations across multiple machines. Like NEURON, it

can run simulations via a command-line interface known as G-Shell, a Python wrapper

library, or a graphical user interface named XODUS[6]. An example of the XODUS
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Figure 2.1: The NEURON GUI showing the results of a simulation that has been run
using the simulator[6].
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create soma, dend, dendx, axon
connect dend(0), soma(1)
connect dendx(0), soma(1)
connect axon(0), soma(0)

access soma
pt3dclear()
pt3dadd(0, 0, 0, 8)
pt3dadd(6, 0, 0, 18)
pt3dadd(10, 0, 0, 20)
pt3dadd(14, 0, 0, 18)
pt3dadd(20, 0, 0, 10)

insert hh
Ra = ra

dend {
nseg = 21 // may need more
diam = DEND_DIAM
L = DEND_LENGTH

insert hh
gnabar_hh /= 5
dend_gnabar_0 = gnabar_hh
gkbar_hh /= 5
Ra = ra

}

Figure 2.2: A code snippet from a Hoc script creating a neuron[8].
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Figure 2.3: The GENESIS GUI (called XODUS) showing a visual representation of a
Purkinje neuron model[6].

user interface can be found in Figure 2.3 and a sample of the GENESIS scripting

language can be found in Figure 2.4[4, 6].

Unlike the NEURON and GENESIS simulators, the NEST (NEural Simulation

Tool)[6] simulator tends to focus on larger neural networks rather than smaller ones.

NEST uses a command-line interface as well as a Python wrapper to create models and

run simulations. Unlike its counterparts, NEST lacks an out-of-the-box user interface

component. Results of the simulation must be viewed using 3rd party Python libraries

like matplotlib[6]. An example of the NEST scripting language can be found in Figure

2.5[14].

The last simulator (and perhaps most-similar to NCS) that will be discussed is
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create cell /n
create segment /n/soma

model_parameter_add /n/soma Vm_init -0.068
model_parameter_add /n/soma CM 0.0164
model_parameter_add /n/soma RM 1.500
model_parameter_add /n/soma RA 2.500
model_parameter_add /n/soma ELEAK -0.080

model_parameter_add /n/soma LENGTH 4.47e-5
model_parameter_add /n/soma DIA 2e-5

runtime_parameter_add /n/soma INJECT 2e-9
output_add /n/soma Vm

run /n 0.05

quit

Figure 2.4: A code sample from a GENESIS script creating a neuron, injecting current
into it, and outputting the voltage[4].

/iaf_neuron Create /n1 Set
/iaf_neuron Create /n2 Set
/iaf_neuron Create /n3 Set
n1 n2 Connect
n1 n3 Connect

Figure 2.5: A small code snippet of a NEST script creating three neurons and
connecting them in a chain[14].

BRIAN. BRIAN is a neural simulator developed naively in Python and does not use a

command-line intermediary: models are written exclusively in Python [15]. BRIAN

uses the scipy and numpy libraries to speed computations by taking advantage of

native C code execution. It does not, however, provide the ability to parallelize the

simulation across multiple machines. An example of a simple BRIAN simulation script

can be found in Figure 2.6[15].

A comparison of these simulators and their features can be found in Table 2.1[17].
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from brian import *
eqs = ’’’
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’
P = NeuronGroup(4000, eqs, threshold=-50*mV, reset=-60*mV)
P.v = -60*mV
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, ’ge’, weight=1.62*mV, sparseness=0.02)
Ci = Connection(Pi, P, ’gi’, weight=-9*mV, sparseness=0.02)
M = SpikeMonitor(P)
run(1*second)
raster_plot(M)
show()

Figure 2.6: An example of a BRIAN script creating a group of 4000 neurons and
creating a raster plot from the result of the simulation[15].

Table 2.1: This table provides a comparison between the major neural simulators
including NCS based on the features they provide users (modified from [17]).

Simulator Platform Language Coding Style GUI Realtime
Visualization

Neuron
Models

Parallel
Support

Python
Interface

BRIAN Linux Mac
Windows

Python Python No No LIF HH
IZH

None Yes

GENESIS Linux Mac
Windows

C C Yes No HH MPI PVM No

NEURON Linux Mac
Windows

C C++
FORTRAN

HOC Python Yes No HH LIF MPI Yes

NCS Linux C++
CUDA
Python

Python Yes Under Develop-
ment

HH LIF
IZH

MPI GPU
(ZeroMQ
planned)

Yes

NEST Linux Mac
Windows

C++
Python

Python SLI No No HH LIF
IZH AdEx
MAT2

MPI Yes
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2.2 NCS

NCS is a spiking neuron simulator that is written in C++ and CUDA. The simulator,

similar to the BRIAN simulator discussed earlier, its currently focused on simulating

large-scale neural networks, on the order of hundreds of thousands to millions of

neurons and billions of synapses[17, 22]. To handle these large-scale simulations, NCS

is designed to scale to handle the sizable computational throughput needed. It is

designed from the ground up to distribute the workload across multiple processors on

multiple machines. In addition to using multiple CPU cores on each node, NCS also

will detect and use NVIDIA GPUs if they are present on the machine to take advantage

of the SIMD capabilities of these cards as well as their floating-point performance[22].

Running on top of the C++ code is a thin Python layer that provides lower-level

access to the simulator. This layer doesn’t attempt to provide advanced capabilities

in an effort to keep the C++ code as streamlined and as simple as possible without

having to add additional overhead for higher-level functionality. For example, NCS

doesn’t explicitly provide any form of grouping or organization for the neurons it

simulates. Rather, it keeps track of groups of neurons, individual neurons, and the

connections between them. This may work for smaller simulations, but at the scale of

millions of neurons and billions or trillions of synapses, this approach to organization

would leave most users lost in their own design. Similarly, a thin python layer without

programming conveniences like classes removes a level of abstraction that would be

expected from a normal programmatic API. In addition, neuroscientists might like to

avoid coding altogether and focus on the biology.

To provide an intuitive and modern way for neuroscientists to interact with

the NCS simulator, a more capable and user-friendly interface needs to be created.

