
University of Nevada
Reno

An Extensible Component-based Approach to

Simulation Systems on Heterogeneous Clusters

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in Computer Science and Engineering

by

Roger Viet Hoang

Dr. Frederick C. Harris, Jr., Dissertation Advisor

May, 2014



 

 

 
 

 

We recommend that the dissertation 

prepared under our supervision by 

 

ROGER V HOANG 

 

entitled 

 

An Extensible Component-Based Approach To Simulation Systems On 

Heterogeneous Clusters 

 

be accepted in partial fulfillment of the  

requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Dr. Frederick C. Harris, Jr., Advisor 

 

 

Dr. Sergiu M. Dascalu, Committee Member 

 

 

Dr. Monica Nicolescu, Committee Member 

 

 

Dr. Bobby Bryant, Committee Member 

 

 

Dr. James Kenyon, Graduate School Representative 

 

 

Marsha H. Read, Ph. D., Dean, Graduate School 

 

   May, 2014 

 

THE GRADUATE SCHOOL 



i

Abstract

There is an abundance of computing power sitting in computer labs waiting to

be harnessed. Previous research in this area has shown promising results networking

clusters of workstations together in order to solve bigger problems faster at a fraction

of the cost for supercomputer time. There are, of course, challenges to using these

sorts of clusters: the communication fabrics linking these machines are not necessarily

high-performance, and the differences between individual machines in the cluster

require careful load balancing in order to efficiently use them. These problems have

only become greater with the introduction of acceleration hardware such as GPUs

and FPGAs; however, that hardware also provides even greater computing power at

an even lower price point for those that can work around their idiosyncrasies. This

dissertation presents an approach to designing software to effectively utilize these

heterogeneous computing clusters in a modular, extensible manner. I apply it to the

development of a large-scale NeoCortical Simulator(NCS) as well as the engineering

of a virtual reality library, caVR.



ii

Dedication

For Allison. Yeah buddy.



iii

Acknowledgments

It’s been eight years since I applied to graduate school on a whim. I’ve come

across quite a few characters since then, but needless to say, I wouldn’t be where I

am today without them. First, thanks to Dr. Sergiu Dascalu, Dr. Bobby Bryant, Dr.

Monica Nicolescu, and Dr. James Kenyon for reading my ramblings and serving on

my committee. Thanks to my advisor Dr. Fred Harris for hiring me way back when

and putting up with my maddening overengineering of things.

To everyone I’ve seen come and go in the many labs I’ve been in, my extended

stay has made that list way too long, but thanks for listening to all my ludicrous ideas

about non-scrolling virtual reality Mario games and Karaoke machines. I’ve made a

lot of hopefully life-long friends out of you all.

To my family, thank you for all the support and the delicious dinners I already

miss. To Allison, thanks for all the wonderful times that have been and will be.



iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background and Related Work 4

2.1 Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 The Graphics Processing Unit . . . . . . . . . . . . . . . . . . 4

2.1.2 General Purpose Computation on the GPU . . . . . . . . . . 7

2.1.3 Field-Programmable Gate Arrays and Reconfigurable Computing 10

2.2 Parallel and Cluster Computing . . . . . . . . . . . . . . . . . . . . . 11

2.3 Heterogeneous Cluster Computing . . . . . . . . . . . . . . . . . . . . 13

3 An Extensible Component-based Approach to Simulation Systems
on Heterogeneous Clusters 15

3.1 Flow Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Extensibility Decomposition . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Graph Replication and Communication . . . . . . . . . . . . . . . . . 20

3.4 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 The Rest of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . 22

4 NCS 23
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Biological Neurons . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2 Modeling Neurons . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.3 Simulation Strategies and Tools . . . . . . . . . . . . . . . . . 27

4.2.4 NCS and Related Work . . . . . . . . . . . . . . . . . . . . . 28



v

4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Simulation Composition . . . . . . . . . . . . . . . . . . . . . 30

4.3.3 Simulation Environment and Distribution . . . . . . . . . . . 31
4.3.4 Data Scopes and Structures . . . . . . . . . . . . . . . . . . . 32

4.3.5 Simulation Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.6 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.7 CUDA Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.8 pyNCS: Improving Quality of Life for Configuration . . . . . . 44

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 53

5 caVR 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Communication Medium . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.3 Toolkits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 Execution Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.4 Implementation Details and Differences from Hydra . . . . . . 66

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusions 76

Bibiliography 77

Appendices 89

A Publications 90
A.1 Virtual Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.2 Wildfire Visualization and Simulation . . . . . . . . . . . . . . . . . . 91
A.3 GPU Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.4 Neural Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



vi

List of Tables

4.1 Simulation environment. . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Theoretical limits for the number of neurons per machine for real-time

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.1 Publications sorted chronologically with subject areas. . . . . . . . . 93



vii

List of Figures

2.1 The Fixed-Functionality Graphics Pipeline . . . . . . . . . . . . . . . 6

2.2 Architecture of the Nvidia GeForce 8800 GPU from Nvidia’s technical
brief [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Basic class definitions for the publisher-subscriber system in NCS. . . 17

3.2 Example graph decomposition of an n-body simulation. The gray
boxes represent computational segments while the orange boxes repre-
sent data being passed. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Generalized decomposition of a computation node to achieve exten-
sibility. The gray boxes represent computational threads while the
orange boxes represent the data passed between them. . . . . . . . . 19

3.4 Modification of n-body graph decomposition to facilitate communica-
tion. Gray boxes represent computational processes while orange boxes
represent data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Structural illustration of a neuron by Boeree [18]. . . . . . . . . . . . 25

4.2 Equivalent circuit for a neuron by Gutkin, Pinto, and Ermentrout [57].
C is the capitance, while gL, ḡNa, and ḡK are conductances due to leak-
age channels, sodium channels, and potassium channels, respectively.
VL, VNa, and VK are the reversal potentials of their respective channels. 26

4.3 An example of how IDs would be distributed across a cluster for a
single element type. Vertically aligned boxes denote the IDs at different
scopes for the same element. To allow processes to work on wholly
separated sections of memory even in the case of bit-vectors, padding
is used at every level. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Graph decomposition of an NCS simulation. Gray boxes represent
computing processes while the orange boxes represent the data that is
passed between them. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 NCS communication graph. Gray boxes represent processes while or-
ange boxes represent data. The black arrows indicate the flow of data
from process to process while the red arrows indicate the flow of an
empty buffer used as a signaling mechanism. . . . . . . . . . . . . . . 38

4.6 An illustration of how the firing table works in NCS6. Data highlighted
in bright red denote changes that occur due to neuron firings during
the current time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Graphical breakdown of NCS neuron update. . . . . . . . . . . . . . . 43

4.8 An example NCS6 configuration written in Python. . . . . . . . . . . 46



viii

4.9 Execution time vs number of nodes for a 1 second simulation of Izhike-
vich neurons. Each line uses a different number of synapses. . . . . . 48

4.10 Execution time vs number of nodes for a 10 second simulation of Izhike-
vich neurons. Each line uses a different number of synapses. . . . . . 49

4.11 Execution time vs number of nodes for a 1 second simulation of NCS
LIF neurons. Each line uses a different number of synapses. . . . . . 50

4.12 Execution time vs number of nodes for a 10 second simulation of NCS
LIF neurons. Each line uses a different number of synapses. . . . . . 51

5.1 An example of a large screen display [87]. . . . . . . . . . . . . . . . . 57

5.2 A CAVE-like environment [38]. . . . . . . . . . . . . . . . . . . . . . 58

5.3 A user with a head-mounted display [105]. . . . . . . . . . . . . . . . 59

5.4 The three core subsystems of caVR and their interactions. . . . . . . 63

5.5 An example configuration of a caVR system in Lua. . . . . . . . . . . 67

5.6 A caVR schema for the specification of a ”machine” in Lua. . . . . . 68

5.7 A caVR application running with simulator windows to test behavior. 69

5.8 VFire, a Hydra application, running in a CAVE-like environment [65]. 70

5.9 RIST, a Hydra application, running in a CAVE-like environment [76]. 71

5.10 Experimental global illumination techniques being tested in a CAVE-
like environment [62]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.11 An Android phone being used as a rendering surface with Hydra [63]. 73



