
University of Nevada, Reno

NCS: Neuron Models, User Interface, and

Modeling

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Devyani Tanna

Dr. Frederick C. Harris, Jr., Thesis Advisor

August, 2014

We recommend that the thesis

prepared under our supervision by

DEVYANI TANNA

Entitled

NCS: Neuron Models, User Interface, And Modeling

be accepted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Dr. Frederick C. Harris, Jr., Advisor

Dr. Sergiu M. Dascalu, Committee Member

Dr. Yantao Shen, Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

 August, 2014

THE GRADUATE SCHOOL

i

Abstract

Neuroscientists conduct experiments at different scales from molecules to system

level to gain insights into various brain functions. When in vivo and in vitro ex-

periments are hard to perform, neural simulators are very helpful. The NeoCortical

Simulator (NCS) is a neural simulator designed to run on a heterogeneous cluster of

CPUs and NVIDIA GPUs. With the use of neural simulators, there is always a trade-

off between biological accuracy and time. Previously, NCS had one built-in neuron

model for researchers to use. In order to provide choices for accuracy and execution

time, two more built-in neuron models have been added to NCS. The back-end of

NCS is written using C++11 and CUDA. Prior to NCS7, input files were used as

an input. They did not allow loops and files tended to be large. To overcome the

issues with input file and to allow scientists with varying level of programming skills

to utilize NCS, a Graphical User Interface and a Python interface have been added

to NCS. Furthermore, the new Report interface will allow users to view output by

the simulator in real time and the MongoDB database will allow researchers to share

their models and collaborate with others in the community. This thesis presents the

design and implementation of NCS6 along with the newer version of NCS, NCS7,

and its Python interface, Graphical User Interface, Report interface, database, and

modeling information.

ii

Dedication

For Neha, Mom, and Dad

iii

Acknowledgments

I would like to thank my advisor, Dr. Frederick Harris, and my committee mem-

bers Dr. Sergiu Dascalu and Dr. Yantao Shen for their time and suggestions. Also,

special thanks to Dr. Frederick Harris and Dr. Laurence Jayet Bray for introducing

me to the the field of Computational Neuroscience, encouraging me to do research,

and providing guidance and support during my undergraduate and graduate studies

at University of Nevada, Reno.

I would like to thank Roger Hoang, Torbjorn Loken, Nathan Jordan, and every-

one at Brainlab and HPCVIS for all the help and moral support. Also, huge thanks

to my family and friends for their love, encouragement, and never-ending support.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Figures vi

1 Introduction 1

2 A Novel CPU/GPU Simulation Environment for Large-Scale Bio-
logically Realistic Neural Modeling 4

2.1 Introduction . 5
2.2 Design . 7

2.2.1 Simulation Composition . 7

2.2.2 Simulation Environment and Distribution 9
2.2.3 Data Scopes and Structures 10

2.2.4 Simulation Flow and Parallelization 10
2.2.5 CUDA Implementation . 19

2.3 Results . 20
2.3.1 Neuron Model Validation . 20
2.3.2 NCS Performance . 21
2.3.3 Existing Models using NCS 24

2.3.4 Comparison of Simulation Environments 24

2.4 Discussion and Future Work . 24

3 NeoCortical Builder: A Web Based Front End for NCS 32
3.1 Introduction . 32
3.2 Background . 33

3.2.1 NCS . 33
3.2.2 Technologies . 34

3.3 Design Overview . 35

3.3.1 Brain Builder . 36
3.3.2 Simulation Builder . 40

3.4 Usage Scenario . 41

v

3.5 Conclusion and Future Work . 44
3.5.1 Conclusion . 44
3.5.2 Future Work . 44

4 NeoCortical Repository and Reports: Database and Repository for
NCS 45
4.1 Introduction . 46
4.2 Design Overview . 48

4.2.1 Database Design . 48

4.2.2 Reports - High Level Design 50

4.2.3 Reports - Low Level Design 50

4.3 User Interface . 51
4.3.1 Repository . 51

4.3.2 Reports . 54

4.4 Conclusion and Future Work . 57
4.4.1 Conclusion . 57
4.4.2 Future Work . 57

5 Hodgkin-Huxley Neuron Model, Simulation Building Blocks, and
Python Interface 58

5.1 Hodgkin-Huxley Neuron Model . 58

5.2 Simulation Building Blocks . 59

5.3 Python Interface . 61

6 Conclusions and Future Work 66
6.1 Conclusions . 66
6.2 Future Work . 66

Bibliography 68

vi

List of Figures

2.1 An example of a complete distribution of simulation elements in NCS6.
Elements are distributed across devices based on the devices’ computa-
tional power and their dependencies. Synapses and inputs associated
with a particular neuron are linked to it on a device. Within devices,
elements are organized into contiguous sections by type that are sim-
ulated by plugins of their specific type. 8

2.2 Division of work: the dark boxes represent stages that can run concur-
rently as long as the necessary data has been received for a given time
step. Each stage produces an output (denoted by the lighter boxes)
that is consumed by the stage denoted by the dotted arrows. 12

2.3 LIF Neuron Model: Regular Spiking Firing Patterns 15

2.4 IZH Neuron Model: Regular Spiking Firing Patterns 15

2.5 LIF Neuron Model: Fast Spiking Firing Patterns 16

2.6 IZH Neuron Model: Fast Spiking Firing Patterns 16

2.7 LIF Neuron Model: Bursting Firing Patterns 17

2.8 IZH Neuron Model: Bursting Firing Patterns 17

2.9 IZH neuron model: specific values used for parameters a, b, c, and d. 21

2.10 LIF Neuron Model: 1s Simulation . 22
2.11 IZH Neuron Model: 1s Simulation . 22
2.12 LIF Neuron Model: 10s Simulation 23
2.13 IZH Neuron Model: 10s Simulation 23
2.14 Simulation Environments Comparison 25

3.1 The complete web application framework. 36

3.2 The model builder tab within the NCB front end web application. . 37

3.3 Filtering the models in the left menu. 37

3.4 The popover when a user selects a pre-built model in the left menu on
the model builder tab. 38

3.5 When the user selects the “+ Element” button they are shown this
modal which asks for various element details. 38

3.6 Multiple cell-groups nested within each other. 39

3.7 Editing a model parameter in the right column. 39

3.8 The simulation builder tab within the NCB front end web application. 40

3.9 Two cell-groups have been added to the current model and they are
shown in the center column. 41

vii

3.10 The modal which prompts the user for values for a connection. . . . 42

3.11 An example of a connection between two elements, group1 and group2. 43

3.12 The modal which prompts the user for values to personalize their
model. 44

4.1 The architecture of the NCS Web Application. 47

4.2 JSON document for Izhikevich Neuron 49
4.3 MongoDB documents design . 49

4.4 The low level design of the reports interface. 51

4.5 The models in the list are populated based on the search filter values,
located in the left search panel. 52

4.6 Selecting a model name in the list opens the detailed view which shows
the parameter values and the promote option.. 53

4.7 An example of multiple zoom levels and window dimensions. 55

4.8 An example of multiple cell channels and color changes to facilitate
easy interpretation. 56

4.9 An example of the raster plot reporting window. 56

5.1 NCS Timeline . 58
5.2 Hodgkin-Huxley circuit representation [52]. Membrane potential is

measured on capacitor C. 59

5.3 Simulation building blocks for models in NCS 60

5.4 Input file for NCS6 and prior versions 62

5.5 1 second (1000 steps) simulation of regular spiking Izhikevich neurons
with synapse. Blue line is group1 and red line is group2. 65

1

Chapter 1

Introduction

The brain is the most complex organ to study. The field of Computational Neuro-

science allows scientists to study complex brain structures using neural simulators

when in vivo and in vitro experiments are hard to perform. Additionally, in vivo and

in vitro experiments are only ideal for small scale experiments. Brain Computation

Laboratory at University of Nevada, Reno has it’s own simulator called NeoCortical

Simulator (NCS). NCS has three in-built neuron models and it is designed to run

on the heterogeneous cluster of CPUs and NVIDIA GPUs for large-scale simulation.

NCS is able to simulate 1 million neurons and 100 million synapses model in quasi

real time [27].

There are three well known neuron models used in the field: Izhikevich(IZH) [32],

Leaky-integrate-and-fire(LIF), and Hodgkin-Huxley(HH) [52]. Those models provide

varying amount of biological accuracy with IZH being the most simplistic, then LIF,

and HH being the most biologically accurate neuron model. Every version of NCS

has provided Integrate-and-Fire neuron model with conductance based synapses as

described in Section 2.1 referred to as LIF model in rest of the paper. In addition to

that, Izhikevich neuron model has been added in NCS6, and Hodgkin-Huxley neuron

model has been added in the current version of NCS, NCS7. Furthermore, users have

an option to create their own plugin interface for different neuron models.

The backend of NCS is written using C++11 and CUDA. Prior to NCS7, the

simulator accepted text files as an input. It did not allow loops, tended to be large,

lots of the code was same for each part with minor change in parameter values, and

2

one change required changes in multiple places in the code. Due to this, errors were

easily introduced in the code and the code was hard to maintain. To overcome the

issues with input file and to allow scientists with varying level of programming skills

to utilize NCS, a Graphical User Interface and a Python interface have been added to

NCS7. There is also a Reporting interface for users to view output by the simulator

and database to save models so researchers can easily collaborate and share models

with community.

This thesis presents the design and implementation of NCS6 along with it’s

Python interface, Graphical User Interface, Report interface, database, and mod-

eling information. The rest of the thesis is as follows: Chapter 2 which appeared

as a journal paper [27], explains the design and implementation of NCS6 and gives

information for built-in LIF and IZH neuron models. For this work I wrote models

for LIF and IZH neurons and helped with writing and editing of the paper. Chapter

3 which has been submitted as a conference paper [3], covers the design of Web based

front end of NCS as well as a walk through of model creation using Graphical inter-

face. For this paper I interviewed neuroscience and biomedical engineering students

about their expectations for the user interface for the brain simulator, helped with

the design of the user interface, and directed the writing and editing of the paper.

Chapter 4 which has been submitted as a conference paper [2], shows the design of

MongoDB database for NCS and Graphical interface for reports. For this paper I

designed the MongoDB database and created the first prototype, helped with design

of JSON schemas, wrote sections of the paper, and oversaw the writing and editing

of the paper. Chapter 5 presents equations for Hodgkin-Huxley neuron model and

the details of model creation using Python interface as well as information about

the online documentation for NCS. I co-designed the initial Python interface and led

the review and modifications for the next update. Additionally, I wrote the current

version of the documentation for NCS which appears at ncs.io/docs/. Chapter 6

provides conclusions and plans for future work for NCS.

Besides the contributions listed in the previous paragraph, I have also assisted

3

the research in Computational Neuroscience through a variety of other items. These

include:

• Advising and assisting several senior project groups. Three of these resulted in

publications [2, 3, 13].

• Performing NCS demonstrations at NIPS 2012[33] and NIPS 2013[28].

• Collecting data for and running emotional speech processing experiments as

well as editing and rewriting the text [10].

• I also had the opportunity to design and teach the majority of the lectures for

CS 491C Topics: Computational Neuroscience.