Additionally, to make the simulator more extensible as a cluster-based neural simulator

running large-scale models, a better method is needed to organize, create, run, manage,

store, and report on simulations than running the simulation via a shell on the cluster

and directly manipulating the filesystem. These characteristics of NCS and other neural
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simulators do not help them create collaborative environments where experiments can

be shared, recreated, and verified. A better approach is needed to handling the many

tasks that surround these simulators.

2.3 Client-Server Model

To solve these shortcomings, we have created a client-server based approach to the

design of NCS. In this model of computing, a server running on a machine accepts

requests from clients who wish to use the servers resources. A diagram of the client-

server model can be found in Figure 2.7[24]. In the context of NCS, the server will

run on the master node of an NCS cluster and directly interface with the low-level

Python interface. The server is responsible for multiple functions. Firstly, the server

should be able to manage and keep track of the simulator. This includes calling NCS

to run a simulation, ensuring that clients don’t attempt to run a simulation while

another is in progress, and managing the output of the simulator including resulting

data, errors, warnings, and other messages as well as allowing clients to get access

to this information. Using this computation model as opposed to the methods used

by existing simulators provides a number of advantages. Firstly, the simulator can

be used by multiple remote clients. This allows many different researchers to use the

same cluster, and allows simulations to be run from non-console clients, such as a web

browser. Secondly, it removes the need for direct shell access to the machine, which

removes potential security risks associated with providing a remote shell. Lastly, it

provides a centralized management system in which simulations can be logged, stored

and shared in a consistent format, rather than the typical approach of allowing each

user to create their own organizational methods. This makes it easier to share results,

duplicate experiments, and incorporate models from other researchers into your own

experiments.
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Figure 2.7: The client server model allows for multiple clients to request resources
from the server[24].

2.4 HTTP & REST

2.4.1 HTTP

As a result of the client-server architecture chosen for NCS, a method is needed to

transport information from the client to the server and vice versa. The HTTP protocol

is a time-tested protocol used to transport textual and binary data over the Internet

and various other computer networks. This makes HTTP an ideal candidate for

handling the transfer of information between the client and server.

A HTTP transaction begins with a request from the client to the server. Each

request can be one of four types: GET, POST, PUT, and DELETE. Each of these

methods requests the server to perform a specific action on a target. The target of the

action is specified as the path. The path is specified like a UNIX filesystem path, in

the form of a series of strings separated by forward slashes. The effect of actions GET,

POST, PUT, and DELETE on a path are defined by the HTTP server itself, but

generally follow a certain format[13]. The GET method instructs the server that the

client is requesting information about the path included in the request. For example,

when visiting a website, a GET request to the path of / would ask the server to

provide information pertaining to the index of the site, whereas a GET request to the
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path /blog would request information about the websites blog (provided such a path

exists on the server). A POST request to /blog might instruct the server to create a

new blog post with the data provided with the request (such as a title, author, and

content).

Typically, when browsers interact with websites the data returned from the

server is HTML, which the browser uses to render the page in the browser window.

However, HTML is far from the only type of information that an HTTP response

can contain. HTTP responses can contain plain text, binary data (including images),

XML documents, JSON objects, or any other user-defined format. Following the

standardization of HTTP/1.1 in 1999, which added the PUT and DELETE methods,

HTTP became capable of performing all CRUD (Create, Read, Update, Delete)

operations for persistent storage[13]. The CRUD options of HTTP/1.1 form the basis

of the REST architectural style[12].

2.4.2 REST

REST (REpresentational State Transfer) is an architectural pattern that defines a

method of interaction between a client and server. The key component behind the

REST architecture is the concept of a resource. A REST resource, in the context

of HTTP, is a URI, or Uniform Resource Identifier. A URI for a web application

is typically the location of the resource on the web server in the form of a URL or

Uniform Resource Location[12]. For example, the URI for the users resource might be

http://example.com/users and a URI for a student who’s student ID is 1033 might

be http://example.com/student/1033. These URI’s uniquely identify their respective

resources on the servers they are hosted on as well as the Internet as a whole.

While the URI specifies a way to uniquely identify a resource, a method is needed

to represent the resource[12]. This is typically done using one of the formats mentioned

in the previous section such as HTML, XML, or JSON. For example, a student resource

might be represented in JSON format shown in Figure 2.8 or in an XML format such

as in Figure 2.9. These formats provide a consistent method of interaction between



13

client and server.

To interact with a RESTful interface in the context of HTTP, the client sends a

request to a particular URI on the server with one of the HTTP methods mentioned

previously. Sending a GET request tells the server that the client wishes to receive

the representation of the resource it requested. If the client wished to receive the

representation of the aforementioned student with ID 1033, it would send a GET

request to the URI http://example.com/student/1033 and the server would respond

with the information shown in Figure 2.8. To add a student, the client would send a

POST request to the server containing the representation of the student (in the same

format as Figure 2.8) directed at the URI corresponding to the new student’s ID, say

1555, at http://example.com/student/1555. To update the student with ID 1555, the

client would send a PUT request to the URI http://example.com/student/1555 with

the updated user representation. Similarly, to remove the student, the client would

send send a DELETE request to the URI http://example.com/student/1555. This

architectural style makes a HTTP API standardized and predictable, making it easy

for clients to interact with the server.

2.5 The JSON Format

There are several ways to transmit information over HTTP, some of which are discussed

in the HTTP section of this chapter. The JSON (JavaScript Object Notation) format,

as its name suggests, is derived from the Javascript syntax for an object. JSON, which

was defined in 2001 by Douglas Crockford, is a textual format that takes a minimal

approach to representing data[5]. Unlike XML, JSON doesn’t use opening and closing

tags, but uses a list of properties instead, making the files smaller[20]. Additionally,

JSON has several datatypes, which is a feature not present in XML, making it easily

parsed into programming languages such as Python, Ruby, and Javascript, which

usually require a single function call to turn a string of JSON into a language-native

object. JSON also has a binary format called BSON that can be used to transfer and

store information in a binary format that is more space conscious and holds a superset
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{
"name": "Bob",
"grade": "sophomore",
"age": 24,
"phone": "1+(775)555-5555"

}

Figure 2.8: This figure shows how a user might be defined using the JSON format.
The student contains four attributes. Name, grade, and phone are string attributes,
whereas age is a numerical attribute.