1

Chapter 1

Introduction

Despite the ever shrinking size of the transistor, heat and power consumption prob-

lems have stymied chip manufacturers’ attempts to make a single processing core

faster and more powerful. As a result, manufacturers have shifted towards devel-

oping processors with multiple slower but more energy-efficient cores. With these

architectural changes comes a set of algorithmic challenges in order to fully utilize

these multicore chips [48]. A similar trend can be seen in the evolution of the graphics

processing unit (GPU) because of their original purpose: massive throughput of highly

data-parallel computations [96]. Due to the nature of this task, GPU designers are

able to use extra transistors gained from their increased density for more computation,

resulting in specialized chips whose annual performance increases outstrip gains made

by the more generalized CPU. Furthermore, the introduction of programmability on

the GPU opened the doors to its use in other applications; however, similar to multi-

core CPUs, harnessing a GPU’s full potential comes with its own slew of algorithmic

challenges [58]. Even greater computational capacity can be gained by networking

multiple machines equipped with multicore CPUs and GPUs. This is visible in the

latest supercomputers being built today. That these devices are designed and priced

at commodity levels allows for a significant amount of computation to be relatively

affordable for anyone with a few hundred dollars [72]. Networking cheaply-built com-

puters into Beowulf clusters has been done since the 1990s [14], and the addition of

affordable multicore CPUs and GPUs allow for a great deal of computational power

to applications that are capable of harnessing it. Again, though, effective utilization



2

of these resources requires algorithmic designs that overcome the additional layers of

inter-node communication and load balancing.

Designing software that runs efficiently on these sorts of systems often comes at

the cost of flexibility. For efficiency’s sake, algorithms are finely tuned to the acceler-

ators that they run on. For example, the memory access and branching patterns on

CUDA devices can greatly affect the resulting performance [92]. Further complicating

matters is the fact that while builders of the world’s largest supercomputers can af-

ford to homogenize their hardware – the Titan supercomputer has 18,688 of the same

CPU and the same number of the same GPU [108] – finding such a homogeneous

system in a common research lab is unlikely. Different accelerators have different

characteristics and APIs, even between the same class of hardware. An an example,

different versions of CUDA hardware have different compute capability levels which

can limit, for example, the type of atomic operations that are available [93]. To make

software accessible to the largest audience, it must be designed to account for all of

these idiosyncrasies.

This dissertation presents an approach to designing software that is both effi-

cient and extensible in light of these challenges. The methodology decomposes a

problem into graph nodes that can be executed in parallel with data being passed via

a publisher-subscriber mechanism. Within each node, a subgraph is formed using a

number of plugin-based extensions in a manner that allows each node of the subgraph

to also execute in parallel. The overall graphs are then linked first across multiple dif-

ferent compute devices on the same machine, and then further linked across multiple

machines. The end result is a highly parallelized piece of software that efficiently uses

whatever resources are available within any given cluster of heterogeneous hardware.

I demonstrate the methodology on two different applications. The first is the

latest version of the NeoCortical Simulator (NCS), a large-scale brain simulator. I

present improvements over the previous version include the utilization of any arbitrary

mix of CPUs and GPUs to accelerate brain computations as well as a set of interfaces

that allow for different neuronal, synaptic, and input models to be used together with



3

minimal added computational cost. The second application is a virtual reality toolkit,

caVR. Similar to NCS, the design of caVR allows for arbitrary input and rendering

methodologies to be mixed and matched based on availability and the needs of both

the developer and user.

There are several contributions from this work. First, an extensible approach to

simulation systems on heterogeneous hardware is presented. Second, that approach

is demonstrated on the development of a brain simulator. As an added effect, I show

how to efficiently map certain brain computations to CUDA devices, in particular,

those of the previously CPU-specific NCS models. I also show how my design can

allow for models of different levels of biological fidelity and computational load can be

mixed with one another. Finally, I demonstrate the methodology on a much different

application, a VR library.

The rest of this document follows these contributions. Chapter 2 begins by giving

a history of parallel computing, the introduction of accelerators, and developments

in software design that take advantage of these developments. Chapter 3 outlines our

approach to dealing with heterogeneous hardware clusters that allow for extensibility

without sacrificing performance. Chapter 4 illustrates how we apply this approach to

the design and implementation of the most recent version of NCS, the Neo-Cortical

Simulator, while Chapter 5 applies the same process to caVR, a virtual reality library.

Related work and results specific to each of these applications is presented within their

respective chapters. Chapter 6 ends this document with some closing thoughts.



4

Chapter 2

Background and Related Work

Though the two applications we are targeting have rather disparate purposes, the

targeted hardware is similar: clusters of computers with potentially heterogeneous

hardware. This section outlines the evolution of such systems both from the hardware

side and the supporting software side. We take a bottom up approach, beginning with

the development of various accelerators that have found themselves as the workhorses

in the modern computing cluster and ending with advances on cluster computing in

general.

2.1 Accelerators

Like the math coprocessors that preceded them, a number of different pieces of add-on

hardware have been designed to offload expensive computations from the CPU. While

they have been designed for a multitude of purposes, such as graphics, audio, and

physics [49], the GPU has been the most prevalent source of modern computational

offloading. We also discuss another offloading solution, reconfigurable computing,

that serves as an intermediate between fast hardware-specific solutions and slower

software-specific ones.

2.1.1 The Graphics Processing Unit

Rendering computer graphics using entails the transformation of geometry into pixels

on the screen. For raster-based graphics, geometry is usually represented as trian-



5

gles. The vertices of these triangles are transformed from the reference frame they

are specified in to a world-space reference frame by multiplying each vertex by a

transformation matrix. They are then moved into a view-space reference frame by

another matrix. Finally, the three-dimensional view of the geometry is flattened into

a two-dimensional image plane by another matrix multiplication. The pixels within

the resulting triangles on the image plane are filled in a process called rasterization,

with colors based on the values interpolated from per-vertex attributes. These pixels,

called fragments, may be blended with existing pixels or discarded entirely based on

the desires of the programmer. Fragment colors could be further augmented through

the use of textures, usually one-, two-, or three-dimensional arrays of color values.

Originally designed to handle rendering tasks instead of the CPU, the graphics

processing unit (GPU) employs a parallel pipeline architecture [6] in order to trans-

form large numbers of vertices and fragments. Figure 2.1 shows such a pipeline.

Vertices of polygons are transformed based on the desired perspective by the vertex

processor. The results are clipped to the boundaries of the viewport before they are

rasterized, converting geometry into actual pixel fragments located appropriately on

the display. The final color of the fragments are computed in the fragment processor

before they are potentially displayed on the screen. It should be noted that in addi-

tion to being pipelined, GPU architectures generally parallelize across each stage of

the pipeline. That is, there may be multiple vertex processors working in parallel on

different vertices in a Single-Instruction Multiple-Data (SIMD) scheme.

Programmer control over the graphics card was handled through a number of

APIs, including OpenGL [102], a cross-platform API, and Direct3D [17], an API spe-

cific to Windows and other Microsoft platforms. Both allowed for certain parts of the

pipeline to be altered, but beyond that, computation through the pipeline was fixed.

For example, lighting could be specified as per vertex or per fragment, and blending

of overlapping fragments could be specified by the programmer; however, vertex po-

sitions would always uniformly be modified by a set of user-specified transformation

matrices to move vertices from object space to the image space.



6

Figure 2.1: The Fixed-Functionality Graphics Pipeline



7

This deficiency would be somewhat addressed with the introduction of pro-

grammable shaders. Originally written in assembly [123], shaders wholly replace

parts of the fixed-functionality pipeline, in particular the vertex processor and the

fragment processor. For example, one could offset some vertices based on the current

time and a sine wave in addition to or instead of the matrices. Usability of shaders

would improve over time as each respective API introduced higher level languages to

compose them, with OpenGL adding the OpenGL Shading Language (GLSL) [56],

Direct3D adding the High-Level Shader Language (HLSL) [32], and Nvidia introduc-

ing Cg [83], which could generate GLSL or HLSL based on the platform.

Other developments in GPUs would only further increase their flexibility with

the addition of features such as geometry shaders [90] that allow customized manip-

ulation of whole geometric primitives rather than single vertices, but the addition of

feedback mechanisms such as framebuffer objects [55] and transform feedback [91],

which allowed for pixels to be rendered into readable textures and transformed ver-

tices to be stored into readable buffers, respectively, would pave the way for a whole

set of different problems to be offloaded onto the GPU.