4

Chapter 2

A Novel CPU/GPU Simulation
Environment for Large-Scale
Biologically Realistic Neural
Modeling

Roger V. Hoang, Devyani Tanna, Laurence C. Jayet Bray, Sergiu M. Dascalu, and

Frederick C. Harris, Jr. A Novel CPU/GPU Simulation Environment for Large-Scale

Neural Modeling. Frontiers in Neuroinformatics, 7, 2013.

Abstract

Computational Neuroscience is an emerging field that provides unique opportunities

to study complex brain structures through realistic neural simulations. However, as

biological details are added to models, the execution time for the simulation becomes

longer. Graphics Processing Units (GPUs) are now being utilized to accelerate sim-

ulations due to their ability to perform computations in parallel. As such, they have

shown significant improvement in execution time compared to Central Processing

Units (CPUs). Most neural simulators utilize either multiple CPUs or a single GPU

for better performance, but still show limitations in execution time when biological

details are not sacrificed. Therefore, we present a novel CPU/GPU simulation en-

vironment for large-scale biological networks, the NeoCortical Simulator version 6

(NCS6). NCS6 is a free, open-source, parallelizable, and scalable simulator, designed

5

to run on clusters of multiple machines, potentially with high performance computing

devices in each of them. It has built-in leaky-integrate-and-fire (LIF) and Izhikevich

(IZH) neuron models, but users also have the capability to design their own plug-in

interface for different neuron types as desired. NCS6 is currently able to simulate one

million cells and 100 million synapses in quasi real time by distributing data across

eight machines with each having two video cards.

2.1 Introduction

Many different scales of experiments in neuroscience research attempt to clarify the

complex functions of the nervous system. From the genetics of single molecules to

the behavioral research of cognitive neuroscience, studies lead to a better understand-

ing of neural networks, such as the brain. When in vivo and in vitro experiments

are impossible to perform due to the complexity of structures, computational neuro-

science provides new opportunities. Its unique access to any brain region as well as

its different levels of abstraction allow biologically-realistic neural simulations, and

thus additional neuroscience findings. However, neural simulations have always in-

volved a trade-off between execution time and biophysical realism. Even as neuron

models are simplified and approximated, the neural regions of interest may require an

unreasonable amount of running time. To further drive computational neuroscience

research, computer scientists and engineers have created more optimized simulation

programs and more advanced hardware architecture, respectively.

Biologically, most simulation environments already have built-in spiking neuron

models. These models, described as hybrid systems, satisfy a set of differential equa-

tions that describe the continuous evolution of several state variables and discrete

events [12]. The well-known ones are Hodgkin-Huxley (HH), Izhikevich (IZH), and

leaky integrate-and-fire (LIF) neuron models. The HH model quantifies the process

of spike generation with a set of four differential equations [52], formalizing their mea-

sured findings of the giant axon of a squid. This model uses the voltage dependence

and the dynamics of Sodium and Potassium channels, which captures many biological

6

details while losing computational efficiency. The IZH model is a powerful engine,

capable of replicating much of the dynamics phenomena observed in neurons. It uses

a mathematical formulation derived from the treatment of a neuron as a dynamical

system, resulting in a membrane voltage expression [32]. This is an intermediate

model, which is computationally efficient while still capturing a large variety of re-

sponse properties of real neurons. The LIF model is comprised of a subthreshold

leaky-integrate dynamic, a firing threshold, and a reset mechanism, which gives an

approximation of the subthreshold dynamics of the membrane potential with a sim-

ple linear differential equation [52]. It is beneficial for analytic calculations and is

efficient in numerical implementations. However, the approximation is not sufficient

to include most of the response patterns seen in real neurons.

Computationally, most simulators (e.g. NEURON [14], NEST [16], GENESIS

[8, 9], BRIAN [11]) were designed to run one or more of these models on a sin-

gle Central processing Unit (CPU). Over the years, they have evolved to support

simulations on multiple CPUs for extensibility and higher performance. These en-

hancements, in combination with parallel computing [7, 35], have become a neces-

sity to cope with the higher computational and the communication demands of neu-

roapplications. Recently, a number of developers have investigated the possibility

of simulating spiking neural networks on a single Graphical Processing Unit (GPU)

[1, 4, 5, 17, 18, 19, 24, 25, 30, 31, 37, 38, 43, 45, 48, 50, 51, 54, 55] or on multiple

GPUs [12]. All these current simulators have shown significant improvements over

their CPU only counterparts by integrating the utilization of GPUs. However, these

approaches have had limitations. Two of the main limitations are that researchers

either utilize an Izhikevich neuron model while running the simulation on GPU, or if

they utilize more than one neuron model (e.g. HH and IZH) their model focuses on

small-scale networks. Additionally, they are not capable of running simulations on

heterogeneous cluster of GPUs.

To reduce execution times without sacrificing biological details, we have devel-

oped a new version of our brain simulator. Here, we present a new CPU/GPU Simula-

7

tion Environment for Large-Scale Neural Modeling, called the NeoCortical Simulator

(NCS) version 6. Previous versions of NCS were designed to run on a CPU or cluster

of CPUs. Every version of NCS has implemented a hybrid spiking neuron model.

Sub-threshold dynamics are determined by channels that follow the HH formalism.

When the voltage crosses a specified threshold value, the membrane potential follows

a user-specified spike shape pattern, similar to an LIF neuron. This hybrid model

is referred to as an LIF model in the rest of this paper. For a detailed history of

NCS and related equations, please refer to our Brain Computation Laboratory’s web-

site:http://www.cse.unr.edu/brain/. In addition to the hybrid LIF spiking neurons ,

NCS6 implements the simplified IZH equations [32] as a separate neuron type. The

Compute Unified Device Architecture (CUDA) by NVIDIA [44] provides an instruc-

tion set and tools to developers to work in a GPU environment. NCS utilizes CPUs

and CUDA-capable GPUs for simulation. Computationally, shared-memory multi-

processor architectures and recent experiments with clustered GPUs indicate that we

will soon be able to simulate a million cells in real time without sacrificing biological

detail. In this manuscript, Section 2.2 explains how NCS has been designed, Section

2.3.1 gives a validation of its implementation, and Section 2.3.2 shows a representa-

tion of its high performance. Furthermore, we provide a brief comparison between

NCS and other simulation environments in Section 2.3.4. In Section 2.4 we conclude

with a summary of the paper and our planned future work.

2.2 Design

2.2.1 Simulation Composition

At the detailed level, every simulation is comprised of four primary types of elements:

neurons, synapses, stimuli, and reports. Neurons represent the cell body and must

report two values at each time-step: the spiking state and the membrane voltage.

Synapses represent a unidirectional connection between a presynaptic neuron and

a postsynaptic neuron. When the presynaptic neuron fires, the synapse introduces

8

Figure 2.1: An example of a complete distribution of simulation elements in NCS6.
Elements are distributed across devices based on the devices’ computational power
and their dependencies. Synapses and inputs associated with a particular neuron
are linked to it on a device. Within devices, elements are organized into contiguous
sections by type that are simulated by plugins of their specific type.

9

a synaptic current into the postsynaptic cell after some specified delay. Stimuli are

connected to a neuron and represent a type of external input, able to either clamp the

membrane voltage to some level or inject some amount of current. Reports connect

to a set of elements (e.g. cell group) and are used to extract output information (e.g.

voltage) from those elements and generate the result to some arbitrary data sink.

While each component type has some required constraints, the majority of the

internal behavior is determined by the more specific subtype being simulated. For

example, one neuron could be specified to simulate a LIF neuron while another neuron

could be specified to simulate an IZH cell. The underlying equations governing the

behavior are completely different between the two, but they can still be used within

the same simulation. The only requirements are that they each receive an external

stimulation and/or a synaptic current, and that they each report a firing state and/or

a voltage.

2.2.2 Simulation Environment and Distribution

To improve the simulation run times, NCS6 is designed to run on clusters of multiple

machines, potentially with different computing devices in each computer. These de-

vices include CUDA-capable GPUs, and CPUs. Even within the same device class,

the computational power of different devices can be drastically different. To better

facilitate load-balancing, a relative computational power rating is assigned to each

device. The current method for determining this quantity is to multiply the device’s

clock rate by the number of computational cores.

After determining the computational power of each device, a cost estimate for

each neuron is computed. Since the number of synapses outnumbers the number of

neurons and inputs by several orders of magnitude, we use the number of synapses

as the cost estimation. Neurons are then sorted in decreasing order of computational

cost and distributed across all available computing devices in the cluster so the device

with the lowest computational load (total computational cost / computational power)

receives the next neuron. Once all neurons in the simulation are distributed, all

10

contributing synapses and stimuli are also placed on the same devices as their targeted

neurons. With all elements distributed across all devices, they are further partitioned

by their subtypes, each of which being managed by a plugin. Figure 2.1 shows an

example of a complete distribution.

2.2.3 Data Scopes and Structures

Due to the distributed nature of NCS6, elements may be referenced in a number of

scopes that mirror the environment’s hierarchy: plugin, device, machine, and global

(cluster). After the distribution is finished, every element is assigned a zero-based

ID for each scope. IDs are padded between plugins so that data words for structures

allocated in other scopes are related to only one plugin. In general, this means that

IDs are padded to a factor of 32 (the number of bits in a word) between plugins. It

is important to note that IDs are only unique within the same element type; that is,

there can be both a neuron and a synapse with a global ID of 0.

Depending on which elements need access to other elements, certain key data

structures are allocated and accessed using different scopes. Data that is specific to

an element subtype is stored at the plugin scope. Because synapses may need to

access the membrane voltage from their postsynaptic neurons in order to determine

their synaptic current contributions, membrane voltages are stored and accessed using

device level IDs. The reason is all postsynaptic neurons and their associated synapses

reside on the same device due to the way they are distributed. However, because the

spiking state of a synapse depends on the spiking state of the presynaptic neuron, the

spiking state of neurons is accessed using a global level ID when updating synaptic

spiking states.

2.2.4 Simulation Flow and Parallelization

The basic flow of a simulation is as follows: for each time-step, the current from

stimuli and synapses is computed and used to update the state of every neuron. The

resulting spiking state of each neuron is then used to determine the spiking state of

11

their associated synapses in later time-steps.

To facilitate maximum utilization of computing devices, the simulation is parti-

tioned into several stages that can be executed in parallel as long as the requisite data

for a given stage is ready. Figure 2.2 illustrates this division of work (dark boxes)

along with the required data (light boxes) needed to simulate a particular stage and

the data that is produced once that stage has been updated. A publisher-subscriber

system is used to pass data buffers from one stage to the next. During the simulation,

a stage attempts to pull all necessary data buffers from their associated publishing

stages. The stage is blocked until all the data is ready. Once it obtains all the re-

quired data buffers, it advances the simulation by a single time-step and publishes

its own data buffer while releasing all the others that it no longer needs. When all

subscribers to a data buffer release it, the data buffer is added back to its publisher’s

resource pool for reuse. For any given stage, a limited number of publishable buffers

are used to prevent a stage from consuming all computational resources and getting

unnecessarily ahead of any other stages. For example, without limiting the buffer

count, because the input update stage requires no data from any other sources, the

stage could simulate all time-steps before a single neuron update is allowed to occur,

effectively adding a serial time cost to the overall run time.