<student>
<name>Bob</name>
<grade>sophomore</grade>
<age>24</name>
<phone>1+(775)555-5555</phone>

</student>

Figure 2.9: This figure shows how a user might be defined using the XML format. Like
the JSON example in Figure 2.8, this student object contains four elements. XML
doesn’t provide the ability to dictate the type of elements, so all elements contain
strings.

of the normal JSON data types[9].

There are six data types available in the JSON format: number, string, boolean,

array, object, and null[5]. All strings in JSON are enclosed within double-quotes

and are UTF-8 encoded. A JSON object is an associative array of name/value pairs,

enclosed within curly braces. The names must be strings followed by a colon and

then the value. The key/value pairs are delimited by commas. Numbers are decimal

numbers that can be in E notation or fractional. Arrays are lists of values within

square brackets delimited by commas. Boolean values are simply true and false, and

null is represented as the text null. An example JSON document using all types is

shown in Figure 2.10.
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{
"company_name": "Planetary Express",
"phone": "1+(800)555-5555",
"manager": "Hubert Farnsworth",
"company_net_worth": 0.0,
"personnel": [

"Phillip J. Fry",
"Turanga Leela",
"Hermes Conrad",
"Amy Wong",
"John Zoidberg",
"Scruffy",
"Bender Rodriguez"

],
"total_deliveries": 100,
"website": null,
"is_profitable": false

}

Figure 2.10: This figure shows all valid JSON types. company_name is a string,
personnel is an array, total_deliveries is a numerical value, website is a null value,
and is_profitable is a boolean value.

2.6 WebSockets

HTTP is a request-response protocol. It does not provide a method of streaming data

between the client and server in a full-duplex fashion like that of TCP. To solve this

problem, a new protocol was created that allows full-duplex communication via HTTP

called WebSockets. WebSockets allow Javascript running on the client’s browser to

initiate a connection with a server in which both the client and the server can send

data to one another simultaneously[11]. This is helpful in many different applications

where it would not be desirable to continuously request data from the server (polling)

when there may not be any data that the client needs. When using WebSockets, the

client can simply wait until the server has data to send and receive it asynchronously

without constantly polling the server for it. This greatly reduces the network footprint

of real-time HTTP-based applications and provides a much more intuitive interface for

the exchange of data between client and server when such situation arise. For example,

a web-based instant messaging client could use WebSockets to wait for incoming
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messages from the server and receive them as soon as they are ready, as opposed to

constantly polling the server many times per second to check for new messages.

2.7 MongoDB

In recent years, a number of new database systems have been developed that do

not rely on the traditional relational-model, which often use SQL as their database

language. These databases are colloquially known as NoSQL databases in reference to

the fact that they do not use SQL as a data management language[19]. MongoDB

is one of these databases. Instead us using tables and columns like in a traditional

database it uses collections and documents[9]. Documents are JSON objects that are

stored in a BSON format on disk. A collection is a list of documents, usually with

a similar format (but this is not required). This type of database is advantageous

because it doesn’t require a strict schema with each attribute in its own column like

in a SQL database[9]. This allows more flexibility in the way you want to store and

retrieve your data. For example, storing the data shown in Figure 2.10 would require

a few different tables in a well-designed SQL database. MongoDB becomes even

more advantageous when the data your application works with is already in a JSON

format. MongoDB uses Javascript as the language to manage the database data, which

provides methods for CRUD operations as well as a few aggregate functions such as

summation and average. More complicated queries require the use of a MapReduce

programming model[9]. Database ORMs exist in many languages for MongoDB, so

often times the user will never need to use Javascript to interact with the database

and can use the language of their choice. Python contains a a library called MongoKit

that performs this task[23].
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2.8 Client-Side Web Development

2.8.1 Bootstrap

Over the years, the Internet and the World Wide Web have seen a massive expansion

in size, ubiquity and utility. As the World Wide Web evolves, the way websites are

built and designed also continues to evolve. Originally, websites were designed by

hand and often took an exorbitant amount of time to design and implement. Adding

to the problem, different browsers render web pages differently; even when the code

is exactly the same, the differences can often times be dramatic. To combat this, a

number or tools and frameworks have come about that aim to be both easy to use

and cross-browser compatible[18]. One of these frameworks is Bootstrap.

Originally developed by Twitter for creating a consistent UI for internal tools,

Bootstrap is a front-end framework that provides design templates that work across

browsers and for various screen sizes (including mobile) and aims to provide a clean

and aesthetic user interface. Web page elements such as forms, buttons, headers,

tables, navigation, alerts, panels and numerous others are included in the Bootstrap

package so developers don’t have to create and style them themselves. Bootstrap

includes a number of Cascading Style Sheet (CSS) rules to create and style the widgets

and elements on the page, as well as a small amount of Javascript to make some of the

elements interactive, such as the accordion component that shows and hides different

panels in an accordion-like fashion. An example of a web page created with Bootstrap

is shown in Figure 2.11 and some of the components Bootstrap contains can be found

in Figure 2.12[2].

2.8.2 AngularJS

While Bootstrap changes the way we create the look and feel of websites, AngularJS

changes how we make web pages dynamic. Traditionally most of the code front-end

developers would write involves directly manipulating the elements on the HTML

page when data changes or the user interacts with the application. Most of this kind
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Figure 2.11: This is a simple example page that was created with the Bootstrap
front-end framework. The page contains a navigation bar, page header, jumbotron
component, and several paragraph elements that stack if the browser window becomes
small enough[2].
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Figure 2.12: This figure shows several more Bootstrap components that are available
for use in web applications[2].
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of development is tedious, and writing the code for it takes time away from other tasks

that are central to the functionality of the application. Angular removes the need to

write the code that manipulates the elements on the web page and allows developers

to focus on the background tasks that need to be performed such as fetching data

from a server[10]. It does this by providing developers a way to create declarative-style

directives in the HTML of the web page. An example of this would be rendering

elements from a list on the page, such as a list of books. As books are added, deleted,

and modified from a list in an Angular Javascript module, they are automatically

updated on the web page instantly. This is a possible due to Angular’s two-way data

binding concept that is at the core of its functionality. As a result of the two-way data

binding feature, any changes to the view are reflected in the model of the application,

and any changes in the model are reflected in the view. A diagram illustrating this

two-way data binding can be found in Figure 2.13[1]. If you compare this with a

traditional web application using jQuery to manipulate the DOM, you can see that

the complexity of accomplishing a two-way data binding would greatly increase and

would require you to write a lot more code. An example comparing the code required

for each of these approaches can be found in Figure 2.14 and Figure 2.15.