2.1.2 General Purpose Computation on the GPU

With the previously discussed hardware-accelerated ways of retrieving the results of

the now programmable shaders, researchers began experimenting with the graphics

card as a stream processor and general coprocessor [125]. This practice eventually

became known as general purpose computation on GPUs (GPGPU) [58]. From the

more graphical side, simulations of significantly larger numbers of particles could be

done on the GPU – where they would later have to be sent for rendering anyway

– by disguising individual pieces of particle data as colors, storing them in texture

memory, and updating them by reading in that texture memory in a fragment shader

and rendering the updated values into a different texture [79].

Earlier research in this domain typically accelerated solutions to problems that

could be easily mapped to graphics concepts. For example, Liu et al. [82] compute



8

a fluid simulation on a discretized 3D grid that can be mapped to 2D textures.

Crane et al. [33] simulate fluids in a similar fashion, albeit by using then available

3D texture rendering capabilities to more closely match the problem domain. In the

latter case, the fluid simulation was directly rendered as it was updated; as such, the

GPU solution provides two advantages: not only does the simulation get accelerated,

but the rendering throughput is also increased by removing the need to transfer data

from the CPU to the GPU. A similar boon could be found in the development of

VFire [65], an interactive virtual reality application where wildfire is simulated [67]

and visualized. The spatial domain of the wildfire simulation is easily mapped to

textures which can be quickly visualized as the simulation runs.

While the results of GPU computing were relatively impressive, harnessing it

was cumbersome. Developers needed to not only adapt their algorithms and code to

graphics constructs but also have knowledge of how to use graphics APIs to actually

utilize these constructs. As a result, other APIs, languages, and extensions were

created that tried to abstract away these details. One such work, Brook [26], extended

C to allow for constructs such as data streams and the kernels that operated on them.

Uses of Brook include N-body simulations [43] as well as the computational side of a

ray tracer [69].

GPGPU did not go unnoticed by the hardware manufacturers themselves. Nvidia

would eventually release its first version of its Compute Unified Device Architecture

(CUDA) in 2007 alongside the G80 series of GPUs. CUDA presents the user with a

programming model that can better express the data parallelism inherent to GPGPU.

In such a model, a kernel function can be executed by a large number of threads

(on the order of thousands) concurrently. Threads differentiate themselves and the

data they operate on through a system of assigned IDs. Additional advantages over

then-traditional GPGPU was the ability to access memory in more familiar array

primitives rather than textures as well as the ability for threads within a block to

communicate with one another through shared memory [75]. The G80 series of GPUs

also marked a change in GPU architecture. While the same type of feed-forward



9

Figure 2.2: Architecture of the Nvidia GeForce 8800 GPU from Nvidia’s technical
brief [50].

pipeline is employed, the actual processing architecture was unified: instead of specific

circuitry to handle vertices and other circuitry to handle fragments, a set of generic

processors are able to handle all types of shaders. Figure 2.2 shows this architecture,

itself composed of 128 processing cores divided into 16 streaming multiprocessors.

Later improvements to GPU architecture would generally increase the number of

processors, with the latest GTX780 cards containing 2304 processing cores [89].

While programs written in CUDA look more akin to standard C and C++ pro-

grams, programmers must still take care with their programs’ behavior in order to

maximize performance. For example, memory should be accessed in aligned contigu-

ous sections within blocks in order to coalesce them into single memory accesses, and

branching within a warp (a cluster of threads executing in lockstep) would cause a

portion of the warp to stall while the branch was executed [93].



10

While CUDA primarily presents a high-performance GPU programming model,

it was designed for Nvidia hardware. Akin to OpenGL, OpenCL was designed as

an open standard alternative to CUDA for parallel programming on not only GPUs

but also CPUs and other architectures. The standard does not promise any sort

of optimality in terms of performance; rather, it guarantees correctness across all

supported device types [115].

2.1.3 Field-Programmable Gate Arrays and Reconfigurable
Computing

Solutions for various applications could be placed on a spectrum. On one end, dedi-

cated hardware could be designed to very efficiently perform a specific task. On the

other end, a very general processor could be used, and software would dictate which

parts of the generalized hardware would be used in which order to accomplish the

same task. Early GPUs could be viewed as belonging to the the hardware end while

CPUs could be placed in the software end. GPUs and other hardware solutions are

unmatched to CPUs in terms of performance due to their very specialized nature;

however, they are not usually applicable to other tasks. CPUs tend to be slower but

more versatile due to their general purpose design.

An intermediate solution to problems exist in the form of reconfigurable comput-

ing, where hardware can be altered after fabrication to tailor it to the task at hand.

One such piece of hardware is the field-programmable gate array(FPGA). Here, parts

of the hardware are controlled by configurable hardware bits; additionally, the rout-

ing circuitry itself is programmable, allowing a customized circuit to be constructed.

Similar to other hardware acceleration solutions, these devices tend to be coupled

with a CPU to handle other tasks such as control of the device itself [31]. The use

of an FPGA can be viewed has moving computation from the temporal domain of

having a linear set of instructions that must be performed to the spatial domain

where computation is performed by some cluster of circuitry before proceeding to

the next cluster of circuitry. The advantage of this transition is the pipelining and



11

thus parallellization of computation throughout the hardware, increasing throughput.

Results show improvements ranging from 10 times to 100 times compared to CPU

solutions [39]. A potential drawback to using these types of devices is the large variety

of device types and lack of standardized design methods. Todman et al. [122] give a

survey of many of these architectures and methods while Hartenstein [59] summarizes

a number of more coarse-grain reconfigurable computing projects.

2.2 Parallel and Cluster Computing

There are limits to the amount of computation a single CPU core can do, limiting

the types of problems that can be solved in any reasonable time frame. Fabrication

advancements raised these limits, and for a while, with each new processor gener-

ation, programs written for single-core CPUs grew faster and faster without any

modifications. In 2005, Sutter [117] would declare that ”[t]he free lunch is over.”

Chip manufacturers were shifting to multicore designs, with two or more cores on the

same die. Clock speeds would not increase as drastically as before, so those unaltered

single-threaded programs would gain nothing from the addition of a whole extra com-

puting core. Programs that wanted to take advantage of these developments would

have to be structured with concurrency and parallellism in mind.

The transition to multicore was not the harbinger of the concurrent computing

age; it merely brought it into the limelight. Multiple processors, albeit not on the

same die, could be placed on a single motherboard and communicate via shared mem-

ory long before this. Early research with these systems focused on algorithms [73],

memory consistency [3], and synchronization [84]. Later work would introduce tools

to aid developers in productively utilizing such systems. OpenMP [36] is an API de-

signed to simplify parallel programming on shared memory systems. Code could be

annotated with directives that would allow OpenMP to parallellize constructs such

as loops across a pool of available processors.

Though building shared memory systems is and was certainly possible, it required

more esoteric hardware to facilitate multiple processors sharing that same memory.



12

An alternative is cluster computing [8], where multiple independent computers are

networked together and communicate through messages over that fabric. Such sys-

tems became an attractive option for several reasons, including the performance to

price ratio for standalone computers in addition to improvements in networking tech-

nology. Modern supercomputers tend to follow the same format, albeit with more

sophisticated communication fabrics; unfortunately, the design of these systems re-

quires significantly greater engineering effort compared to using an already connected

network of workstations [5].

As OpenMP facilitated parallelization across shared memory systems, the Message-

Passing Interface (MPI) [128] was designed to facilitate communication between mul-

tiple computers. MPI allows nodes in a cluster to communicate with one another by

sending each other point-to-point messages. Additionally, a set of collective opera-

tions, such as broadcasting, where a single computer replicates a piece of data to all

other computers, and reducing, where the results from multiple computers are com-

bined, are also defined. MPI-2 extends this feature set with one-sided communication

methods, such as reading and writing to another machine’s memory without that

machine’s involvement, and dynamic process generation, which allows more processes

to be generated during run-time rather that configuration time [51].

Concurrent and parallel programming across a cluster of computers via message-

passing is arguably more complicated than implementing the same task across a

shared memory system. A middle-ground exists for programs designed for the latter:

distributed shared memory [101]. Such systems tend to physically be structured as

a cluster; however, from the programmer’s point of view, all resources across the

entire cluster appear as a single powerful system image. Memory consistency across

the cluster is a significant problem in these sorts of setups. What to do when two

different nodes read and write to the same piece of memory in the same period of time

depends on the implementation; the choice of consistency model affects the amount

of data that must be passed around as well as assumptions that the programmer can

make [88].