Within a single stage, further granularity is gained by parallelizing across sub-

types. As an example, if a device simulates both LIF Neurons and Izhikevich Neurons,

the plugins updating each can be executed in parallel. Due to padding from the ID

assignments, updates should affect completely separate regions of memory, includ-

ing operations on bit vectors. Exceptions to this, such as when an input writes to

a device-indexed input current for its target neuron, are handled by using atomic

operations or by aggregating partial buffers generated by each plugin. The method

chosen depends on the type of device and its memory characteristics. While plugins

are allowed to update ahead of one another, the results for from a stage at a given

time-step will not be published to subscribers until all plugins (in that stage) have

updated up to that time-step.

12

Figure 2.2: Division of work: the dark boxes represent stages that can run concur-
rently as long as the necessary data has been received for a given time step. Each
stage produces an output (denoted by the lighter boxes) that is consumed by the
stage denoted by the dotted arrows.

13

Input Update. The purpose of the input update stage is to compute the total input

current to each neuron on the device as well as any voltage clamping that should be

done. The input current is represented by an array of floating point values, one for

each neuron (including padding) on the device, initialized to zero at the beginning

of each time-step. The voltage neurons are clamped and stored in a similar fashion

where a bit vector is used to select which neurons should actually be clamped.

Inputs are expected to be updated by input plugins designed to handle their

subtype. Other than the device-level Neuron ID for each Input that is statically

determined at the beginning of the simulation, input plugins rely on no other data

from any other stage of the simulation. As such, they are allowed to simulate ahead

of the rest of the system as long as it has empty buffers that can be written to and

published.

Neuron Update. Unlike the input update stage, the neuron update stage has two

dependencies: the input current per neuron published from the input update stage

and the synaptic current per neuron published by the synapse update stage. Given

these two pieces of information, this stage is expected to produce the membrane

voltage and spiking state of every neuron on the device. Like the input current, the

membrane voltage is represented by an array of floating point values. On the other

hand, the spiking state is represented by a bit vector.

Similar to inputs, neurons are expected to be updated by neuron plugins designed

to handle their subtypes. Despite receiving and writing data out into device-level

structures, neuron plugins operate purely in plugin space. This is possible due to

the fact that each plugin is given a contiguous set of device-level IDs during the

distribution. As a result, device-level data passed into each plugin is simply offset

accordingly to yield the appropriate plugin-level representation.

Vector Exchange. The result of the neuron update stage is the firing state of every

neuron residing on the device. However, synapses are distributed purely based on the

postsynaptic neurons and as such the presynaptic neurons could possibly reside on

a different device. Thus, to determine synaptic spiking, the state of every neuron in

14

the simulation must be gathered first. Again, the publisher-subscriber scheme is used

to pass data asynchronously. However, rather than passing data between stages, it is

used to pass data between different data scopes.

Figure 2.2 shows the flow of the neuron spiking information across a cluster.

When the device-level vector exchanger receives a local firing vector, the data is

published to the machine-level vector exchanger. Within this exchanger, the local

vector is copied into a global vector allocated in the system memory. Once all local

device vectors are copied for a single time-step, the complete machine-level vector is

broadcast to all the other machines in the cluster. After all machines in the cluster

finish broadcasting, the complete global firing vector is published back to the device-

level vector exchangers where it is copied back into the appropriate type of device

memory before being published out to any subscribing stages.

Firing Table Update. With the firing state of every neuron in the simulation, a

device can determine when all of its synapses will receive the firing based on a per-

synapse delay value. Given the potential range of delays, this information is stored

within a synaptic firing table. A row of the table is a bit vector representing the firing

state of every synapse on the device. The number of rows in the table depends on

the maximum delay of all local synapses. When this stage receives the global neuron

fire vector, each synapse checks its associated presynaptic neuron for a firing state.

If it is firing, the synapse adds its delay to the current time-step to determine the

appropriate vector which is then modified by setting its bit to 1.

After updating the table for a single time-step, the table row associated to that

step can be published. However, up to N time-steps ahead of the current time can

be published, where N is the minimum delay across all local synapses. This allows

devices to simulate ahead of one another to a point rather than being completely

locked in step. Additionally, the publication of these extra buffers at the beginning

of the simulation allows the data to start flowing through the simulation.

Synapse Update. Given the firing state of each synapse on the device, the synapses

themselves can be updated. Like the input update stage, the synapse update stage

15

Figure 2.3: LIF Neuron Model: Regular Spiking Firing Patterns

Figure 2.4: IZH Neuron Model: Regular Spiking Firing Patterns

16

Figure 2.5: LIF Neuron Model: Fast Spiking Firing Patterns

Figure 2.6: IZH Neuron Model: Fast Spiking Firing Patterns

17

Figure 2.7: LIF Neuron Model: Bursting Firing Patterns

Figure 2.8: IZH Neuron Model: Bursting Firing Patterns

18

produces the total synaptic current per device-level neuron also represented by an

array of floating point values. In terms of operating spaces, synapse plugins update

synapses that operate at both the plugin and device levels, reading from the synaptic

fire vector while writing to the synaptic current vector.

Reports. Reports gather information regarding some aspect of the simulation. They

are specified by the user as a set of elements and values that should be extracted from

them as the simulation progresses. Because these elements can be scattered across

multiple devices and/or different machines and the data required can reside on one

of several different scopes, every machine, device, and plugin are given a unique

identifier. Following the distribution, every element that must be reported on can be

located by the appropriate ID based on the data scope and the identifier within the

data source.

With these two values, the appropriate data can be extracted during the simu-

lation. To accomplish this, a single reporter is instantiated on each machine, which

contains at least one element that should be collected. Then, a reporter subscribes

to each publisher of the data through a more generalized publisher-subscriber inter-

face. This interface allows a reporter to access data arrays along with the memory

type using a string identifier. At each time-step, the reporter extracts data from all

of its subscriptions and aggregates them as necessary. A separate MPI communi-

cation group is then used to further aggregate these data across the entire cluster

asynchronously before being written out to a file or some other data sink.

Instead of using a built-in reporter type, a plugin-type interface is devised to pro-

vide flexibility in terms of data extraction, aggregation, communication, and output

techniques without overly complicating the resulting code. For instance, a reporter

that counts the number of neuron firings may choose to minimize data bus traffic on

CUDA devices by implementing the count directly on the device and retrieving the

single value rather than by downloading the entire buffer to the system memory first

before operating on it. Implementations of the reporter interface are given access to

an MPI communication group along with the element IDs and source identifiers to

19

accomplish the aforementioned tasks.

2.2.5 CUDA Implementation

Every CUDA plugin in any stage of the simulation flow uses a separate CUDA stream

to enqueue work for the GPU, sleeps while waiting for kernel execution to finish, and

publishes the results to subscribing stages when the results are ready. Each stream

operates independently on separate pieces of data, allowing the CUDA scheduler to

execute kernels from different streams concurrently in order to maximize hardware

utilization.

Unlike the computationally-straightforward Izhikevich model, the LIF model as

specified by NCS presents a number of challenges when implementing it in CUDA. To

begin with, LIF neurons can be composed of multiple compartments that affect one

another and have different synaptic connections. To maintain minimal data transfer,

all compartments of a single LIF neuron are decomposed into neuron-like objects that

must be distributed to the same device, localizing cross-compartment interactions to

that device. Since each compartment is modeled like a neuron, compartment-specific

connections are realized as well.

An additional complexity of the LIF neuron comes from the ability for a com-

partment to have one or more channels that alter its current based on a number of

different attributes. The solution to this comes from applying the simulation flow

breakdown to this smaller subproblem. Each unique channel type is implemented

as a plugin to the larger LIF plugin in order to minimize branching within a single

kernel. At each time-step, the channel plugins concurrently modify a current buffer.

This buffer is then published to the compartment updater, which in turn publishes the

compartments newly updated state for use by the channel plugins in the subsequent

time-step.

A final challenge to modeling NCS neurons is due to the behavior of firings.

Rather than sending a single impulse across a synapse when the neuron fires, a wave-

form is sent over a potentially large number of time-steps. Repeated firings over a

20

short time period produce multiple waveforms that are summed together. To enable

this memory of firings in CUDA, the synaptic update plugin behavior is decomposed

into a few steps. A synapse begins by checking the fire table to see if a firing has

been received. If so, it pushes the event composed of a waveform iterator onto a list.

That list along with the list from the previous update are then updated, computing

the total synaptic current for a single neuron at the same time. If an event has not

yet iterated across its entire waveform, it is pushed onto a new list that is published

for the next time-step.

2.3 Results

The results of this manuscript are presented in the form of: neuron model valida-

tion, NCS performance, existing models using NCS, and a comparison of simulation

environments.

2.3.1 Neuron Model Validation

The validation of our neuron models is crucial to the reliability of modeling studies.

We have compared membrane potential traces using our two types of neurons models

in response to current injection with electrophysiological data [15] and the well-known

Izhikevich firing patterns [32]. As examples, we looked at three major types of neu-

ronal firing patterns: regular spiking (RS), fast spiking (FS), and bursting (B). For

the LIF neuron model, we used different types of channels and parameters. Channels

included voltage-dependent and calcium-activated potassium channels. For the IZH

neuron model, we used specific values for the parameters a, b, c, and d, which are

given in Figure 2.9.

Figures 2.3 and 2.4 show the firing patterns of simulated regular spiking neurons

using the LIF and the IZH neuron models, respectively. Figures 2.5 and 2.6 show the

firing patterns of simulated fast spiking neurons using the LIF and the IZH neuron

models, respectively. Figures 2.7 and 2.8 show the firing patterns of simulated burst-

ing neurons using the LIF and the IZH neuron models, respectively. All six figures

21

Figure 2.9: IZH neuron model: specific values used for parameters a, b, c, and d.

graph a sample of the simulation from 100 to 300 msec. Overall, our two neuron

models were validated by closely replicating spike shapes and spike frequencies from

electrophysiological data [15] and the well-known Izhikevich firing patterns [32] for

three major types of neurons: RS, FS, and B. Note: our two models are not limited

to these three types; all neural patterns can be replicated.

2.3.2 NCS Performance

Based on recent development and enhancements of NCS, we are capable of running

large-scale neural models (100,000 - 1,000,000 neurons) faster than most simulators by

distributing data across multiple GPUs. Considering a synapse to neuron ratio of 100

(e.g. 500,000 neurons and 50 million synapses), NCS runs any models up to almost 1

million neurons in real-time, for example, 1s simulation = 1s (IZH) or 2s (LIF) real-

time, as presented in Figures 2.10 and 2.11 for the hybrid and Izhikevich neurons,

respectively. In the NCS performance figures, eight machines were used with each

having two video cards (GTX 680s, GTX 480s, GTX 460s, or Tesla C2050s) with

a time-step of 1 ms. From one to ten-second simulations, NCS has shown no loss

of performance over time, as shown in Figures 2.12 and 2.13. However, the loss of

performance can occur in models containing more than 50 million synapses due to the

high computation power required by synapses. The limit in terms of communications

occurs when the size of the neuron vector is too large for the network to handle. In

the case of GigE(1000Mbps) simulating at 1 ms intervals, we have 1 Mb per update,

22

Figure 2.10: LIF Neuron Model: 1s Simulation

Figure 2.11: IZH Neuron Model: 1s Simulation

23

Figure 2.12: LIF Neuron Model: 10s Simulation

Figure 2.13: IZH Neuron Model: 10s Simulation

24

which represents 1 million cells (1 bit per cell). Additionally, there is MPI packet

overhead. Currently, the main reason for loss of performance in very large models is

due to memory constraints of the GPUs and not due to network limitations.