Angular also provides a resource module that allows developers to easily interact

with RESTful interfaces. For each resource only requires a location be specified in the

form of a URL where the resource can be found. Other options may be provided to

enhance the behavior of the resource object in the event custom functionality may be

needed, or in other cases when a list of objects might be returned instead of just a

single object. This makes it trivial to create a Javascript application that interacts

with a RESTful web application. An example of creating and using an Angular

resource can be found in Figure 2.16.
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Figure 2.13: This figure illustrates the concept of Angular’s data-binding feature.
Changes to the scope’s cost and qty variables are automatically propagated to the
view without any further action required by the developer. If the user changes the
values in the input areas on the web page, those changes are automatically reflected
in the scope variables as well[1].

$.ajax({
url: ’/message_list’,
success: function (data, status) {
var result = JSON.parse(data);
for (var i = 0; i < result.length; i++) {
$(’ul#log’).append(’<li>’ + result[i].msg + ’</li>’);

}
}

});

<ul class="messages" id="log">
</ul>

Figure 2.14: This Javascript snippet uses JQuery to perform an HTTP request to get
some data from the server and add it to an HTML list. The Javascript code is highly
dependent on the HTML code. The ‘ul#log’ provides a specific HTML element to
add the element to. What if the data needed to be used in another HTML element?
We would need to modify the request function.
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$http( ’/message_list’ ).then( function ( response ) {
for (var i = 0; i < response.length; i++) {
$scope.log.push( response[i] );

}
});

<ul class="messages">
<li ng-repeat="entry in log">{{ entry.msg }}</li>

</ul>

Figure 2.15: This Javascript snippet uses Angular to perform an HTTP request to
get some data from the server and add it to an HTML list. The data being retrieved
has no ties to the HTML code at all. In the HTML, we add an angular directive
(ng-repeat) to loop over the list of messages and add the elements dynamically.

var User = $resource(’/user/:userId’, {userId:’@id’});
User.get({userId: 1155}, function(user) {
$scope.users.push(user);

});

Figure 2.16: This figure demonstrates Angular’s resource module. This module allows
Angular to easily interact with RESTful web servers. The developer defines the
Angular resource using the URL of the resource on the server. Once the resource has
been defined, the developer can query the RESTful interface using the resource object.
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Chapter 3

Design & Implementation

3.1 NCS Software

The NCS simulator provides the ability to simulate biologically-realistic neural in-

teractions at a large scale. While NCS performs the core goals of a brain simulator,

there is a much larger set of functionality that is needed for a simulator than running

the simulation itself. This functionality includes building the simulation, running

the simulation, storing simulation data, and analyzing results, which is imperative to

the researcher using any brain simulator. We designed a suite of tools that surround

the NCS simulator that provide users the ability to perform these tasks. These tools

include a consistent storage and management system for the simulations users create,

a programmatic Python interface, a web-based interface for building, running and

analyzing simulations, and a way to visualize the results of the simulation. With the

construction of these tools we have also introduced a new architectural concept, the

client-server model, that is unique to current brain simulators. A diagram showing a

high-level overview of NCS and its surrounding software can be found in Figure 3.1

3.2 NCS-Daemon

Part of the goal in designing NCS was to provide the simulator as a service that

multiple clients could interact with rather than as a program that is run from the

command line. To do this, a process or daemon must be consistently running on the

root node of the NCS cluster that accepts connections from clients attempting to use
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Figure 3.1: This diagram is a graphical representation of the NCS software suite. The
simulator performs the core simulation tasks and is shown in dark blue. NCS-Daemon
acts as a intermediary between external services and the simulator and provides a
single point of entry for all simulator tasks. It allows NCS to focus on being as fast
as possible by handling the organizational outside the simulator codebase. The tools
that surround the simulator include a Python interface, and a web interface. These
services interact with NCS-Daemon to gain access to the simulator.
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the simulator. Additionally, a method of transport is needed to carry information

to the daemon from the clients and vice versa. As discussed earlier, one of the best

methods to transfer textual data over a network is the HTTP protocol. HTTP is

ubiquitous and libraries exist for using it in virtually every programming language,

making it an easy choice for implementing the communication fabric between the

daemon and the clients. Finally, HTTP is a client-server-based protocol, which suits

the goal of the project perfectly.

There are a myriad of different libraries and frameworks to choose from to create a

server using HTTP as the underlying protocol. Since the low-level simulator functions

are exposed using a thin Python layer, it makes sense to choose a Python-based HTTP

library to handle the connections to the simulator. Several popular libraries exist

as Python modules: the most popular of which is Django[3]. Django is a so-called

full-stack web application framework, as it has facilities for creating database entities,

an administrative interface, form-validation, and many other features that make it

advantageous to use as a general web application framework. NCS-Daemon, however,

would not make use of the vast majority of these features, making Django superfluous

for the requirements of the application. Another web framework called Flask[16]

provides a more minimal set of functionality. It provides the ability to designate routes

that call certain Python functions when a request comes in to a certain URI, making

it very easy to implement a REST interface. Flask also has a host of extensions that

help extend the functionality of the application including WebSockets and integration

with MongoDB, a popular JSON-based NoSQL database. Because of its simplicity

and extensibility, we chose to implement the daemon using the Flask web application

framework. A simple "Hello, world" Flask application can be found in Figure 3.2.