13

2.3 Heterogeneous Cluster Computing

The term ”heterogeneous” in this domain is somewhat overloaded but generally refers

to computing clusters constructed out of a diverse set of hardware. In some cases, that

heterogeneity manifests itself as different processor speeds across different nodes in

the cluster. In other cases, the diversity stems from the introduction of accelerators.

In the most extreme cases, both the preceding conditions exist: clusters are composed

of processors with varying performance characteristics along with variety of different

accelerator types. Research has been done across all of these types.

Beaumont et al. [12] provide work that is an example of the first case. The authors

modify the data distribution components of the ScaLAPACK library in order to load

balance linear algebra computations across a heterogeneous cluster of CPUs. They

show that load-balancing matrix operations can be a difficult problem: determining

the optimal grid configuration for a group of heterogeneous processors is NP-complete.

They do, however, provide a heuristic solution. Barbosa et al. [10] also solve linear

algebra problems with a heterogeneous set of CPUs connected together with the

Windows Parallel Virtual Machine.

In both of the preceding examples, matrix operations such as LU decomposition

required solutions that took into account that the problem size would reduce as the

algorithm progressed; in this case, the way in which the problem shrinks can be de-

termined a priori and handled accordingly. For other problems, such a luxury cannot

be afforded. Teresco et al. [119] develop a system that is generally used for adaptively

refined meshes where the initial distribution of data may become unpredictably un-

balanced during each iteration depending on where more refinement is needed. In

such a system, a load-balancing suite redistributes data after each iteration based on

properties collected about each machine in the cluster.

For the second definition of heterogeneous computing, an example can be found in

the Keeneland project [126]. Architecturally, the cluster resembles a supercomputer

with its high-performance communication fabric. The GPUs used across the entire



14

cluster are also all of the same model. To help with programmer productivity, a

number of tools are provided, including Ocelot [40], a framework that allows CUDA

programs to be executed on non-CUDA compatible devices as well as CPUs. Efforts

similar to Ocelot can be found in research presented by Lee et al. [80], where the

parallellization through OpenMP is modified to run on CUDA devices instead.

At the more extreme end of heterogeneous computing, projects such as Axel [124]

can be found. Axel itself is a cluster composed of an array of identical nodes; each

node, however, is composed of a CPU, a GPU, and an FPGA. To utilize all the

processing elements in the cluster, a map-reduce framework was employed. A similar

system of identical nodes can be found in the QP cluster [109], where each node is

composed of two dual-core CPUs, four GPUs, and an FPGA and are connected using

Infiniband.

In almost all the discussed systems, tools were developed to accelerate develop-

ment of applications on their respective clusters. In the same vein as Ocelot but more

akin to distributed shared memory systems, Barak et al. [9] implemented an OpenCL

abstraction layer that allows an OpenCL program to use all available devices in a

cluster without knowing it.



15

Chapter 3

An Extensible Component-based
Approach to Simulation Systems
on Heterogeneous Clusters

The commonplace computer lab can potentially be rife with computational power;

they can also be rife with diversity as only subsets of these computers get upgraded at

any given point in time. Designing software that performs well on one such heteroge-

neous cluster can be a difficult task, with specially designed software and frameworks

developed just for that architecture. Making that software efficient on other systems

only makes it more challenging.

I propose an approach to engineering simulation systems that is easily extensible

to different types of heterogeneous clusters. These systems are also extensible in

terms of adding new functionality without the need to recompile the simulation core

or expose proprietary code.

The approach can be summarized as follows:

• Decompose the simulation into a graph of computational segments, their inputs,

and their outputs.

• Decompose each computation into a subgraph to support extensibility.

• Replicate this whole resulting graph across all devices within the cluster.

• Connect these graphs with minimal communication.



16

• Distribute data based on available resources.

I now go into each of these steps into detail. To illustrate each step, I apply the

approach to a gravitational n-body simulation.

3.1 Flow Decomposition

The approach begins by decomposing the simulation flow into a directed graph, where

nodes represent segments of computation and connections present the flow of data

between computational segments. We allow computation in each node to happen

concurrently with data passed along connections using a publisher-subscriber mech-

anism developed by the author, where a node will subscribe to its necessary inputs

and blindly publish its outputs to any subscribing buffers. We constrain the pub-

lishing mechanism by limiting the number of published buffers that any given node

can have in circulation at any point in time, somewhat similar to many double- and

triple-buffering schemes. This constraint is imposed for two reasons. First, it pre-

vents cannibalization of computing resources on nodes that have no dependencies and

can truly run freely, and second, it provides a natural ”resource pool” mechanism,

where memory is not constantly freed and reallocated but simply reused when marked

available. To facilitate this, published buffers must be released by each of their sub-

scribers; upon release from all subscribers, the buffer is automatically added back to

the publisher’s pool of available blank buffers. The basic outline for the classes that

comprises this publisher-subscriber mechanism is shown in Figure 3.1.

As an example, Figure 3.2 shows a graph decomposition of an n-body simulation.

There are two primary computations in such a system: the updating of velocities and

the updating of positions. The system in this case is tightly coupled. In order to

update a body’s velocity, both its previous velocity as well as the position of every

body in the system are needed. To update a body’s position, the body’s current

position is required. To illustrate the need for constraining the publisher system, an

additional computation node is added where external forces are applied to the system.



17

template<typename PublicationType>

class SpecificPublisher : public Publisher {

public:

unsigned int publish(PublicationType* pub);

Subscription<PublicationType>* subscribe();

void addBlank(Publication* blank);

Publication* getBlank();

bool init(unsigned int num_blanks = 3); // triple-buffer

};

private:

std::vector<Subscription<PublicationType>*> subscriptions_;

};

template<typename PublicationType>

class Subscription {

public:

PublicationType* pull();

void pull(PublicationType** location, Mailbox* mailbox);

};

class Publication {

public:

void release(); // signals that we are done with this pub, free it

private:

int ref_count_; // how many subscribers still need to release this pub

};

Figure 3.1: Basic class definitions for the publisher-subscriber system in NCS.



18

Gather Input 
Forces

Update 
Velocity

Input Forces

Update 
Positions

PositionsVelocities

Figure 3.2: Example graph decomposition of an n-body simulation. The gray boxes
represent computational segments while the orange boxes represent data being passed.

Without the constraints in place, this node is allowed to run as fast as it can since

it does not require any data from another node. In doing so, the node could allocate

and publish buffers faster than subscribing nodes could them, resulting in memory

overuse. Additionally, because nothing can block the node, it would be allowed to

consume all allocated processing time given to it rather than relinquishing that time

to subscribing nodes.

3.2 Extensibility Decomposition

To support extensibility, we decompose each desired computational node into a sub-

graph where each subnode represents a single extension, all of which again run con-

currently using the same described publisher-subscriber mechanism. These extensions



19

Synchronizer 
Main Thread

Wrapped 
Input/Output 

Data

Plugin Thread Plugin ThreadPlugin Thread

Input BufferInput Buffer Output Buffer

if (0 == release()) {
  publish(output);
}

Figure 3.3: Generalized decomposition of a computation node to achieve extensibility.
The gray boxes represent computational threads while the orange boxes represent the
data passed between them.

take the form of plugins (shared libraries). This decision was made in order to pre-

vent the need to recompile the simulation core while also allowing third parties to

develop proprietary modules without the risk of exposing secret information. Fig-

ure 3.3 shows a generalized decomposition of a node. The execution of the wrapped

publishing command is achieved with the introduction of a prerelease function that

is also executed when a buffer is completely released.

Suppose that input forces in the n-body could be gathered from a number of

different sources, such as a file, a network socket, or random number generation. In

such a case, decomposing the input node into the aforementioned subgraph would

allow all sources to be gathered in parallel.



20

3.3 Graph Replication and Communication

A complete, concurrent, and extensible description of the entire simulation in terms

of behavior and data flow is available at this point. We then simply replicate the

graph to all available devices in the cluster, allowing each device to perform a full

simulation of all elements it would be responsible for if all the available data is there.

To facilitate this, we identify any global data that is necessary and connect all of

these replicated graphs with a data exchange node that pushes all local data to other

devices while simultaneously pulling data from every other device. This node itself

can be represented as a subgraph that shrinks or grows based on the number of

machines and devices in the system.

For an n-body simulation, we require the position of every body in the system

in order to gather the total forces acting on any given body. As such, we connect

the replicated graphs with a node that exchanges all body positions with one another

across the cluster. Figure 3.4 shows this modification.