2.3.3 Existing Models using NCS

For details regarding existing models using NCS, related research projects, and publi-

cations please refer to our Brain Computation Laboratory’s website: http://www.cse.

unr.edu/brain/.

2.3.4 Comparison of Simulation Environments

As every simulation environment have their own advantages and disadvantages, we

have compared NCS with three well-known simulators, NEURON, GENESIS, and

NEST. This comparison, presented in Figure 2.14, can be useful for scientists to

decide which simulator is better suited for their modeling experiments. Specifically,

it describes the four simulation environments’ features, such as platforms, back-end

language, front-end coding style, GUI, appropriate applications, supported neuron

models, type of parallel computation, and possible python version. Overall, NCS

is currently well suited for large-scale neural networks and average biological details

which can be simulated with LIF and IZH models. The input language for NCS is a

text file and it requires minimum computer programming experience.

2.4 Discussion and Future Work

NCS6 is a new, free, open-source, parallelizable, and scalable simulator, designed to

run on clusters of multiple machines, potentially with high performance computing

devices in each of them. Simulator, tutorial slides, models, documentation, and con-

ference posters are available for download at http://www.cse.unr.edu/brain/ncs. It

has built-in LIF and IZH neuron models that replicate biological neural firing patterns

based on experimental data [15]. All firing patterns can be reproduced with realistic

spikes shapes and spikes frequencies. If users are not satisfied with these available

25

Figure 2.14: Simulation Environments Comparison

models, they also have the flexibility to design their own plug-in interfaces for dif-

ferent neuron types. NCS6 is currently able to simulate one million cells and 100

million synapses in quasi real time by distributing data across these heterogeneous

clusters of CPUs and GPUs. A variety of models have been created and simulated

with NCS, and they have shown interesting findings on high-level behaviors (e.g. nav-

igation). The advantages of using NCS6 are its computational power, its biological

capabilities at multiple levels of abstraction, and its minimum computer program-

ming demand. NCS6’s main limitations include its lack of biophysical parameters,

its only availability on LINUX platforms, and the absence of a GUI. Therefore, our

current work consists of increasing the biological details behind NCS6 without affect-

ing simulation time. NCS6 should be soon available on Windows, and be able to run

on openCL-capable devices. Additionally, our main focus has been on developing a

real-time visualization and analysis tool to make the use of NCS6 convenient to a

broader community.

26

Appendix

NCS Cell Equations

At a cellular level, NCS solves a limited and slightly reordered form of the

Hodgkin-Huxley model that is similar to equation (2.1). However, during the nu-

merical integration a constant membrane leak is added. This is explained further

below.

CN
dV

dt
− IM − IA − IAHP − Iinput − Isyn + Ileak = 0 (2.1)

The currents expressed in this equation fall into several different categories that

are only briefly explained here. To begin, both IM and IAHP contribute to the mem-

brane voltage by controlling spike-frequency adaptation. These are small ionic cur-

rents that have a long period of activity when the membrane voltage is between

rest and threshold. IM is the Noninactivating Muscarinic Potassium Current and is

defined by

IM = ḡMSm
P (Ek − V) (2.2)

Where S is a non-dimensional strength variable added to NCS and P is the power

that the activation variable m is raised to. This is essentially decreasing the slope of

the activation variable. The change of that activation variable is defined as

dm

dt
=
m∞ −m

τm
(2.3)

Where

τm = ε

e

V − V1/2ω

+e

−

V − V1/2η

27

m∞ = 1

1+e

−

V − V1/2ξ

ε is the scale factor.

V1/2 satisfies the equation m∞(V1/2)=0.5.

ω,η, and ξ are slope factors affecting the rate of change of the activation variable

m.

Notice that equation (2.2) is different from the traditional equation shown below in

equation(2.4). This reverse of the driving force explains the sign changes in equation

(2.1).

IM = ḡMmm (V − EK) (2.4)

IAHP is the current provided by the other small spike-adaptation contributing

channel. These are voltage independent potassium channels that are regulated by

internal calcium.

IAHP = ḡAHPSm
P (EK − V) (2.5)

Where S is a non-dimensional strength variable added to NCS and P is the power

that the activation variable m is raised to. The change of that activation variable is

defined as

dm

dt
=
m∞ −m

τm
(2.6)

τm = ε
f(Ca)+b

m∞ = f(Ca)
f(Ca)+b

Where

ε is a scale factor.

28

b is the backwards rate constant, defined as CA Half Min in the NCS documen-

tation.

f(Ca) is the forward rate constant defined by equation (2.7).

f(Ca) = κ [Ca]αi (2.7)

Internal calcium concentrations are calculated at the compartment level in NCS.

Physiologically the calcium concentration of a cell increases when an action potential

fires. After the action potential has ended the internal concentration of calcium will

diffuse throughout the cell where it is taken up by numerous physiological buffers.

In NCS this diffusion/buffering phenomena is modeled by a simple decay equation

defined by equation (2.8).

[Ca]i (t+ 1) = [Ca]i (t)

(
1− dt

τCa

)
(2.8)

Where

dt is the simulation time step.

τCa is the defined time constant for the Ca decay.

When an action potential fires in NCS the internal calcium concentration is in-

creased by a static value specified in the input file.

The third and final channel type modeled in NCS is the transient outward potas-

sium current or Ka. This channel requires hyperpolarization for its activation; mean-

ing that the channel will open during inhibitory synaptic input. This is defined by

equation (2.9).

IK = ḡMSm
PhC (EK − V) (2.9)

29

Where as before S is a non-dimensional strength variable added to NCS, P is the power

that the activation variable m is raised to and C is the power that the inactivation

variable h is raised to. The change of activation and inactivation variables is defined

by equations (2.10) and (2.11).

dm

dt
=
m∞ −m

τm
(2.10)

dh

dt
=
h∞ −m
τh

(2.11)

Where

m∞ = 1

1+e

−

V − V1/2mξ

V1/2m satisfies the equation m∞(V1/2m) = 0.5.

ξ is slope factor affecting the rate of change of the activation variable m.

h∞ = 1

1+e

−

V − V1/2hη

V1/2h satisfies the equation h∞(V1/2h)=0.5.

η is slope factor affecting the rate of change of the inactivation variable h.

τm and τh are voltage dependent. NCS allows this dependence to be defined using

an array of values for both voltages and time constants. This is defined by equation

(2.12).

τ(V) =

τ(1) if V < V(1),

τ(2) if V < V(2),
...

τ (n) if V < V(n)

τ (n+ 1) else

(2.12)

30

The leakage current is voltage-independent and is modeled by equation (2.13). Notice

that the driving force is expressed using the normal convention. This is the reason the

leakage current is subtracted in the membrane voltage equation rather than added,

as seen in the traditional membrane voltage equations.

Ileak = gleak (V − Eleak) (2.13)

The synaptic currents are calculated by

Isyn = ḡsynPSG (t) (Esyn − V) (2.14)

The numerical integration scheme employed by NCS is similar to an Eulerian method.

However, as mentioned above a constant leak term is added to the discretized form

of equation (2.1). To begin the current values defined above are summed

ITotal = IM + IA + IAHP + Iinput + Isyn − Ileak (2.15)

The new voltage is then calculated as a combination of the defined membrane

resting potential, the previously calculated membrane potential, the membrane resis-

tance, capacitive time constant and total currents.

V (t+ 1) = Vrest + (V (t)− Vrest)
(

1− ∆

τmem

)
+ ∆

ITotal
Cn

(2.16)

Rearranging for clarity

V (t+ 1) = V (t) + (Vrest − V (t))
∆

τmem
+ ∆

ITotal
Cn

(2.17)

Where

Cn= τmem

Rmem

31

Rmem is the defined resistance of the membrane.

τmem is the defined capacitive time constant of the membrane.

Notice the form of equation (2.1) in a simple Eulerian integration scheme would be

V (t+ 1) = V (t) + ∆
ITotal
Cn

(2.18)

The addition of the middle term in equation (2.17) numerically drives the mem-

brane voltage of the cell back to a predefined resting potential.

When the voltage crosses a specified threshold value vthreshold, the membrane po-

tential follows a user-specified spike shape pattern. During this time, the internals of

each channel are updated; however, they have no effect on the value of the memberane

potential. At the end of the pattern, calculations resume using equation(2.17).

32

Chapter 3

NeoCortical Builder: A Web Based
Front End for NCS

Jakub Berlinski, Cameron Rowe, Daniel M. Chavez, Nathan M. Jordan, Devyani

Tanna, Roger V. Hoang, Sergiu M. Dascalu, Laurence C. Jayet Bray, and Frederick

C. Harris, Jr. NeoCortical Builder: A Web Based Front End for NCS. In Proceed-

ings of the 27th International Conference on Computer Applications in Industry and

Engineering (CAINE-2014), 2014. Submitted.

Abstract

The NeoCortical Builder (NCB) is a web-based application for building brain models

and creating simulation input and output parameters. NCB is also able to launch

simulations on the NeoCortical Simulator (NCS). NCS is a neural network simulator

which takes various brain models with corresponding simulation parameters and pro-

vides output. NCB was designed to streamline the process of model creation and the

creation of simulation input and output parameters. NCB has the ability to drasti-

cally change the way various types of scientists interact with brain simulators. NCB

creates a modern graphical interface to streamline the creation of brain simulations.

3.1 Introduction

Brains are complex systems which are difficult to fully understand. The problem

is brains are extremely complicated to model and in many different brain modeling

33

applications the interface is confusing or outdated. One example of a competing

product is NEURON [14]. NEURON also simulates brain models but its interface is

outdated and sometimes confusing. Along with having an interface, NEURON also

allows users to use text based input files. NCS has tried different ways to create brain

models and simulation parameters, such as name and duration, for brain simulations.

The latest method involved using text based input files. These files were complicated

to construct as they required very specific syntax that the user would need to know.

NCB solves this problem by providing a modern graphical user interface which the

user will interact with to create their brain model as well as their simulation param-

eters. This graphical user interface will be implemented as part of a bigger front end

web application.

Web based applications are becoming more prevalent because the Internet is more

reliable and faster than ever before. Ease of use and accessibility are key features of

web based applications and NCB provides that for any user that uses it. To run NCB

all a user needs is access to a device capable of running a modern web browser. The

goal of NCB as a web based application is to provide the end user with a portable

way to create brain models.

The rest of this paper is structured as follows: Section 3.2 covers what NCS

is and the technologies used to create NCB. Section 3.3 covers the design of NCB.

Section 3.4 goes into detail of model creation. Section 3.5 discusses conclusions and

future plans for NCB.

3.2 Background

3.2.1 NCS

The NeoCortical Simulator is a neural simulation tool developed at the University of

Nevada, Reno [21]. NCS has the ability to model millions of neurons in real time.