To design NCS-Daemon as a RESTful service, a number of resources needed to

be defined. The first resource is the simulator resource. The simulator resource refers

to the current status of the simulator. A GET request to this resource will provide

information on the status of the simulator, a POST request containing simulation

data will attempt to start a new simulation, and a DELETE request will attempt to
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from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():

return "Hello World!"

if __name__ == "__main__":
app.run("localhost", 8000)

Figure 3.2: This Flask application serves the plain text "Hello World" when an HTTP
client sends a GET request to the ’/’ route.

stop the currently running simulation. The next resource is the simulation resource.

The simulation resource refers to a specific simulation created by a user. This resource

allows the GET and DELETE methods. The GET method returns information about

the simulation specified, including log information, reports related to the sim, and the

simulation object that was run by the simulator. A DELETE request to a specified

simulation resource will delete that simulation, as well as any data associated with it.

The next resource is the report resource. The report resource requests the contents

of a report generated by a previous simulation. It accepts the GET and DELETE

methods, which instruct the server to provide the report, and remove the report from

disk respectively. In the event a report was specified as a streaming report meant for

WebSockets, the resource will return an error. The final resource is the login resource.

This resource provides an endpoint for users to authenticate with the server which is

an important component of NCS-Daemon.

When implementing any network-based application, security is always a matter of

concern, especially when the application is facing the Internet. Preventing unauthorized

use of the NCS simulator and protecting user information are the main problems with

regard to application security. To prevent unauthorized use of the simulator a login

system was created. To use the simulator, the user must have an account on the

server. Next, before any interaction with the daemon, the user must first send a POST

request to the /login route on the server, supplying their username and password. In
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response, the server sends an authorization token specific to that user. Each request

to the server must contain this authorization token in the HTTP headers or the server

will reject the request as unauthorized. By providing the token to users, it prevents

their credentials from being passed with each request. If an attacker were to begin

intercepting communications between the client and server after the user has logged

in, he would only gain the access token. The attacker would still be able to gain access

to the simulator for a certain time, but the user’s credentials would remain secret and

could not be used to gain access to external accounts such as email and bank accounts

registered using the same password. To completely protect access to the simulator and

the users credentials, the connection to the server must be made over HTTPS using

SSL or TLS, which are used to create a completely secure connection that cannot be

decoded by other parties during or after transmission.

NCS-Daemon is implemented as a RESTful interface and as such exposes these

resources to clients in the form of routes. In addition to the traditional RESTful routes

exposed by the application, NCS-Daemon also has two different WebSocket routes

that are also available for streaming live data to the client provided the client has a

library to interact with the WebSocket protocol. The routes exposed by NCS-Daemon

as well as their descriptions and allowed methods can be found in Table 3.1.

NCS-Daemon is designed to be fully testable and is designed with good software

engineering practices. The project repository is hosted on GitHub and is integrated

with the Travis Continuous Integration service. This service runs the project’s tests

each time a developer attempts to update the repository and alerts the user when

their changes break the tests. Additionally, the service outputs the code coverage of

the tests, which measure the amount of code in the repository was run during the

tests, which keep track of how effective the testing suite is. Ideally, this number should

be as close to 100% as possible. The software class diagram for NCS-Daemon can be

found in Figure 3.3 and the GitHub repository showing the NCS-Daemon README

with the testing and coverage badges can be found in Figure 3.4.
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Table 3.1: This table shows the routes, methods and descriptions for NCS-Daemon’s
RESTful interface.

Route Methods Resource Description

/login POST The login route accepts requests containing
a username and password and responds with
an access token provided the credentials were
correct.

/simulator GET
POST
DELETE

The simulator route provides a resource for
the state of the simulator. A GET request
returns information about the current status
of the simulator. A POST request will instruct
the daemon to start a simulation. Finally,
a DELETE request instructs the daemon to
cancel the current simulation.

/simulation/:id GET
DELETE

The simulation route provides a resource for
past simulations. A GET request returns in-
formation about the simulation requested. A
DELETE request instructs the daemon delete
the specified simulation.

/report/:id GET The report route provides the report generated
by a simulation, including whether it can be
streamed through a WebSocket.

/report_stream/:id WebSocket The report_stream route is used for streaming
live report data over a WebSocket interface.

/geometry_stream WebSocket The geometry_stream WebSocket can be used
to stream the locations and geometry of neu-
rons and connections for a realtime visualiza-
tion.
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Figure 3.3: This is the NCS-Daemon’s class diagram with testing components omitted.
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Figure 3.4: The README file for NCS-Daemon contains badges that link to the
current testing state of the project, including if its tests are passing, and what the
code coverage percentage is.

3.3 Simulation Concepts & Transfer Format

NCS simulations are defined as a hierarchical structure of groups and neuron groups

as well as several other entities each with their own parameters. These entities include

neurons, synapses, stimuli, reports, neuron_aliases, and synapse_aliases. Neuron

entities contain the model used to calculate whether or not a neuron will fire on a

particular time tick. Neurons can be of several types, each with their own set of

parameters that affect the behavior of the neuron. Currently, the simulator supports

Leaky-Integrate-and-Fire (LIF), Hodgkin-Huxley, and Izhikevich models for neurons.

Synapses define the properties of connections between neurons including synaptic

learning and plasticity. Stimuli define where electrical current will be applied during

the simulation and how it should be delivered. Reports define which properties and

which neurons or synapses should be collected and either streamed over a WebSocket

or written to disk during the simulation. Lastly, neuron_aliases and synapse_aliases

provide a way to refer to large collections of neurons or synapses under a single name
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instead of all their collective names, reducing the work required for referencing large

groups or neurons or synapses.

Since NCS doesn’t have native support for higher-level constructs, a system

needed to be developed allows for users to organize the groups of cells more effectively.

To accomplish this, we created a hierarchical system of groups as a way to structure

the model. A group may contain multiple types of entities, the first of which are

subgroups. Subgroups are instances of other groups placed within a larger group

that have a label that distinguishes themselves from other subgroups in the same

group. Groups can also contain neuron groups, which are simply collections of neurons

of the same type that act as a single unit. Groups are also where connections are

defined. A connection is created between two neuron groups with a synapse type

and a certain probability of connection between them. Finally, aliases are created

within groups. Aliases allow a single label to refer to multiple objects. For example, if

there are two neuron groups labeled "A" and "B", then a neuron alias named "AB"

could be created that refers to both of these subgroups. This system allows users to

better organize their models, and create larger models more effectively than creating

numerous unorganized neuron groups. This system of organization is illustrated in

Figure 3.5.