3.4 Distribution

Although a distributed simulation system exists at this point, care must be taken

in distributing simulation elements to devices given potential differences in perfor-

mance characteristics between devices. To achieve this, two things are required: a

description of each device’s capabilities and a description of each simulation element’s

computational requirements.

In the case of the n-body problem, a reasonable description of performance per

device could be estimated or measured computing throughput. The amount of calcu-

lation required per body is roughly the same; thus, a reasonable distribution method-

ology would be to dole out bodies to each device based on their relative performance

estimations during initialization before the processes are allowed to run.



21

Gather Input 
Forces

Update 
Velocity

Input Forces

Update 
Positions

Local 
PositionsVelocities Data 

Exchange

All Positions

Figure 3.4: Modification of n-body graph decomposition to facilitate communication.
Gray boxes represent computational processes while orange boxes represent data.



22

3.5 The Rest of this Dissertation

The rest of this dissertation is dedicated to demonstrating this approach on two

applications. In the first, we apply this methodology on the latest iteration of the

NeoCortical Simulator (NCS), a large-scale brain simulator. Though previous versions

had already been parallelized across CPU clusters, the alterations in this incarnation

not only allow multiple types of neurons, synapses, and inputs to be modeled in

tandem with one another, but also allow for these elements to be simulated on both

CPUs and GPUs simultaneously. The design of the system also allows for inputs

and reports to be specified at execution time, presenting a robust solution for more

real-time applications.

The second application, the virtual reality library caVR, solidifies the real-time

constraint as a requirement. Here, the heterogeneity stems not only from the variety

of computing hardware but also from the input and output methodologies. While

rendering may need to support different graphics libraries, such as OpenGL and Di-

rectX, this only encapsulates one sense that can be “rendered.” The system must be

designed to support various output libraries from the beginning. In addition, virtual

reality in particular is a field of considerable hardware innovation and experimenta-

tion, so the system must be easily extensible enough to facilitate these needs. Further

confounding matters is the need to also support a wide variety of input devices. In

spite of the hardware heterogeneity, the library must be robust enough such that an

application developer need only specify a small set of functions for a large amount of

hardware to be made functional.

Each of the subsequent two chapters are structured as follows for each respective

application. The problem will be introduced, and then background and previous work

related to that problem will be presented. We then show the design of the system

based on this approach and discuss results and conclusions before ending with some

avenues for future work.



23

Chapter 4

NCS

4.1 Introduction

Understanding the mechanisms that drive the human body is an essential prerequisite

to effectively addressing the myriad of possible maladies that can plague it. Unfortu-

nately, acquiring this knowledge can often times prove impractical or even unethical

with existing technology. This is particularly true in the field of neuroscience. In

these cases, modeling stands out as a potential alternative. However, its application

to neuroscience has its own set of computational hurdles depending on the size and

complexity of the system being modeled.

In this chapter, we present the latest version of the NeoCortical Simulator, (NCS),

an application designed to simulate large-scale models of spiking neurons. In order

to accommodate larger simulations in a reasonable time frame, we have redesigned

NCS to exploit the processing power of GPUs along with CPUs. The remainder of

this chapter is structured as follows: Section 4.2 gives an overview of spiking neural

simulations and related solutions while Section 4.3 describes the design of the new

system. Section 4.4 gives some performance results before Section 4.5 draws some

conclusions and offers some room for future work.

4.2 Background

The subject of neuroscience is a field of study on its own and its complete review

beyond the scope of this dissertation. Instead, I review enough biology for the reader



24

to understand the problem domain and the various modeling strategies.

4.2.1 Biological Neurons

The brain is composed of a large number of cells called neurons. In a human brain,

the number of neurons is estimated to be about 100 billion. Figure 4.1 illustrates

the typical structure of a neuron. Branching away from the cell body are a number

of dendrites that can receive signals from other neurons. Also branching away from

the cell body is a generally longer axon through which electro-chemical signals flow

towards the axon endings. These endings connect to the aforementioned dendrites

of other neurons, though not physically; instead, a small gap called a synapse exists.

The number of these gaps is roughly 1000 to 10000 per neuron [18].

The dynamics of this mass of neurons generally operates as follows: Ion channels

alter the amount of electrical charge both inside as well as outside the cell membrane,

the difference of which is called a membrane potential. When the membrane potential

exceeds a threshold voltage, a signal called an action potential is transmitted from the

body through the axon to the axon endings. The axon endings then release chemicals

called neurotransmitters which cross the synaptic gap to another neuron’s dendrites,

where they affect the ion channels of the subsequent cell, altering the voltage of that

body [18].

4.2.2 Modeling Neurons

A number of models have been developed regarding the dynamics of neurons and their

associated ion channels. One of the earliest and most used is the one derived from

experimental results by Hodgkin and Huxley [68]. In this model, both the behavior of

ion channels as well as the membrane potential are governed by a system of differential

equations. Depending on the type of ion channel, the equations controlling it can be

dependent on gating variables.

The previously described equations can be modeled as an electrical circuit. Fig-

ure 4.2 shows one such circuit. The neuron’s membrane potential is the voltage from



25

Figure 4.1: Structural illustration of a neuron by Boeree [18].



26

Figure 4.2: Equivalent circuit for a neuron by Gutkin, Pinto, and Ermentrout [57].
C is the capitance, while gL, ḡNa, and ḡK are conductances due to leakage channels,
sodium channels, and potassium channels, respectively. VL, VNa, and VK are the
reversal potentials of their respective channels.

the top of the circuit to the ground. Stored charge is represented by a capacitor while

various ion channels are represented as a voltage source that corresponds to a rever-

sal potential and a potentially variable resistor that affects the amount of generated

current [57].

While the Hodgkin-Huxley model provides an elegant model of neuron behavior,

its complexity does not lend itself to timely simulations of large numbers of neu-

rons. For these larger networks, researchers may be more interested in the neurons’

interactions rather than the precise dynamics of a singular neuron. In such cases,

functional approximations may be appropriate. Two popular options are the leaky

integrate-and-fire (LIF) neuron and the Izhikevich neuron. For the former type, the

neuron essentially accrues (”integrates”) charge until it reaches a threshold voltage,

upon which it fires, resetting the amount of accumulated charge. Charge integrates

as a result of both synaptic currents as well as external input current. Charge is also

dissipated as a result of a leakage current [28].



27

The latter approximation, the Izhikevich neuron [71], goes even further in eschew-

ing biological accuracy in favor of performance. The neuron has only two variables

that evolve over time: a membrane potential v and a recovery variable u. Four con-

stants determine the behavior of the neuron in a set of equations that can be very

quickly computed. Based on these constants, a neuron can be modeled to exhibit

a variety of different firing characteristics. The flexibility of these neurons along

with their computational simplicity makes them an attractive option for large scale

simulations of networks of neurons.

The discussed neuron models are only a subset of models that have been proposed;

a number of other hybrid solutions exist, such as the one used by previous versions

of NCS, where the subthreshold dynamics are governed by Hodgkin-Huxley style

equations while the firing mechanism simply follows a templated waveform in order

to save computation [41].

It should also be noted that the models mentioned so far only discuss the dy-

namics of the membrane potential; the dynamics of synaptic transmission have their

own set of models. Some models assume that when an action potential arrives at

a synapse, a constant amount of synaptic current is injected into the postsynaptic

neuron; however, other models may incorporate learning through mechanisms such

as spike-timing dependent plasticity (STDP), where the amount of synaptic current

or weight that is injected is modified over time based on the spike timings of both

the presynaptic and postsynaptic neurons [111].

4.2.3 Simulation Strategies and Tools

A more in-depth survey of simulation strategies and tools can be found in Brette

et al. [24]. The spectrum of approaches is broad, each with its own advantages and

disadvantages. For example, the use of a discrete time grid simplifies the nature of

the computation: for every time step, update every neuron and check for firings. This

sort of algorithm lends itself well to vectorization and parallelization. That simplicity

also has some notable drawbacks: firings are locked to the resolution of the time



28

grid, and computation must be done on every neuron at every timestep regardless of

whether they are firing or not. The situation is reversed when using an asynchronous

or event-based simulation strategy. Firings occur precisely where they are calculated

to occur at the cost of a more complicated algorithm that must constantly maintain a

time-sorted list of events in order to figure out which neuron to update next. Further

complicating matters is the possibility that new events can preempt or even cancel

other future events.