It allows neuroscientists to build, test, and visualize a brain model that they design

using NCB. NCS can run on a single computer or across a cluster of computers. Most

34

importantly, NCS uses both CPUs and NVIDIA GPUs to generate the maximum

computational power [27].

The goal of NCS is to create an approachable neuro simulator that can be used by

any neuroscientist without the need to know how to write any code. Using NCS, users

will be able to quickly launch simulations and receive their outputs in real time with

the click of a button. NCS also aims to be an extensible application where different

parts of a model are computed with different inputs that the user defines. This allows

NCS to have many more combinations of components which create the most realistic

simulation possible. Finally NCS aims to do all of this in the most efficient manner.

Harnessing the power of GPUs, NCS will be able to use the maximum amount of

resources to provide the simulation of neurons in the most efficient way [26].

3.2.2 Technologies

Many web technologies were used in the creation of the NeoCortical Builder. The core

technologies that were used to build NCB are HTML5[41] and CSS[40]. The following

technologies were also used: JavaScript, JQuery, AngularJS, Bootstrap, X-editable,

and Flask.

• JavaScript is an object-oriented computer programming language which is used

by NCB to create interactive effects within the web application [42]. For ex-

ample, JavaScript would detail what would happen when a certain element is

selected by the user. Additionally, JavaScript is used as a way to hold brain

models and simulations on the back end.

• JQuery is a library for javascript which simplifies DOM manipulation [49]. NCB

uses JQuery to edit the HTML of the web page to show or hide various different

elements. JQuery is being replaced with AngularJS because AngularJS is a more

robust library for manipulating the web page.

• AngularJS is a javascript library which allows for single web page applications.

Usually when creating a web page there are many different pages that are ac-

35

cessed when using the site. For example selecting “about” on a web page will

load a whole new HTML file for that page. Angular allows one big html file

where elements are hidden or shown instead of having multiple files [23]. NCB

uses AngularJS as a framework to set up a single page web application.

• Bootstrap is a set of design templates which use HTML and CSS to create

various types of elements on the web page [53]. NCB uses many different boot-

strap design templates from web page structuring to the design of buttons and

dropdown menus.

• X-editable is a javascript library which allows DOM elements to be made ed-

itable. The elements can then be edited through either a pop-up or in-line

within the webpage [46]. In NCB this was one of the most important features

because it allowed users to edit the various brain model and simulation param-

eters quickly and easily.

• Flask is a python based web server framework [47]. NCB uses flask for commu-

nication with the running simulation.

3.3 Design Overview

The front end web application for NCS will be made up of many different parts as

shown in Figure 3.1. The NeoCortical Builder will be in charge of two major compo-

nents, the brain builder tab will be used to create brain models and the simulation

builder tab which will create simulation runtime parameters. The next two tabs will

be done by the NeoCortical Repository team (NCR) [2]. The first of their two tabs

will be the reports tab which will show various graphs and other information per-

taining to the running simulation. Their second tab will be the model repository tab

which will be in charge of holding all the brain models in various databases. The final

section will be the virtual robot tab which will use the simulation output to affect a

robot.

36

Figure 3.1: The complete web application framework.

3.3.1 Brain Builder

The brain builder tab is split into a three column layout as shown in Figure 3.2. The

left column is where the pre-built models will be loaded from various model databases.

Additionally, the models in this tab may be filtered instantly by typing into the filter

input box as shown in Figure 3.3. Selecting a model will expand a quick view which

details the model parameters as shown in Figure 3.4. In this column there is also a

button which prompts the user to import models from a file or export models to the

user’s computer. There is an options button which allows the user to customize the

colors of various portions on this tab.

The middle column is where the model currently being worked on is shown.

In this column there is a button which allows the user to add various brain model

elements including neurons, groups, and aliases shown in Figure 3.5. After an element

is added the user is able to select the red minus button to remove that element. Groups

are able to be nested within each other and when this occurs a breadcrumb trail is

created across the top of the column shown in Figure 3.6. Additionally, there is a

second button which allows the user to edit the current model parameters including

name, description, and author. Selecting a model in this column will populate the

right column.

The right column is where all the selected model’s parameters are shown. The

parameters are split into three main categories. The categories are cell-group parame-

37

Figure 3.2: The model builder tab within the NCB front end web application.

Figure 3.3: Filtering the models in the left menu.

38

Figure 3.4: The popover when a user selects a pre-built model in the left menu on
the model builder tab.

Figure 3.5: When the user selects the “+ Element” button they are shown this modal
which asks for various element details.

39

Figure 3.6: Multiple cell-groups nested within each other.

Figure 3.7: Editing a model parameter in the right column.

40

ters, cell parameters, and connections. Certain cells like the Hodgkin-Huxley cell-type

may have channels so in these cases a third category will be dynamically created to

show this. To add connections the user can select the “+ Connection” button and a

pop-up appears prompting the user for various parameters which are needed to cre-

ate a connection. Furthermore, all parameters will be editable when the user selects

them. When a user clicks on an editable parameter a small pop-up appears where

the user can then enter their new parameter value as shown in Figure 3.7.

3.3.2 Simulation Builder

Figure 3.8: The simulation builder tab within the NCB front end web application.

The simulation builder tab, as shown in Figure 3.8 is also split up into a three

column layout. The left column is where the user may add simulation parameters.

Some simulation parameters include name, duration, and seed. These simulation

parameters are used as a way to identify a specific simulation and also to give NCS

some important information about how a simulation should be ran.

The middle column is where the user will input the runtime parameters for the

41

simulation. Some input parameters are stimulus type, frequency, input elements,

start and end times, and many more. These parameters indicate where currents will

be applied on the built brain model.

The right column is where the user will input the output parameters for the

simulation. Some output parameters are output types, report types, output elements,

frequency, start and end times, and many more. These parameters indicate specific

elements the user wants to observe.

3.4 Usage Scenario

When the user first opens the NCB web page they are shown the front page which

is Figure 3.2. As we mentioned in the previous section, there is a three column

layout with the first column being the preloaded models, the middle column being

the current model, and the right column being the various parameters of the current

models selected elements.

The first thing a user would want to do if they were creating a fresh model is to

select the add element button. After the user selects that button they are shown the

pop-up modal, shown in Figure 3.5, which asks for the type of element to add and

various parameters like the name and amount. The user may add as many elements

as they need using this method. Figure 3.9 shows a model with two cell-groups.

Figure 3.9: Two cell-groups have been added to the current model and they are shown
in the center column.

42

Next the user would edit some parameters in the model they are building. When

the user selects a cell group the right column becomes populated with the selected

element’s parameters. Selecting one of the values brings up a small pop-up where the

user may update and save their new value as shown in Figure 3.7. All parameters

may be edited to take a specific set of values. When a user selects “exact” they need

to only enter one value for that parameter. When a user selects “uniform” they are

required to enter two values, a minimum and a maximum. Finally if a user selects

the “normal” option they are required to enter a mean and standard deviation value.

Figure 3.10: The modal which prompts the user for values for a connection.

Currently in our working model there are two cell-groups that are disconnected

from each other. To make a complete brain model the user will need to connect them

to each other using a connection. To add a connection between different elements, the

user must select the “+ Add Synapse” button and they will be shown the modal in

Figure 3.10. Here the user must enter a name for their connection, a probability that

43

the connection will fire, two elements which are being connected, and finally a type

of connection. The two types of connections that NCB supports are flat synapses

and NCS synapses. After adding a connection, it will appear as a collapsible element

within the connections in the right column as shown in Figure 3.11.

Figure 3.11: An example of a connection between two elements, group1 and group2.

After adding a connection between these two elements the model is simple but

complete. The user may want to personalize their current model by giving it a

name, a description, and setting the author. To do this the “Edit” button will be

selected and a modal pops up where the user may enter these values. This is shown

in Figure 3.12. After the model is edited the user may choose to export the model

to their computer. Furthermore, if the user does not want to create a new model he

or she may import a previously built model. With a complete model the user may

navigate to the simulation builder tab and begin editing their simulation parameters.

In the left column on the simulation builder page the user will enter information

about the simulation’s name, how long the simulation should run, the seed that will

be used, and various other information. For the simulation the user will also need to

fill out what type of input and output the user wants from the simulation.

44

Figure 3.12: The modal which prompts the user for values to personalize their model.

3.5 Conclusion and Future Work

3.5.1 Conclusion

NCB provides many features that make the creation of brain models and simulations

easier and more intuitive. With a graphical front end for creating brain models, the

user does not need to get into creating convoluted text files that may very quickly get

very large and unreadable. NCB makes the power of NCS accessible to any scientist

who wants to simulate brain activity. NCB has been designed with simplicity in mind

to allow anybody the ability to use it.

3.5.2 Future Work

Although NCB contains many features for creating brain models, it is still only half

of the final web application. NCB deals with the creation of brain models and simu-

lations while NCR deals with the saving of the models in a database and displaying

the reports from the simulation. In the future both of these projects will be combined

to create the final and complete front end web application for NCS.

45

Chapter 4

NeoCortical Repository and
Reports: Database and Repository
for NCS

Edson Almachar, Alexander Falconi, Katie Gilgen, Devyani Tanna, Nathan M. Jor-

dan, Roger V. Hoang, Sergiu M. Dascalu, Laurence C. Jayet Bray, and Frederick C.

Harris, Jr. NeoCortical Repository and Reports: Database and Repository for NCS.

In Proceedings of the International Conference on Software Engineering and Data

Engineering (SEDE-2014), 2014. Submitted.

Abstract

In the field of Computational Neuroscience, computer based brain simulators help

Neuroscientists in the formulation and examination of theories about the inner work-

ings of the brain in the microscopic and cellular level. Brain simulators offer an

opportunity to refine and build upon the compendium of scientific knowledge in Neu-

roscience. One of these brain simulators is the NeoCortical Simulator (NCS). In

operating a computational powerhouse, there is a need of an interface with which a

user would interact with to communicate with the simulator. We propose a browser

based web application that a user may browse to in order to use a plethora of services

for the simulator. Two of these services include a Repository Service which allows a

user to save a brain model onto a database and a Reporting Interface which allows

46

a user to view the data output by the simulator. This paper details the design and

implementation of those services, called NeoCortical Repository and Reports (NCR).

4.1 Introduction

The NeoCortical Simulator from the University of Nevada, Reno, is a joint research

venture between the colleges of Science, Engineering, and Medicine within the Univer-

sity of Nevada, Reno[26, 27]. It is a tool for researchers to perform CPU/GPU based

simulations with biological brain models. The NCS uses brain model data as argu-

ments to the simulator and then outputs data in a parsable text format. Previously,

the brain models had to be coded in, which was an inconvenience for researchers unfa-

miliar with programming. Additionally, the outputs were not conveniently displayed

and required extra time and effort to understand the data.

Past projects have expanded on the idea of a friendlier user experience when

interacting with the simulator. One of which is the NCS-NeuroML translator [34]

which allowed the conversion of NCS input files from the standard NeuroML input

language to the native input language via the usage of a java-gnome user interface

library thereby streamlining interaction with the simulator. Another is the 3D Neuron

visualizer, or NeoCortical View[13], which allowed a user to visualize the current live

network state of the simulation in 3D.