In order to transfer and store simulations, some kind of textual representation

for the simulation model and its entities must be created. Due to the hierarchical

nature of the simulation model, with simulations possibly containing many of the

same group type, the tree of groups could grow at a sizable rate if this structure were

fully expanded into JSON. This makes the size of the files much larger, which is bad

for both transporting the JSON over a network or storing it on disk. Additionally, it

makes decoding the simulation once it reaches the daemon more complicated and slow

due to the redundant information and very deep model structure. To combat this, we

have implemented a normalized approach to storing the data in a textual format, akin

to the concepts of a relational database. Instead of expanding the simulation tree into

its full form, the tree is traversed and groups are added to a list of groups. Inside the
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Figure 3.5: This diagram shows a visual representation of a group in NCS. Group A
contains two instances of Group B, a neuron group, and another group, Group C. A
JSON representation of a group can be found in Figure 3.8.
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{
"top_group": "5728ec1d381bad25744bc54c42ba425",
"neurons": [

],
"synapses": [

],
"stimuli": [

],
"reports": [

],
"groups": [

],
"neuron_aliases": [

],
"synapse_aliases": [

]
}

Figure 3.6: The JSON transfer format without any entities defined. The top_group
property specifies the id of the topmost group in the simulation heirarchy. When a
client submits a simulation to NCS-Daemon the arrays would be populated with data.

groups, rather than expanding subgroups into their corresponding JSON, we maintain

a reference to the other group in the form of a unique identifier, that is generated

randomly. This saves space by reducing redundancy that would be common in many

models. Since the other entities are not defined in a hierarchical fashion, they do not

need to be normalized and can be added to a list with other entities of the same type.

A template showing the simulation transfer format with normalized groups can be

found in Figure 3.6.

In addition to their specifications, entities also contain metadata that describes

information about the entity, such as its type, name, description, author, institution,

and author’s email. When stored on disk or in a database such as MongoDB, this

metadata can be used to determine where a model was created, who it was created
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{
"_id": "c4f5ea85f4c5ae86c4ebc4a854",
"entity_type": "neuron",
"entity_name": "neuron_izh_1",
"description": "This is an extended description of the entity",
"author": "Nathan Jordan",
"author_email": "njordan@cse.unr.edu",
"specification": {

"type": "izhikevich",
"a": 0.02,
"b": 0.2,
"c": -65.0,
"d": 8.0,
"u": -12.0,
"v": -65.0,
"threshold": 30

}
}

Figure 3.7: An Izhikevich neuron model with metadata represented in JSON. The
metadata surrounds the Izhikevich parameters contained within the specification
object.

by, and which scientific papers it might have been created for or from. This will

aid researchers in collaborating on experiments, and keeping models organized. An

example of an Izhikevich neuron entity including its metadata can be found in Figure

3.7 and a group entity with subgroups, neuron groups, aliases, connections and

metadata can be found in Figure 3.8.

3.4 PyNCS

Now that the server and transfer schema have been defined, there needs to be a

convenient way to interact with the server without having to deal with HTTP and

the JSON representation during transfer. To address this, we have created a Python

library called PyNCS. PyNCS allows users to communicate with an NCS server

using an intuitive Python interface. To connect to the server, the user instantiates a

Simulator object with their username and password. If the library fails to connect to

the simulator, an authentication exception is thrown. An example showing the usage of
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{
"_id": "df90sahf0sd9ha8sdhf8dhsa",
"entity_type": "group",
"entity_name": "BasalGanglia",
"description": "This is an extended description of the entity",
"author": "Nathan Jordan",
"author_email": "njordan@cse.unr.edu",
"specification": {

"geometry": {
"width": 100.0,
"height": 200.7,
"depth": 300.3

},
"subgroups": [

{
"group": "sdfh8ahsdf80has0d89fh0as9dhf",
"label": "striatum",
"location": {"x": 123.5, "y": 456.5, "z": 789.5}

},
{

"group": "hf8as0df8asdhf80ahsd80f",
"label": "pallidum",
"location": {"x": 2354.5, "y": 456.5, "z": 543.5 }

}
],
"neuron_groups": [

{
"neuron": "hfd80sahs80dhf0shda90fhshdf",
"label": "gpe",
"count": 400,
"geometry": {"width": 100.4, "height": 200.7, "depth": 300.8},
"location": {"x": 234.9, "y": 456.4, "z": 543.2}

},
{

"neuron": "hasd890fhas80fhas80dhf",
"count": 30,
"label": "gpi",
"geometry": {"width": 100.1, "height": 200.6, "depth": 300.7},
"location": {"x": 784.4, "y": 926.1, "z": 999.2}

}
],
"neuron_aliases": [

{
"alias": "gpx",
"labels": ["gpe", "gpi"],
"aliases": ["an_alias"]

}
],
"synaptic_aliases": [

{
"alias": "sample_synapse_alias",
"labels": ["GP_synapse"]

}
],
"connections": [

{
"presynaptic": "gpe",
"postsynaptic": "gpi",
"probability": 0.5,
"synapse": "hfd8nfiodnsa80dbhfbas80df",
"recurrent": false

}
]

}
}

Figure 3.8: JSON Group specification with metadata parameters.
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# Correct
server = Simulator(

host=’ncscluster.example.edu’,
port=8081,
username=’my_username’,
password=’my_password’

)

# Throws ConnectionError
server = Simulator(

host=’no_ncsdaemon_here.example.edu’,
port=8081,
username=’my_username’,
password=’my_password’

)

# Throws AuthenticationError
server = Simulator(

host=’ncscluster.example.edu’,
port=8081,
username=’my_username’,
password=’not_my_password’

)

Figure 3.9: This example gives three different scenarios for connections. The first
example results in a successful connection, the second example attempts to connect to
a host where NCS-Daemon is not running, and the last example attempts to connect
to NCS-Daemon with the incorrect credentials.

the simulator via PyNCS can be found in Figure 3.9. Models are created using Python

classes that are defined in the PyNCS package. These classes provide a way to create

models in an object-oriented fashion without use of dictionaries or less-structured

Python types. When creating entity objects, the parameters are checked against

a known list of acceptable parameters for that entity as to prevent mistakes when

creating a model, and alerting the user to their mistakes before the simulation is run,

so they can more easily identify where the error is and fix it quickly. For example,

creating an Izhikevich neuron and specifying x as a parameter will throw an exception.