Several pieces of software have been developed over the years for the purpose

of simulating networks of neurons, including NEURON [60], GENESIS [20], and

NEST [52]. An in-depth comparison of these tools, along with NCS, is given by

Brette et al. [24]. Though efforts have been mounted on parallellizing each of these

simulators for the sake of improving performance [85, 53, 99], these efforts have fo-

cused primarily on using multiple CPUs, whether in the same machine or networked

together, to reduce processing times and increase problem sizes.

With the advent of CUDA and GPGPU, a slew of research projects cropped up

that mapped neural simulations to the GPU. A number of these projects focus on the

use of the Izhikevich neuron [86, 45, 15, 46]. In many of these cases, the simulation

was also performed on a single GPU.

4.2.4 NCS and Related Work

With the success found in simulating networks of neurons on single GPUs, it was in

our interest to update NCS in order to use GPUs in order to speed up simulations.

This work was built upon a bit of previously published research, including our at-

tempts to simulate Izhikevich neurons on multiple homogeneous GPUs in the same

machine [120], where we passed a bit vector representing the firing state of every

neuron in the system as the primary form of communication between GPUs. One of

the authors of that previous work, Corey Thibeault, would later expand upon this

with a hybrid communication scheme based on firing rates [121].

The bulk of work done on the previous version of the NeoCortical Simulator,



29

NCS5, was done by James Frye [47]. The work focused on the optimization of its

predecessor, NCS3, in order to obtain an order of magnitude performance increase in

terms of speed on a cluster of CPUs.

The confluence of these two strands of research is the latest version, NCS6, a

simulator designed to not only exploit the parallellism of both CPUs and arbitrary

GPUs but also allow for the addition and combination of different neuronal models.

These features are all new and unavailable in NCS5. Additionally, NCS6 uses the

parallel graph structure discussed in Chapter 3, employs a different communication

scheme, and allows for reporting to be dynamically specified at run-time. The rest

of this chapter has been published in Frontiers in Neuroinformatics [66]. Despite

publication, improvements have been added and the text modified to reflect these

alterations.

4.3 Design

4.3.1 Goals

NCS6 was designed with three qualities in mind: extensibility, efficiency, and ap-

proachability. The first, extensibility, is a requirement in order to enable mixed mod-

eling, where parts of the simulation could be computed one way while other parts

are computed another. Enabling this capability would allow more expensive precise

computations to be done in regions of interest while other regions could be approx-

imated with simpler computations. Additionally, it would allow different submodels

created using different components to be combined without the need to convert the

computational models used in one submodel to the computational models used in

another.

The second quality, efficiency, simply stems from a desire to maximize resource

utilization and minimize communication in order to maximize throughput. By max-

imizing resource utilization, we seek to use all available computational devices, not

only the CPUs alone or the GPUs alone but rather all device types working in tan-



30

dem. We minimize communication in hopes of ameliorating the necessity of a high-

performance network connecting compute nodes. Though efficiency can be at odds

with extensibility, we arrange our data structures in such a manner as to minimize

the loss of the former while gaining the boons of the latter.

Approachability deals with providing an effective user experience. That is, run-

ning the simulator should be a simple task of executing the simulator program,

perhaps with a few input arguments. Furthermore, the modeling aspect should be

streamlined in a way such that repetitive tasks are reduced without sacrificing the

desired expressions of the user.

4.3.2 Simulation Composition

At its core, every simulation is composed of four elementary parts: Neurons, Synapses,

Stimuli, and Reports. Each of these components is also regarded as a subtype of a

more generic Element type. Neurons and Synapses in this scope are not exact analogs

to their biological counterparts. Neurons are the cell bodies that receive stimulus

currents and clamp voltages and, under some defined circumstance, fire, transmitting

spike signals to their synapses. Synapses represent unidirectional connections from

one neuron to another. When the presynaptic Neuron fires, the Synapse injects

current into the postsynaptic Neuron after some specified delay. Stimuli represent

external inputs that affect Neurons. These can have the effect of either augmenting

the amount of current received by a neuron or clamping the voltage of the Neuron

body to some precise value. The final element, Reports, specify the output component

of the system. Reports take either a collection of neurons or a collection of synapses

and output some desired value to some type of data sink.

The descriptions of the aforementioned elements were intentionally left vague. In

reality, the behavior of each element is governed by a selected computational model,

though some constraints are enforced. For example, one neuron could be simulated

following an Izhikevich model while another could be simulated using an integrate-

and-fire model. While the internal behavior of the two cell types can diverge, both



31

are still required to provide two bits of information at each time step: whether the

cell fired and the cell voltage. They are both also provided with the same set of input

data: Stimuli, total synaptic current, and the previous neuron voltage value.

4.3.3 Simulation Environment and Distribution

The initial targeted computing environment for NCS6 was any, potentially heteroge-

neous, cluster of one or more computers composed of some mix of CPUs and CUDA-

capable GPUs. Due to the way NCS is designed, expansion to OpenCL devices would

only require the implementation of certain stub functions. Since all computing devices

can potentially have different performance characteristics, we first assign a relative

computational power rating to each device. The current method for estimating these

values is to multiple each device’s clock speed by its number of compute cores.

Given the relative power of each device, we distribute simulation elements across

them. The rationale behind our distribution method can be traced back to the ex-

pected behavior of Synapses. When a presynaptic Neuron fires, a Synapse will, after

some delay, inject current into the postsynaptic Neuron purely based on the state of

the Synapse itself and the voltage of the postsynaptic Neuron. As such, every Synapse

is distributed with its corresponding postsynaptic neuron in order to minimize the

amount of data that must be passed between devices. With such a scheme, the only

data that must be passed across the cluster during simulation is the firing state of

every Neuron. This state is a boolean true/false value; thus, a single Neuron’s firing

state can be represented by a single bit. Stimuli are similarly distributed. Since each

Stimulus can only affect a single Neuron, stimuli are distributed on the same devices

as their associated Neurons.

As for the distribution method itself, we first estimate the computational cost

of a Neuron and all of the Synapses and Stimuli that affect it. Since the number

of Synapses generally greatly outnumbers the number of Neurons by several orders

of magnitude, we use the number of Synapses that affect a given Neuron as the

Neuron’s computational cost. Neurons are sorted in order of decreasing cost and



32

then distributed across all devices in the cluster such that the device with the lowest

load (total cost / device power) receives the next Neuron. Once all Neurons are

distributed, their associated Synapses and Stimuli are placed on the same devices.

All compute Elements on each device are then reordered so that elements of the same

subtype (Izhikevich, LIF, etc.) form contiguous blocks in memory that can later be

consumed by plugins.

4.3.4 Data Scopes and Structures

Due to the distributed nature of NCS6, Elements may be referenced in a number of

scopes that mirror the environment’s hierarchy: plugin, device, machine, and global

(cluster). After the distribution is finished, every Element is assigned a monotonically

increasing ID for each scope. IDs are padded between plugins so that data words for

structures allocated in other scopes are related to only one plugin. In general, this

means that IDs are padded to a factor of 32 (the number of bits in a word) between

plugins. It is important to note that IDs are only unique within the same Element

type; that is, there can be both a Neuron and a Synapse with a global ID of 0.

Figure 4.3 shows an example distribution.

Depending on which elements need access to other elements, certain key data

structures are allocated and accessed using different scopes. Data that is specific to

an Element subtype is stored at the plugin scope. Because Synapses may need to

access the membrane voltage from their postsynaptic Neurons in order to determine

their synaptic current contributions, membrane voltages are stored and accessed using

device level IDs. The reason is all postsynaptic Neurons and the Synapses that affect

them reside on the same device due to the way they are distributed. However, because

the spiking state of a synapse depends on the spiking state of the presynaptic Neuron,

the spiking state of Neurons is accessed using a global level ID when updating synaptic

spiking states.



33

User IDs

Global IDs

Machine IDs

Device IDs

Plugin IDs

0 1 2 3 4 32 33 34 64 65 66 68 96 97 9867

0 1 2 3 4 0 1 2 32 34 36 64 65 663533

0 1 2 3 4 0 1 2 0 2 4 32 33 3431

0 1 2 3 4 0 1 2 0 2 4 0 1 231

0 1 2 3 4 5 6 7 8 9 10 12 13 14 1511

Machine A Machine B

CPU 1A GPU 1B GPU 2B

Plugin 1Ai Plugin 1Bi Plugin 2Bi Plugin 2Bii

Figure 4.3: An example of how IDs would be distributed across a cluster for a single
element type. Vertically aligned boxes denote the IDs at different scopes for the same
element. To allow processes to work on wholly separated sections of memory even in
the case of bit-vectors, padding is used at every level.