To continue this trend of streamlining the experience, we wish to further improve

the interface. We propose the NCS Web Application; an intuitive, browser based

application that users may browse to on their web browser and begin interacting

with the NCS without need of a command line interface. The NCS Web Application

is comprised of five main components that encourage a smooth user experience within

the NCS. These components are outlined in Figure 4.1.

There are multiple development teams in charge of the construction of this web

application. The NeoCortical Builder team is responsible for Brain Builder and Sim-

ulation builder [3]. Whereas, the development team, NeoCortical Repository and

Reports, is concerned with the development of the Model Database and the Graph-

47

Figure 4.1: The architecture of the NCS Web Application.

ical Reports, and as such, is the main topic of discussion for this paper. The two

components developed by NCR are described by the following:

Firstly, when a user chooses to interact with the Database, the user must be aware

that NCS has the ability to simulate three biological neuron models: Izhikevich, Leaky

integrate-and-fire, and Hodgkin-Huxley. NCR is concerned with the implementation

of a Model Database that would need to understand these brain models in order to

conduct services like storage, search, and updating a model.

Secondly, further down the cycle in an active simulation, there would have to

be an output. NCR is concerned with the implementation of a Reporting Interface

comprised of line graphs and raster plots, which are the standard graphing mediums

in Neuroscience. These reports make interpretation easy and swift so as to promote

efficient use of time and better productivity.

As a result, the implementation of NCR within the NCS mainframe will accom-

plish a multitude of goals that encourage a user friendly experience with the NCS.

To help outline these goals, the design overview of the NCR components and their

use cases are detailed in Section 4.2. The User interface, a key asset in the human to

computer interaction of the application, is detailed in Section 4.3. The paper wraps

up with a discussion of future work in Section 4.4.

48

4.2 Design Overview

The main functionality of NCR is based on its manifestation as a website. The site

is hosted on a web server base constructed using FLASK[47], a python based micro-

framework. The model database is designed using MongoDB[36], which is an easily

scalable non-relational database. Hosted over the internet, the database can be used

to upload or store brain models. The reporting interface is constructed via D3.js[6],

a javascript graphing library, and jQueryUI[49], a javascript user interface library.

Everything the user does to interact with the NCS would be done so through the

users’ web browser.

4.2.1 Database Design

The brain model database gives users of the NCS web application the ability to easily

collaborate with others and save valuable time. The model database is designed in

order to store and query various brain models. MongoDB is an ideal choice for the

database since it is free, open source, flexible in terms of schema, and uses JSON-

style(Javascript Object Notation) documents as shown in Figure 4.2.

The MongoDB document design is shown in Figure 4.3. Big boxes are documents,

and boxes inside boxes are sub-documents. Sub-documents are good for faster queries.

Each document belongs to one of the 6 collections in the database: Groups, Neurons,

Channels, Synapses, Stimuli, and Reports. By default, MongoDB does not enforce

schema. In order to have structured schema and validation layer, MongoKit [39] is

used. A database schema is created for each document type, and is used as the format

for the models within MongoDB.

The simplistic structure of the search panel provides an intuitive way for a user

to find a useful model in the database without the need for searching through various

text files and downloads. The database stores models from users who have uploaded

or created a model using the Model Builder tab of the application, meaning that users

from around the world may publish a model for other users to view.

49

Figure 4.2: JSON document for Izhikevich Neuron

Figure 4.3: MongoDB documents design

50

4.2.2 Reports - High Level Design

The Graphical Reports tab of the NCS web application aims to provide as much of

an intuitive interface as possible in an attempt to maximize comprehension of the

data and to minimize the complication of technicality. In order to provide such an

interface, a fully dynamic environment is generated that would allow a user to manage

and manipulate graphs to their liking. Users may manage graphs by dynamically

creating or deleting them. Users may apply spatial manipulations by dragging and

placing the graphs from one area of the web page to another, allowing the user to

reorganize the graphs to their liking.

When considering a large amount of data, accuracy in representation must be

considered when abstracting output from the NCS. Scalable Vector Graphics (SVG)

are the main abstraction medium for the data and utilized for dynamic representation.

D3.js provides the interface between the data and the SVG representing the data.

As data is continuously fed to the client from the server, the SVG’s must change

dynamically over time. To accomplish this, D3 allows for animated SVG’s.

Presentation both on the NCS web application and off are important. When

considering the applications ability to save graphs onto disk, accurate representation

has to be priority. To facilitate this concern, client side graph capture of the browser

generated SVG was an optimal design choice. Users may capture the SVG elements

within the webpage and have its context downloaded as an SVG file. For an animated

Graphics Interchange Format (GIF), the SVG is continually contextualized into a

HTML5 Canvas element. That element is then captured and inserted frame by frame

into a GIF object and downloaded as a GIF file.

4.2.3 Reports - Low Level Design

The graphical reporting interface is comprised of multiple components whose func-

tionalities vary widely, but each having an important role in the construction of a

reporting window. The components interaction is shown in Figure 4.4.

51

Figure 4.4: The low level design of the reports interface.

Control Panel - The component representing the control panel that would allow a

user to manipulate the environment that the graphs will be instantiated into.

Graphs - An singleton that would allow a user to add or remove graphs. This entity

is also responsible for maintaining and feeding data to graphs.

Data Generator - An entity that manages the data received from NCS and would

continuously inject that data into the line graphs and raster plots.

Line Graph(s) - A D3 based entity that holds and manages the line graph SVG.

Raster Plot(s) - A D3 based entity that holds and manages the raster plot SVG.

GIF Capture - A service that allows a Line graph or Raster plot to be recorded via

GIF or SVG and saved to file.

4.3 User Interface

4.3.1 Repository

The model database tab of the NCS Web Application is used to search through the

brain model database using a simplistic search panel. The model list on the tab

shows the models in the database that match the search criteria specified by the

52

user. Within the search panel, the user can filter the list based on the model types,

which are collected into groups in the search panel. Selecting a model type opens a

collapsible list of searchable parameter values. The user may enter an exact value, or

a range of values delimited by a dash.

The search panel is located on the left side of the model database tab. The initial

panel shows groupings for model types that can be expanded to reveal model type

selection boxes. Selecting a model type box adds models of the selected type to the

filtered results. If the name of the type is selected, the search panel expands to show

the parameter search options. Here, the user enters an exact or range of values into

the search box and clicks the search icon to update the model list. Only the models of

the selected type that have the specified value appear in the list. A user can specify

as many included types and parameter values as desired for a search. The general

filter group includes filtering the list based on name, author, description, and scope

values. An example of the list filtered by selecting the group Neuron, type Izhikevich,

and specifying the author name are shown in Figure 4.5.

Figure 4.5: The models in the list are populated based on the search filter values,
located in the left search panel.

By selecting the name of a list item, a user can view the models details. A

53

model view opens on the page and shows the models general information, such as the

name, author, and description. The detail view includes a table of parameters and

the models parameter values. Each detail view is specific to the selected model type

in order to intuitively display the information, as shown in Figure 4.6.

Figure 4.6: Selecting a model name in the list opens the detailed view which shows
the parameter values and the promote option..

Use Cases - Repository

UC01 Search Models

A user selects model types to be included in the search results, and then expands the

parameter dropdown for each type to enter parameter values. The list is populated

based on the filters by type selections and entered parameter values.

UC02 Examine Model

After a user has applied search filters to the model list, the list contains relevant

models. The user selects the name of a model in the list and a detail view window

opens. The user views the parameter values for the model.

UC03 Upload and Download Model

A user can choose to upload a model from database to model builder and download

model from model builder to database.

54

4.3.2 Reports

Upon entering the reports tab of the application, users will be greeted by a reports

control panel. From here, users will be able to control a myriad of functions which

allow the user to add graphing instances into the environment, add graphing columns,

change settings, and view the reporting status of the simulator. When a user adds

a graph instance, it is either in the form of a line graph or a raster plot. The graph

is instantiated and placed in the environment. The environment which houses the

graphs is comprised of graphing columns. A graphing column is a container that

houses and displays graphs vertically (e.g. if a user has one graphing column, it

is possible to have one ”stack” of instantiated graphs. If a user has two graphing

columns, it is possible to have two ”stacks” of graphs). A key feature enabled by

these graphing columns is the ability to drag graphs from one graphing column to

another. This is the main implementation that allows for spatial customization where

a user can customize a certain region of the webpage to have a certain set of graphs.

When a graph is instantiated, each graph will have its own set of buttons at the

header of the instantiated graph. These buttons grant the user a series of customiza-

tion tools: add or delete lines, change the color of a line, zoom in or zoom out within

a graph, change the vertical dimensions of a graph, pause a graphs’ reporting state,

resume a graphs’ reporting state, record the current state of the graph as an animated

GIF or static SVG.

Use Cases - Reports

UC01 Add Line Graph or Raster Plot

A user has the ability to add reporting windows that can abstract the data in the

form of a Line Graph or a Raster Plot.

UC02 Zoom In or Zoom Out

A user can zoom into or out of a reporting window to accommodate their viewing

preferences. The differences in zoom levels can be viewed in Figure 4.7.

55

Figure 4.7: An example of multiple zoom levels and window dimensions.

UC03 Change Color

A user can choose to change the color of a line in a line graph to any color using a

gradient color picker for easier viewing of a certain cell as seen on Figure 4.8.

UC04 Play or Pause

As a graph is dynamically reporting data, a user can choose to pause the reporting

process and the graph will halt at the current data shown. When the user is ready,

he or she may continue to view the reports by pressing the play button. Play and

pause buttons are viewable in Figure 4.9.

UC05 Position Slider

Should the user wish to view old data that has already been reported, the user may

56

Figure 4.8: An example of multiple cell channels and color changes to facilitate easy
interpretation.

Figure 4.9: An example of the raster plot reporting window.

drag the position slider as necessary to view data as they wish.

UC06 Graph Recording

A user has the ability to record a frame of the graph and save to file. Upon the

recording options is an animated GIF, a static GIF, or an SVG.

57

4.4 Conclusion and Future Work

4.4.1 Conclusion

The NCR project follows a fundamental principle: a fluid harmony between the

powerful back end brain simulator and the intuitive front end array of tools is essential

to the human paradigm of easy to use, easy to share, and easy to understand. NCR

allows users to view available brain models with ease and intuitively view a graphical

abstraction of the simulation output. Combined, these various components form a

product which encourage an easy workflow of user control when interacting with

something as complex as the NCS.

4.4.2 Future Work

Future work for the NCR project includes the addition of non-core features; for

example, the implementation of a note taking tool to attach notes or comments

to models in the database, or a discussion forum for users so as to expand their

collaborative potential with other users across the world. Other ideas include the

ability to copy brain models from other existing databases, and the flexibility to accept

different types of models that may not currently be compatible with the database.

Other types of future work include the migration onto other platforms such as

mobile devices like smart phones or tablets. Adapting the application to table type

technology or other touch screen devices may include utilizing the full potential of a

touchscreen interface; for example, allowing the user to pinch-zoom a graph within

the reports tab, or to swipe through a listing of brain models pulled from the database

instead of clicking through a pagination scheme.