An example of this functionality can be found in Figure 3.10.

The Python classes also enforce which parameters are required and optional. This

allows users to only specify which parameters that are pertinent to the entity they
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# This successfully defines an Izhikevich neuron
izh = IzhNeuron(

a=0.5,
b=0.5,
c=0.5,
d=8.0,
u=-12.0,
v=Normal(-65.0, 0.5),
threshold=30.0

)

# This throws an EntityError because we tried to specify x
izh = IzhNeuron(

a=0.5,
b=0.5,
c=0.5,
d=8.0,
u=-12.0,
x=10.0,
threshold=30.0

)

Figure 3.10: This figure shows how an Izhikevich neuron would be declared in PyNCS.
The first example successfully creates an Izhikevich neuron type, whereas the second
example results in an exception.
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are creating without specifying extra parameters that are empty. This makes PyNCS

code more readable by reducing a level of verbosity, makes the code faster to write,

and keeps code size to a minimum.

Once the model and other entities have been created, the user must create a

Simulation object. The simulation object encapsulates a single instance of a simulation.

The most important service the Simulation object performs is maintaining references

to the reports generated by the simulation. These reports can be downloaded to the

client from the server for further processing, visualization or anything else the user

might wish to use the simulation data for. They are not downloaded automatically due

to the possibility that the reports can become quite large dependant on the number

of neurons or synapses being reported on and the frequency at which data on these

entities is collected. The Simulation object can also be used as a WebSocket client to

stream realtime data from the server. Lastly, the simulation object contains diagnostic

information and log data related to the simulation so the user can view and address

any potential problems that may arise during a simulation. The Simulation object can

only be used for one simulation; to create and run another simulation, an additional

Simulation object must be create. An example of a Simulation object being created

and run can be found in Figure 3.11.

3.5 Web Interface

While the PyNCS interface provides a way for users with knowledge of programming

(specifically Python programming) to create and run simulations programmatically,

this is a skill set that many potential neuroscientists using the NCS simulator may

not have or want to exercise. To address the needs of all neuroscientists, a more

user-friendly and less-technical interface is needed to interact with the brain simulator.

Simulators such as NEURON and GENESIS discussed in the background section use

old interfaces developed for native windowing environments like X11. The problem

with these interfaces is that they are now antiquated, as newer technologies exist to

create these environments for modern operating systems. Additionally, they must be
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izh = IzhNeuron(
a=0.5,
b=0.5,
c=0.5,
d=8.0,
u=-12.0,
v=Normal(-65.0, 0.5),
threshold=30.0

)
syn = FlatSynapse(

delay=10.0,
current=60.0

)
nrn_grp1 = NeuronGroup(

neuron=izh,
count=30,
label="izh1",
geometry=Geometry(),
location=Location()

)
nrn_grp2 = NeuronGroup(

neuron=izh,
count=50,
label="izh2",
geometry=Geometry(),
location=Location(),

)
conn = Connection(

presynaptic="izh1",
postsynaptic="izh2",
probability=0.5,
synapse=syn

)
grp = Group(

entity_name="my_group",
subgroups=[],
neuron_groups=[nrn_grp1, nrn_grp2],
neuron_aliases=[],
synapse_aliases=[],
connections=[conn]

)
stim = RectCurrentStimulus(

amplitude=3.0,
width=2,
frequency=10,
probability=0.6,
time_start=0,
time_end=1,
destinations=["my_group:izh1"]

)
rpt = Report(

report_method=Report.METHOD_FILE,
report_type=Report.TYPE_NEURON,
report_target=[nrn_grp1],
probability=0.5,
time_start=0.0,
time_end=1.0

)
sim = Simulation(

top_group=grp,
stimuli=[stim],
reports=[rpt]

)
server = Simulator(

host=’ncscluster.example.edu’,
port=8081,
username=’my_username’,
password=’my_password’

)

if server.get_status() == Simulator.IDLE:
server.run(sim)

Figure 3.11: This figure shows how a simulation would be created and run in PyNCS.
The sim object is created using the top-level model and a list of stimuli and reports.
The Simulator object is created using a hostname and port as well as a username and
password which establishes a connection to NCS-Daemon. Once a connection has
been established, the status of the simulator can be checked. If the simulator is idle,
we can run the created simulation.
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run on the users computer directly, forcing them to install software on their machine

which may not be desirable. To address these problems, we have created a web-based

interface that acts as a client to the NCS-Daemon server and allows neuroscientists to

create simulations using only a web browser.

To create the web interface we took advantage of a couple tools that would greatly

reduce design time. Firstly, we used the Bootstrap front-end framework to create a

consistent look and feel, and save a lot of development time by not having to develop

custom UI widgets. Secondly, we made use of AngularJS as the Javascript framework

powering the page. Angular allows easy integration with the DOM without having to

directly manipulate it as well as providing a way to easily interact with the RESTful

interface of NCS-Daemon. Currently, there are five tabs in the NCS Web Interface:

model builder, sim builder, reports, model database, and robot simulator.

The model builder, shown in Figure 3.12, is a graphical way for users to create

their models. The design of the model builder posed some particularly difficult UI

design challenges. While some entities like neurons are single-layer entities, group

entities form a hierarchical structure that could be several layers deep. Users need

to be able to navigate efficiently through these levels and do so without feeling like

the UI has become too cluttered. We felt that a tree-type interface would lead to

too much clutter and greatly degrade user experience. To develop a more effective

interface, we took some queues from file explorers of different operating systems. File

explorers also work on a hierarchical data set (a filesystem is a tree) and have been

developed to make it easy for users to navigate around the filesystem and perform

operations on it. A particular example of this is the Windows Explorer interface that

uses breadcrumbs to show the user where they are and a main content area where the

content of the location is displayed.