4.3.5 Simulation Flow

The basic flow of a simulation is as follows: for each time-step, the current from

Stimuli and Synapses is computed and used to update the state of every neuron. The

resulting spiking state of each Neuron is then used to determine the spiking state of

their associated Synapses in later time-steps.

To facilitate maximum utilization of computing devices, the simulation is par-

titioned into several stages that can be executed in parallel as long as the requisite

data for a given stage is ready. Figure 4.4 illustrates this division of work along with

the required data needed to simulate a particular stage and the data that is produced

once that stage has been updated. A publisher-subscriber system is used to pass data

buffers from one stage to the next. During the simulation, a stage attempts to pull all

necessary data buffers from their associated publishing stages. The stage is blocked

until all the data is ready. Once it obtains all the required data buffers, it advances

the simulation by a single time-step and publishes its own data buffer while releasing

all the others that it no longer needs. The stage then attempts to grab the data



34

Stimulus 
Update

Neuron 
Update

Stimulus 
Current & 

Clamp Voltage

Synapse 
Update

Synaptic 
Current

Local Neuron 
Voltage and 
Fire State

Vector 
Exchange

Global 
Neuron Fire 

State

Fire Table 
Update

Local 
Synaptic Fire 

State

Figure 4.4: Graph decomposition of an NCS simulation. Gray boxes represent com-
puting processes while the orange boxes represent the data that is passed between
them.

needed for the next time step and the process begins again. When all subscribers

to a data buffer release it, the data buffer is added back to its publisher’s resource

pool for reuse. For any given stage, a limited number of publishable buffers are used

to prevent a stage from consuming all computational resources and getting unnec-

essarily ahead of any other stages. For example, without limiting the buffer count,

because the stimulus update stage requires no data from any other sources, the stage

could generate buffers at a rate faster than the neuron updater could consume them,

which would waste extra memory and add latency if the stimulus updating does not

relinquish processing time to the Neuron Update stage.

Within a single stage, further granularity is gained by parallellizing across sub-

types. As an example, if a device simulates both LIF Neurons and Izhikevich Neurons,



35

the plugins updating each can be executed in parallel. Due to padding from the ID

assignments, updates should affect completely separate regions of memory, including

operations on bit vectors. Exceptions to this, such as when an stimulus writes to a

device-indexed stimulus current for its target neuron, are handled by using atomic

operations or by aggregating partial buffers generated by each plugin. The method

chosen depends on the type of device and its memory characteristics. While plugins

are allowed to update ahead of one another, the results for from a stage at a given

time-step will not be published to subscribers until all plugins (in that stage) have

updated up to that time-step. This is accomplished by counting the number of plu-

gins operating on a single data buffer. When that number is decremented to zero,

the thread responsible for causing that condition publishes the data buffer out to the

next stage.

Stimulus Update

The purpose of the stimulus update stage is to compute the total stimulus current

to each neuron on the device as well as any voltage clamping that should be done.

The stimulus current is represented by an array of floating point values, one for each

Neuron (including padding) on the device, initialized to zero at the beginning of each

time step. The to which voltage neurons are clamped are stored in a similar fashion

where a bit vector is used to select which Neurons khould actually be clamped.

Stimuli are expected to be updated by stimulus plugins designed to handle their

subtype. Other than the device-level Neuron ID for each Stimulus that is statically

determined at the beginning of the simulation, stimulus plugins rely on no other data

from any other stage of the simulation. As such, they are allowed to simulate ahead

of the rest of the system as long as they have empty buffers that can be written to

and published.



36

Neuron Update

Unlike the stimulus update stage, the neuron update stage has two dependencies:

the stimulus current per neuron published from the stimulus update stage and the

synaptic current per Neuron published by the synapse update stage. Given these

two pieces of information, this stage is expected to produce the membrane voltage

and spiking state of every Neuron on the device. Like the stimulus current, the

membrane voltage is represented by an array of floating point values with one value

for each Neuron. On the other hand, the spiking state is represented by a bit vector.

Similar to Stimuli, Neurons are expected to be updated by neuron plugins de-

signed to handle their subtypes. Despite receiving and writing data out into device-

level structures, neuron plugins operate purely in plugin space. This is possible due

to the fact that each plugin is given a contiguous set of device-level IDs during the

distribution. As a result, device-level data passed into each plugin is simply offset

accordingly to yield the appropriate plugin-level representation.

Vector Exchange

The result of the neuron update stage is the firing state of every Neuron residing

on the device. However, synapses are distributed purely based on the postsynaptic

neurons and as such the presynaptic neurons could possibly reside on a different de-

vice. Thus, to determine synaptic spiking, the state of every neuron in the simulation

must be gathered first. Again, the publisher-subscriber scheme is used to pass data

asynchronously. However, rather than passing data between stages, it is used to pass

data between different data scopes.

Figure 4.5 shows the flow of the neuron spiking information across a cluster.

When the device-level vector exchanger receives a local firing vector, the data is

published to the machine-level vector exchanger. Within this exchanger, the local

vector is copied into a global vector allocated in the system memory. Once all local

device vectors are copied for a single time step, the complete machine-level vector

is broadcast using MPI to all the other machines in the cluster. This condition is



37

detected by the broadcaster receiving a signal from each copier signifying that its

copy is complete. After all machines in the cluster finish broadcasting, the complete

global firing vector is published back to the device-level vector exchangers where it is

copied back into the appropriate type of device memory before being published out

to any subscribing stages.

Firing Table Update

With the firing state of every Neuron in the simulation, a device can determine when

all of its Synapses will receive the firing based on a per-Synapse delay value. Given

the potential range of delays, this information is stored within a synaptic firing table.

A row of the table is a bit vector representing the firing state of every Synapse on the

device. The number of rows in the table depends on the maximum delay of all local

synapses. If M is the maximum delay in time steps, then the table must contain at

least M + 1 rows in order to record all potential future firings from the current time

step. When this stage receives the global neuron fire vector, each Synapse checks

its associated presynaptic Neuron for a firing state. If it is firing, the Synapse adds

its delay to the current time-step to determine the appropriate vector which is then

modified by setting its bit to 1. Figure 4.6 illustrates this dynamic.

After updating the table for a single time-step, the table row associated to that

step can be published. However, up to N time-steps ahead of the current time can be

published, where N is the minimum delay across all local synapses, since all firings

up to that point are guaranteed to have been propagated. This allows devices to

simulate ahead of one another to a point rather than being completely locked in step.

Additionally, the publication of these extra buffers at the beginning of the simulation

allows the data to start flowing through the simulation. As rows are released back to

the updater, they are repurposed as future rows in a circular indexing fashion.



38

Remote 
Receiver

Remote Data 
from Another 

Machine

Remote 
Receiver

Remote Data 
from Another 

MachineExchange 
Controller

Global Work 
Buffer

Device 
Receiver

Data from a 
Local Device

Device 
Receiver

Data from a 
Local Device

Remote 
Publisher

Remote 
Publisher

Global 
Publisher

Complete 
Global Buffer

This 
Machine’s 

Data

This 
Machine’s 

Data

To Subscribers of the 
Vector Exchange Node

 To Other Machines

Figure 4.5: NCS communication graph. Gray boxes represent processes while orange
boxes represent data. The black arrows indicate the flow of data from process to
process while the red arrows indicate the flow of an empty buffer used as a signaling
mechanism.



39

0 0 1 0 Neuron Fire State

0 2 1 0 3 3 3 2 3 3

0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0

Presynaptic Neuron ID Per Synapse

Time

4 2 3 5 6 2 2 3 4 5Synaptic 
Delays

Current Time Step

Firing State Per Synapse

0 0 0 0 1 0 1 0 0 0

Figure 4.6: An illustration of how the firing table works in NCS6. Data highlighted
in bright red denote changes that occur due to neuron firings during the current time
step.

Synapse Update

Given the firing state of each Synapse on the device, the Synapses themselves can

be updated. Like the stimulus update stage, the synapse update stage produces the

total synaptic current per device-level Neuron also represented by an array of floating

point values. In terms of operating spaces, synapse plugins update Synapses that

operate at both the plugin and device levels, reading from the synaptic fire vector

while writing to the synaptic current vector.