58

Chapter 5

Hodgkin-Huxley Neuron Model,
Simulation Building Blocks, and
Python Interface

5.1 Hodgkin-Huxley Neuron Model

There is always a trade-off between biological accuracy and execution time when it

comes to brain simulations. NCS6 had built-in IZH and LIF neuron models. HH,

which is more biologically accurate model, has been added in NCS7 as shown in

Figure 5.1. HH model is based on a set of four differential equations. The circuit

representation is shown in Figure 5.2. Equations used in NCS are based on the

equations provided by Alan Hodgkin and Andrew Huxley [29] from their experiment

of the giant axon of a squid. However, channel’s current contributions are based on

a generic equation [26]. In addition to the three built-in neuron models, users can

create their own plugin interface for different neuron models.

Figure 5.1: NCS Timeline

59

Figure 5.2: Hodgkin-Huxley circuit representation [52]. Membrane potential is mea-
sured on capacitor C.

5.2 Simulation Building Blocks

Building blocks for simulation in NCS are shown in Figure 5.3. They are channels,

neurons, synapses, groups and aliases, stimulus, report, and simulation info. There are

3 types of built-in channels in NCS: one for HH neuron model and two for LIF neuron

model. HH neuron model has generic voltage-gated particle channel that can be used

to model leakage channel, sodium channel, and potassium channel. LIF neuron model

has two types of channels: generic voltage-gated ion channel and Calcium-dependent

ion channel. Calcium-dependent channel is voltage independent. IZH neurons do

not have any channels since simulation is done with 6 variables. Also, users can

create plugin for additional channel if needed. Each neuron group contains one type

of neuron but it can have many neurons. For example, there might be 500 IZH

neurons in one group or 300 HH neurons, and so on. If more than one type of

neuron is needed in a group, neuron aliases can be used. For example, group3 =

sim.addNeuronAlias(“group3”,[group1, group2]). So, if group1 has IZH neurons and

group2 had HH neurons, group3 has both IZH and HH neurons. There are 2 types of

built-in synapses: flat and NCS (a.k.a LIF). Each connection group includes following

information: presynaptic group, postsynaptic group, synapse/connection type, and

probability of connection. If more than one connection is needed, connection alias

can be used similar to the neuron alias.

After specifying information about channels, neurons, and connections, initialize

60

Figure 5.3: Simulation building blocks for models in NCS

61

the simulation. Once the simulation is initialized, specify stimulus (input), reports

(output), and overall simulation information. There are six types of stimuli available:

linear current, linear voltage, rectangular current, rectangular voltage, sine current

and sine voltage. Also, 4 types of reports are provided: neuron voltage, neuron fire,

input current, and synaptic current. Stimulus is given to neuron groups and report

data can be collected from neuron group or connection group. Last step is to specify

the simulation information such as the duration or number of steps for the simulation.

5.3 Python Interface

The backend of NCS is written using CUDA and C++11. Prior to NCS7, text files

were used as an input to the simulator as shown in Figure 5.4. The advantage of the

text file was that it required minimum programming skills. However, they didn’t allow

loops and tended to be large. Due to this, it was inconvenient to write, debug, and

maintain code. NCS7 introduced both a Graphical User Interface [3] and a Python

interface so scientists with varying programming skills can utilize NCS. Python was

chosen because it is relatively easy to learn and it has been widely used in the field

by various simulators such as NEURON [14], NEST [16], and BRIAN [11].

Following functions are provided for Python interface in NCS7. For information

about function parameters and their descriptions, please refer to ncs.io/docs/.

• addNeuron

• addNeuronGroup

• addNeuronAlias

• addSynapse

• addSynapseGroup

• addSynapseAlias

• addStimulus

62

• addReport

• init

• run

Figure 5.4: Input file for NCS6 and prior versions

63

The following example is a model of regular spiking IZH neurons with synapse.

It is written using Python interface and its output is shown in Figure 5.5

#!/usr/bin/python

import os, sys

ncs lib path = (’../../../’) #Path to ncs.py

sys.path.append(ncs lib path)

import ncs

def run(argv):

#ncs.simulation() is required

sim = ncs.Simulation()

#start writing model - biology information

#addNeuron function

#Parameters for addNeuron function:

1. A neuron name (string)

2. A neuron type (string)

izhikevich, ncs, or hh

3. A map for parameter names to their values(Generators)

Generators can be exact, Normal, uniform

exact example : "a": 0.02

uniform example: "a": ncs.Uniform(min, max)

normal example: "a": ncs.Normal(mean, standard deviation)

Example of addNeuron with regular spiking izhikevich neuron

regular spiking parameters = sim.addNeuron("regular spiking","izhikevich",

{
"a": 0.02,

"b": 0.2,

"c": -65.0,

"d": 8.0,

"u": -12.0,

"v": -60.0,

"threshold": 30,

})
#addSynapse function

#Parameters for addSynapse function

1. A synapse name (string)

2. A synapse type (string)

ncs or flat

3. A map for parameter names to their values (Generators)

ncs synapse parameters = sim.addSynapse("flat synapse","ncs",

{
"utilization": ncs.Normal(0.5,0.05),

"redistribution": 1.0,

64

"last prefire time": 0.0,

"last postfire time": 0.0,

"tau facilitation": 0.001,

"tau depression": 0.001,

"tau ltp": 0.015,

"tau ltd": 0.03,

"A ltp minimum": 0.003,

"A ltd minimum": 0.003,

"max conductance": 0.3,

"reversal potential":0.0,

"tau postsynaptic conductance": 0.02,

"psg waveform duration": 0.05,

"delay": 1,

})

#addNeuronGroup function

#Parameters for addNeuronGroup function:

1. A name of the group (string)

2. Number of cells (integer)

3. Neuron parameters

4. Geometry generator (optional)

group 1=sim.addNeuronGroup("group 1",1,regular spiking parameters,None)

group 2=sim.addNeuronGroup("group 2",1,regular spiking parameters,None)

#addSynapseGroup function

#Parameters for addSynapseGroup function:

1. A name of the connection

2. Presynaptic NeuronAlias or NeuronGroup

3. Postsynaptic NeuronAlias or NeuronGroup

4. Probability of connection

5. Parameters for synapse

connection1=sim.addSynapseGroup("connection1","group 1",

"group 2",1,"flat synapse")

#initialize simulation

if not sim.init(argv):

print "failed to initialize simulation."

return

#addStimulus function

#parameters for addStimulus function:

1. A stimulus type (string)

rectangular current, rectangular voltage, linear current,

linear voltage, sine current, or sine voltage

2. A map from parameter names (strings) to their values(Generators)

Parameter names are amplitude, starting amplitude,

ending amplitude, delay, current, amplitude scale,

65

time scale, phase, amplitude shift, etc. based on the

stimulus type

3. A set of target neuron groups

4. probability of a neuron receiving input

5. start time for stimulus (seconds)

6. end time for stimulus (seconds)

sim.addStimulus("rectangular current","amplitude":10,group 1,1,0.01,1.0)

#addReport function

#Parameters for addReport function:

1. A set of neuron group or a set of synapse group to report on

2. A target type: "neuron" or "synapses"

3. Type of report: synaptic current, neuron voltage, neuron fire,

input current, etc.

4. Probability (the percentage of elements to report on)

voltage report 1=sim.addReport([group 1,group 2],"neuron",

"neuron voltage",1.0,0.0,1.0)

#An example of a report to file

voltage report 1.toAsciiFile("reg voltage report.txt")

#duration (in seconds) - each time step is 1 ms

sim.run(duration=1.0)

return

if name == " main ":

run(sys.argv)

Figure 5.5: 1 second (1000 steps) simulation of regular spiking Izhikevich neurons
with synapse. Blue line is group1 and red line is group2.

66

Chapter 6

Conclusions and Future Work

6.1 Conclusions

NCS is designed to run on the heterogeneous cluster of CPUs and NVIDIA GPUs for

large scale simulation. Prior to NCS6, NCS only ran on clusters of CPUs and had one

in-built neuron model, Leaky Integrate-and-Fire. Currently, NCS runs on CPUs and

GPUs, and it has three in-built neuron models: Izhikevich, Leaky Integrate-and-Fire,

and Hodgkin-Huxley that are widely used in the field. Also, users have an option

to create their own plugin interface for different neuron models. In addition to the

neuron models, a Python interface and a Graphical User Interface has been added

to NCS to encourage researchers with varying programming skills to utilize NCS.

Furthermore, the Report interface will allow users to view output by the simulator

in real time and the MongoDB database will allow researchers to share their models

and collaborate with others in the community. To download software and to view

documentation, please visit NCS’s website: ncs.io.

6.2 Future Work

NCS is the first simulator to propose and implement virtual neurorobotics frame-

work [20]. In the past, simulator interacted with Webots environment [22]. Brainlab

67

would like to have a WebGL based robotic environment that can be used by re-

searchers for free to create and test their models.

In future, we would like to add 3D geometry information for each neuron model

types. Geometry information would allow us to take distance into account for synapses

rather than delay only. Additionally, that information can be used to visualize the

model and neuron firing in real-time with WebGL application that is currently in

development.

68

Bibliography

[1] Arash Ahmadi and Hamid Soleimani. A GPU-based simulation of multilayer
spiking neural networks. In Proceedings of the 19th Iranian conference on Elec-
trical Engineering (ICEE), pages 1–5, Tehran, Iran, May 2011.

[2] Edson Almachar, Alexander Falconi, Katie Gilgen, Devyani Tanna, Nathan M.
Jordan, Roger V. Hoang, Sergiu M. Dascalu, Laurence C. Jayet Bray, and Jr.
Frederick C. Harris. NeoCortical Reporsitory and Reports: Database and Re-
porsitory for NCS. In Proceedings of the International Conference on Software
Engineering and Data Engineering (SEDE-2014), 2014. Submitted.

[3] Jakub Berlinski, Cameron Rowe, Daniel M. Chavez, Nathan M. Jordan, Devyani
Tanna, Roger V. Hoang, Sergiu M. Dascalu, Laurence C. Jayet Bray, and Fred-
erick C. Harris, Jr. NeoCortical Builder: A Web Based Front End for NCS. In
Proceedings of the 27th International Conference on Computer Applications in
Industry and Engineering (CAINE-2014), 2014. Submitted.

[4] Fabrice Bernhard and Renaud Keriven. Spiking neurons on GPUs. In Compu-
tational Science–ICCS 2006, pages 236–243. Springer, 2006.

[5] Mohammad A. Bhuiyan, Vivek K. Pallipuram, and Melissa C. Smith. Acceler-
ation of spiking neural networks in emerging multi-core and GPU architectures.
In Proceedings of the 2010 IEEE International Symposium on Parallel and Dis-
tributed Processing, pages 1–8., Atlanta, Georgia, April 2010.

[6] Mike Bostock. D3.js: Data-driven documents. http://d3js.org/, 2014. (Re-
trieved May 19, 2014).

[7] James M. Bower and David Beeman. The Book of GENESIS. Second edition,
2003. Chapter 21: Large-Scale Simulation Using Parallel GENESIS.

[8] James M. Bower and David Beeman. GENESIS 2.3. Available at http://www.
genesis-sim.org/GENESIS/, 2012. (Retrieved September 24, 2012).

[9] James M. Bower and David Beeman. GENESIS 3. Available at http://www.
genesis-sim.org/, 2012. (Retrieved September 24, 2012).