In our design, we implemented a system in which breadcrumbs are used to navigate

the tree and keep track of where the user is in the hierarchy (similar to file explorer)

and a content area in the form of a panel updates as the user navigates. As the user

moves through the groups they are creating, links are created and removed along a
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Figure 3.12: The model builder is organized into three sections split vertically across
the page. The leftmost panel contains models that the user has built or loaded from
a file or database. The second panel displays entities that are within the currently
active group. The rightmost panel displays parameters of a selected entity. In this
case, it is displaying the Izhikevich parameters for Neuron_1.

top bar that indicates where they are in the model. If they want to move to a different

position in the hierarchy, they simply click the link corresponding to the name of the

group they want to move to and the content area updates accordingly. In the content

area is a list of subgroups the user can further navigate into. When the user selects

one of these subgroups a new subgroup is created, the user is shown the contents of

the new subgroup (when created it is empty) and a breadcrumb is added to the list.

The rightmost panel is where model specifications are created. This panel lets

the user modify the properties of entities they have selected. For example, if the user

were to select a neuron from the model selection list on the left parameters related

to the neuron would be editable to the user on the right panel, such as the voltage

threshold or resting potential. Values updated here are propagated to the back-end

model and are updated there.

Once the user has created or imported the model they wish to execute in the

simulator, they then switch to the sim builder tab. The sim builder tab, shown in
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Figure 3.13: The sim builder provides the functionality for adding reports and stimuli
to the simulation. The leftmost panel changes global simulation parameters, the
middle panel controls stimuli, and the rightmost panel controls reports.

Figure 3.13 allows the user to create interactions with the model that they have built

and actually create the simulation. Firstly, the user should create at least one stimulus

to inject into a select group of cells within the model to bring it to life. The stimulus

can be generated from a few different sources, including a file-based stimulus, or a

socket-based stimulus. The socket-based stimulus provides external programs the

ability to provide input to the simulation. Once the stimuli are created, the user can

create reports for the model. Reports are the way data can be extracted from the

simulation, and several metrics can be reported on, including synaptic plasticity to

membrane potential. Once the user is finished with these tasks, the simulation can be

run from this tab.

To view the results of a simulation, the user navigates to the report tab which is

shown in Figure 3.14. The reports tab has the ability to view graphs of simulation

data. This data can come from either a static report after the simulation has finished,

or be streamed from NCS-Daemon and the simulator to the browser via a WebSocket

interface. This feature gives researchers the ability to view simulation data in real-
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Figure 3.14: The reports tab allows users to view static and realtime data about a
simulation. The graphs can be saved as high-quality SVG images for presentations or
reports.

time. Graphs can be built from the data and exported to an SVG (vector) format for

inclusion in high quality publications and posters. An example of one of these graphs

is shown in Figure 3.15.

The robot simulation tab is still heavily in development. It allows simulation

output to control the actions of a virtual robot in a 3D world and allow the observations

of the robot on its environment to become inputs to the simulator. The simulator could

Figure 3.15: The reports generated in the reports tab can be exported as high-quality
images for use in publications or in presentations.



44

be used to demonstrate the decision making ability of a brain model with the actions

of the robot in the virtual environment, such as navigating a maze or performing

actions when recognizing colors or patterns.
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Chapter 4

Conclusions and Future Work

4.1 Conclusion

To extend the NCS brain simulator, we have created a number of tools that allow users

to interact with the simulator in a variety of ways. NCS-Daemon provides a base level

of interaction, handling the lower-level operations on the simulator. It introduces a the

client-server architecture to the ecosystem of neural simulators, allows for web-based

interaction, organizes simulation data, and provides a way to stream real-time data

from the simulation to clients.

PyNCS creates a way for researchers to use the Python language to create models

and interact with the simulator. The library provides features such as parameter

checking that make it more user friendly and easier to debug than the minimalistic

Python layer. This language binding also gives easy access to a number of scientific

tools such as SciPy or NumPy that might be used to process the resulting data.

Finally, the web interface provides a method to interact with the simulator without

requiring any knowledge of programming. The interface allows users to build, run,

analyze, and visualize neural simulations in a single web application. This tool, as

well as PyNCS and NCS-Daemon, bring new technologies to the neural simulator

landscape that has long been plagued with aging technologies, and allow researchers

more effective ways of performing experiments and creating scientific breakthroughs.
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4.2 Future Work

NCS and its surrounding tools provide a basic interface for working on brain simulations,

but there is always more that could be done. Implementing a job queue for simulation

queuing would be advantageous to waiting until another user is done to start a

simulation. One could simply create the simulation and submit it and NCS-Daemon

would run it when it reaches the front of the queue and notify the user in some way

when the simulation is complete.

Another possible addition would be an external robotics interface that would

allow the simulator to interact with a ROS robot such as a PR2. By using ROS

it would also allow a connection with a virtual robot in the ROS environment, or

physical robot implementing the ROS software. With this ability, researchers could

apply their models to real-world robotic scenarios.

A web-based realtime visualization of the simulation is currently being developed

using WebGL that allows users to visualize the model they created while the simulation

is running and see individual neurons firing[7]. The geometry would be streamed via

a WebSocket dedicated to this purpose. The user can navigate around the model,

change colors, and turn parts of the model on and off.

Interfaces can always be improved upon, and the NCS web interface is no different.

As web technologies and interface design change and evolve, there will be a constant

need to rework existing designs. The NCS web interface could use additional styling,

better UI design, and additional features to make it more viable as a tool for building

an simulating models, as well as analyzing the results.

Lastly, while Python was chosen to implement the client library for NCS (PyNCS),

it is far from the only language option for interacting with the simulator. Since NCS-

Daemon is implemented as a HTTP-based service, it can be easily expanded to other

languages. Languages like Ruby would make an excellent candidate for another way

to interact with the simulator.
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