[10] Laurence C Jayet Bray, Gareth B Ferneyhough, Emily R Barker, Corey M
Thibeault, and Frederick C Harris Jr. Reward-based learning for virtual neu-
rorobotics through emotional speech processing. Frontiers in neurorobotics, 7,
2013.

http://d3js.org/
http://www.genesis-sim.org/GENESIS/
http://www.genesis-sim.org/GENESIS/
http://www.genesis-sim.org/
http://www.genesis-sim.org/

69

[11] Romain Brette and Dan F.M. Goodman. Brian: The Brian spiking neural net-
work simulator. Available at http://briansimulator.org/, 2012. (Retrieved
October 12, 2012).

[12] Romain Brette and Dan F.M. Goodman. Simulating spiking neural networks on
gpu. Network: Computation in Neural Systems, 23(4):167–182, 2012.

[13] Justin E. Cardoza, Alexander K. Jones, Denver J. Liu, Roger V. Hoang, Devyani
Tanna, Laurence C. Jayet Bray, Sergiu M. Dascalu, and Frederick C. Harris,
Jr. Design and Implementation of a Graphical Visualization Tool for NCS. In
Proceedings of The 2013 International Conference on Software Engineering and
Data Engieering (SEDE 2013), 2013.

[14] Nicholas T. Carnevale, Michael L. Hines, and John W. MOORE. NEURON for
empirically-based simulations of neurons and networks of neurons. Available at
http://www.neuron.yale.edu/neuron/, 2012. (Retrieved September 24, 2012).

[15] Diego Contreras. Electrophysiological classes of neocortical neurons. Neural
Networks, 17(5–6):633–646., 2004.

[16] Markus Diesmann and Jochen M. Eppler. NEST initiative. Available at http:
//www.nest-initiative.org/, 2012. (Retrieved September 24, 2012).

[17] Andres Fernandez, Ruben San Martin, Enric Farguell, and Giovanni Egidio
Pazienza. Cellular neural networks simulation on a parallel graphics process-
ing unit. In Proceedings of the 11th International Workshop on Cellular Neural
Networks and Theire Applications (CNNA), pages 208–212., Santiago de Com-
postela, Spain, July 2008.

[18] Andreas K. Fidjeland, Etienne B. Roesch, Murray P. Shanahan, and Wayne
Luk. Nemo: a platform for neural modelling of spiking neurons using GPUs. In
Proceedings of the 20th IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pages 137–144., Boston, MA,
July 2009.

[19] Andreas K. Fidjeland and Murray P. Shanahan. Accelerated simulation of spiking
neural networks using GPUs. In Proceedings of the 2010 International Joint
Conference on Neural Networks (IJCNN), pages 1–8., Barcelona, Spain, July
2010.

[20] Philip H. Goodman, Sermsak Buntha, Quan Zou, and Sergiu M. Dascalu. Virtual
neurorobotics (VNR) to accelerate development of plausible neuromorphic brain
architectures. Frontiers in Neurorobotics, 1(November):1–7., 2007.

[21] Philip H. Goodman, Roger V. Hoang, Laurence C. Jayet Bray, and Frederick C.
Harris, Jr. The Neocortical Simulator NCS. Available at http://www.cse.unr.
edu/brain/ncs/, 2012. (Retrieved September 24, 2012).

[22] Philip H. Goodman, Quan Zou, and Sergiu M. Dascalu. Framework and impli-
cations of virtual neurorobotics. Frontiers in Neuroscience, 2(1):123–128., 2008.

[23] Google. AngularJS. https://angularjs.org/, 2014. (Retrieved May 19, 2014).

http://briansimulator.org/
http://www.neuron.yale.edu/neuron/
http://www.nest-initiative.org/
http://www.nest-initiative.org/
http://www.cse.unr.edu/brain/ncs/
http://www.cse.unr.edu/brain/ncs/
https://angularjs.org/

70

[24] Bing Han and Tarek M. Taha. Acceleration of spiking neural network based
pattern recognition on nvidia graphics processors. Applied Optics, 49(10):B83–
B91., July 2010.

[25] Bing Han and Tarek M. Taha. Neuromorphic models on a GPGPU cluster.
In Proceedings of the 2010 International Joint Conference for Neural Networks
(IJCNN), pages 1–8., Barcelona, Spain, July 2010.

[26] Roger V. Hoang. An Extensible Component-based Approach to Simu-
lation Systems on Heterogeneous Clusters. PhD thesis, University of
Nevada, Reno, 2014. http://www.cse.unr.edu/~fredh/papers/thesis/
PHD-010-Roger-Hoang/dissertation.pdf (Retrieved July 24, 2014).

[27] Roger V. Hoang, Devyani Tanna, Laurence C. Jayet Bray, Sergiu M. Dascalu,
and Frederick C. Harris, Jr. A Novel CPU/GPU Simulation Environment for
Large-Scale Neural Modeling. Frontiers in Neuroinformatics, 7, 2013.

[28] Roger V. Hoang, Devyani Tanna, Laurence C. Jayet Bray, Sergiu M. Dascalu,
and Frederick C. Harris, Jr. NCS: A novel CPU/GPU Simulation Environment
for Large-Scale Biologically-Realistic Neuron Modeling. In Neural Information
Processing Systems (NIPS 2013), December 2013.

[29] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal
of physiology, 117(4):500, 1952.

[30] Jorn Hoffmann, Karim El-Laithy, Frank Gttler, and Martin Bogdan. Simulating
biological-inspired spiking neural networks with openCL. In Proceedings of the
20th international conference on Artificial neural networks: Part I (ICANN),
Thessaloniki, Greece., September 2010.

[31] Jun Igarashi, Osamu Shouno, Tomoki Fukai, and Hiroshi Tsujino. Real-time
simulation of a spiking neural network model of the basal ganglia circuitry us-
ing general purpose computing on graphics processing units. Neural Networks,
24(9):950–960., November 2011.

[32] Eugene M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on
Neural Networks, 14(6):1569–1572., 2003.

[33] Laurence C. Jayet Bray, Devyani Tanna, and Frederick C. Harris, Jr. NCS: A
Large-Scale Brain Simulator. In Neural Information Processing Systems (NIPS
2012), December 2012.

[34] Nathan M. Jordan, Kim Perry, Nitish Narala, Laurence C. Jayet Bray, Sergiu M.
Dascalu, and Frederick C. Harris, Jr. Design and implementation of an NCS-
NeuroML translator. In Proceedings of the International Conference on Software
Engineering and Data Engineering (SEDE 2012), Los Angeles, CA., June 2012.

[35] Michele Migliore, C. Cannia, William W. Lytton, Henry Markram, and
Michael L. Hines. Parallel network simulations with NEURON. Journal of
Computational Neuroscience, 21:119–129., 2006.

http://www.cse.unr.edu/~fredh/papers/thesis/PHD-010-Roger-Hoang/dissertation.pdf
http://www.cse.unr.edu/~fredh/papers/thesis/PHD-010-Roger-Hoang/dissertation.pdf

71

[36] MongoDB Inc. MongoDB. http://www.mongodb.com/, 2014. (Retrieved May
19, 2014).

[37] Jayram M. Nageswaran, Nikil Dutt, Jeffrey L. Krichmar, Alex Nicolau, and
Alex Veidenbaum. Efficient simulation of large-scale spiking neural networks
using CUDA graphics processors. In Proceedings of the 2009 International Joint
Conference on Neural Networks (IJCNN), pages 2145–2152, Atlanta, Georgia.,
June 2009. IEEE.

[38] Jayram M. Nageswaran, Nikil Dutt, Jeffrey L. Krichmar, Alex Nicolau, and
Alex V. Veidenbaum. A configurable simulation environment for the efficient
simulation of large-scale spiking neural networks on graphics processors. Neural
Networks, 22(5):791–800., August 2009.

[39] Namlook. MongoKit. http://namlook.github.io/mongokit/, 2014. (Re-
trieved May 19, 2014).

[40] Mozilla Developer Network. CSS. https://developer.mozilla.org/en-US/
docs/Web/HTML, 2014. (Retrieved May 19, 2014).

[41] Mozilla Developer Network. HTML5. https://developer.mozilla.org/
en-US/docs/Web/HTML, 2014. (Retrieved May 19, 2014).

[42] Mozilla Developer Network. JavaScript. https://developer.mozilla.org/
en-US/docs/Web/JavaScript, 2014. (Retrieved May 19, 2014).

[43] Thomas Nowotny. Flexible neuronal network simulation framework using code
generation from NVidia CUDA. BMC Neuroscience, 12(Suppl 1.), 2011.

[44] NVIDIA. CUDA 5. Available at http://www.nvidia.com/object/cuda_home_
new.html/, 2013. (Retrieved August 5, 2013).

[45] Tomaso Poggio, Ulf Knoblich, and Jim Mutch. CNS: a gpu-based framework
for simulating cortically-organized networks. Technical report, Massachusetts
Institute of Technology, Cambridge, MA., 2010.

[46] Vitaliy Potapov. X-editable. http://vitalets.github.io/x-editable/, 2012.
(Retrieved May 19, 2014).

[47] Armin Ronacher. Flask. http://flask.pocoo.org/, 2014. (Retrieved May 19,
2014).

[48] Ruggero Scorciono. GPGPU implementation of a synaptically optimized,
anatomically accurate spiking network simulator. In Proceedings of the Biomed-
ical Sciences and Engineering Conference (BSEC), Oak Ridge, TN., May 2010.

[49] The jQuery Foundation. jQueryUI. http://jqueryui.com/, 2014. (Retrieved
May 19, 2014).

[50] Corey M. Thibeault, Roger V. Hoang, and Frederick CḢarris, Jr. A novel multi-
GPU neural simulator. In Proceedings of the 3rd Conference on Bioinformatics
and Computational Biology (BICoB 2011), pages 146–151., New Orleans, LA,
March 2011.

http://www.mongodb.com/
http://namlook.github.io/mongokit/
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://www.nvidia.com/object/cuda_home_new.html/
http://www.nvidia.com/object/cuda_home_new.html/
http://vitalets.github.io/x-editable/
http://flask.pocoo.org/
http://jqueryui.com/

72

[51] Jan-Phillip Tiesel and Anthony S. Maida. Using parallel GPU architecture for
simulation of planar i/f networks. In Proceedings of International Joint Confer-
ence on Neural Networks (IJCNN), pages 754–759., Atlanta, GA, June 2009.

[52] Thomas P. Trappenberg. Fundamentals of Computational Neuroscience. Oxford
University Press, USA., Second edition, 2010.

[53] Twitter. Bootstrap. http://getbootstrap.com/, 2014. (Retrieved May 19,
2014).

[54] Mingchao Wang, Boyuan Yan, Jingzhen Hu, and Peng Li. Simulation of large
neuronal networks with biophysically accurate models on graphics processors. In
Proceedings of the International Joint Conference on Neural Networks (IJCNN),
San Jose, CA, August 2011.

[55] Dmitri Yudanov, Muhammad Shaaban, Roy Melton, and Leon Reznik. GPU-
based simulation of spiking neural networks with real-time performance and high
accuracy. In Proceedings of the International Joint Conference on Neural Net-
works (IJCNN), Barcelona, Spain, July 2010.

http://getbootstrap.com/