4.3.6 Reporting

Reports gather information regarding some aspect of the simulation. They are spec-

ified by the user as a set of Elements of the same subtype along with the value that

should be extracted from them as the simulation progresses. Because these Elements

can be scattered across multiple devices across different machines and because the

data required can reside on one of several different scopes, every machine, device, and

plugin are given a unique identifier. Following distribution, every Element that must



40

be reported on can be located by the appropriate ID based on data scope as well as

the identifier of the data source.

With these two values, the appropriate data can be extracted during simulation.

To accomplish this, a single Reporter is instantiated on each machine that contains

at least one Element that should be collected. A Reporter then subscribes to each

publisher of the data that it is interested in through a more generalized publisher-

subscriber interface. This interface allows a Reporter to access data arrays along with

the memory type using a string identifier. At each time step, the Reporter extracts

data from all of its subscriptions and aggregates them as necessary. A separate MPI

communication group is then used to further aggregate this data across the entire

cluster asynchronously before being written out to a file or some other data sink.

In previous versions of NCS, desired reports needed to be specified in the con-

figuration files. In NCS6, reports are instead specified during runtime. The rationale

behind this change was to allow users to arbitrarily connect to a running simulation,

select a desired set of elements to report on, receive those reports, and disconnect

from the simulation while allowing it to continue.

The first iteration of NCS6 implemented a plugin-type interface that was devised

in order to provide flexibility in terms of data extraction, aggregation, communication,

and output techniques without overly complicating the resulting code. For example,

a Reporter that counts the number of Neuron firings may choose to minimize data

bus traffic on CUDA devices by implementing the count directly on the device and

retrieving the single value rather than by downloading the entire buffer to system

memory first before operating on it. Implementations of the Reporter interface are

given access to an MPI communication group along with the Element IDs and source

identifiers with which to accomplish the aforementioned tasks.

Upon further inspection, it was noted that there were very few realistic extraction

and aggregation tasks; users would usually want to extract the precise values of a

set of elements or find some count or aggregation of a set of elements. Internode

communication of this data was similar for both tasks. What did differ, however, was



41

the sink to where all of this data was being delivered. Thus, we removed the plugin

type for Reporters and instead created a single Reporter built-in to NCS6. For other

data sinks, it is up to the developer to implement the appropriate DataSink interface

only.

The structure of a Reporter connected to the simulation looks like a tree con-

nected to the requisite computational nodes of the cluster. Tear-down of the tree

occurs when one of two events occur: either the simulation is destroyed, or the data

sink is destroyed. In the former case, the extractor nodes will receive null pointers

when they request data from their publishers. This in turn causes the extractor nodes

to delete themselves, signaling nodes closer to the root of the tree to also terminate.

This process repeats itself until the data sink itself receives a null pointer, at which

point it does any necessary I/O cleanup before destroying itself. The latter case for

termination begins with the destruction of the data sink. Nodes publishing to it will

realize that nothing is subscribed to its messages and as such will destroy themselves,

resulting in a reversed cascading effect.

4.3.7 CUDA Details

Every CUDA plugin in any stage of the simulation flow uses a separate CUDA stream

to enqueue work for the GPU, sleeps while waiting for kernel execution to finish, and

publishes the results to subscribing stages when the results are ready. Each stream

operates independently on separate pieces of data, allowing the CUDA scheduler to

execute kernels from different streams concurrently in order to maximize hardware

utilization.

Implementation of some model plugins for NCS were rather trivial; for example,

Izhikevich neurons as described in Subsection 4.2.2 could be simulated using a simple

array of data for each of the six variables that specify each neuron. A similar practice

allows for the implementation of an impulse style synaptic connection with STDP

learning rules as described by Song, Miller, and Abbott [111]. There are, however,

some non-trivial techniques that were used in implementing some other models, most



42

notably the NCS rendition of an integrate-and-fire neuron, its associated synapse

type, and the classical Hodgkin-Huxley neuron. I detail any novel details regarding

each in the following subsections.

The NCS LIF Neuron and Synapse in CUDA

Unlike the computationally-straightforward Izhikevich model, the LIF model as spec-

ified by NCS [66] presents a number of challenges when implementing it in CUDA. To

begin with, LIF neurons can be composed of multiple compartments that affect one

another and have different synaptic connections. To maintain minimal data transfer,

all compartments of a single LIF neuron are decomposed into neuron-like objects that

must be distributed to the same device, localizing cross-compartment interactions to

that device. Since each compartment is modeled like a neuron, synaptic connections

to specific compartments are realized as well.

An additional complexity of the LIF neuron comes from the ability for a com-

partment to have one or more channels that alter its current based on a number

of different attributes such as the membrane voltage or the calcium content of the

cell. The solution to this comes from applying the simulation flow breakdown to this

smaller subproblem. Each unique channel type is implemented as a plugin to the

larger LIF plugin in order to minimize branching within a single kernel. At each time

step, the channel plugins concurrently modify an ion channel current buffer. This

buffer is then published to the compartment updater, which in turn publishes the

compartments newly updated state for use by the channel plugins in the subsequent

time step. Figure 4.7 illustrates this dynamic.

A final challenge to modeling NCS neurons is due to the behavior of firings.

Rather than sending a single impulse across a synapse when the neuron fires, a wave-

form is sent over a potentially large number of time steps. Repeated firings over a

short time period produce multiple waveforms that are summed together. To enable

this memory of firings in CUDA, the synaptic update plugin behavior is decomposed

into a few steps. A synapse begins by checking the fire table to see if a firing has



43

Compartment 
Update

Channel 
Update

Channel 
Current

Compartment 
Voltages and 

Calcium

Figure 4.7: Graphical breakdown of NCS neuron update.

been received. If so, it pushes the event composed of a waveform iterator onto a list.

A waveform iterator consists of a pointer to a waveform and the current position of

the iterator along that waveform. Both the newly generated iterators as well as the

iterators generated from previous time steps are then updated, computing the total

synaptic current for a single neuron at the same time. If an iterator has not yet

iterated across its entire waveform, it is pushed onto a new list that is published for

the next time step.

The Hodgkin-Huxley Neuron in CUDA

While the NCS LIF neuron uses Hodgkin-Huxley-like mechanisms for its subthreshold

dynamics, it simply follows a templatized spike shape upon crossing that threshold.

Iterating through potentially arbitrary spike shapes stored on the GPU requires a level

of pointer indirection and extra variables for each neuron; thus, in hopes of improving

performance by reducing the number of memory accesses, we also implemented a

pure Hodgkin-Huxley model, which inherently accounts for the hyperpolarization

dynamics.

Implementation of the Hodgkin-Huxley neuron [68] follows a similar structure as

that of the NCS LIF neuron with the cell updating and channel updating structured

as two separate subnodes within the plugin. We generalize the channel currents to



44

be based off of a single generic equation whose variables are specified by the user:

y =
A + Bx

C + exp((x + D)/F )
(4.1)

This equation can also be found in GENESIS [1]. Depending on which values are

chosen for A, B, C, D, and F, a variety of behaviors can be generated including the

parameters of a Hodgkin-Huxley neuron.

A drawback of the classical Hodgkin-Huxley model is its numerical instability

when using a forward Euler integration scheme. As such, a much smaller time step

on the order of 0.01ms must be used instead of the 1ms time step that can be used

with other models. Its integration into a system that often uses a 1ms time step

for NCS LIF neurons is simplified by allowing the subgraph decomposition of the

Hodgkin-Huxley neuron to run a far larger number of iterations (100 in this case)

before the cell updating node actually publishes a result out to the higher neuron

updater node. It should be noted for future developers that in these cases, it would

be important to weight the computational cost of a Neuron based on its type in order

to reflect the amount of computation needed. An alternative method to addressing

this instability is to use the exponential Euler method for integration, which is the

default integration method for GENESIS [19]. This method is implemented in NCS6

as a different plugin.

4.3.8 pyNCS: Improving Quality of Life for Configuration

While simulation tools are handy for experimentation, they are often difficult to

wield with domain-specific languages or configuration files. There have been efforts

on several fronts to deal with this problem, many of which provide Python interfaces

as a more user-friendly way to specify models [44, 37, 54]. NCS is no stranger to

error-prone configuration files; the configuration file used in NCS5 could get quite

large depending on the size of the model; moreover, large portions of those files were

simply copies of one another with some minor change in some parameter value. Any

mistake could potentially be replicated a number of times, making maintenance of



45

larger models untenable. As such, NCS6 also takes an exodus from configuration files

to Python.

NCS6’s approach to providing simpler interfaces focuses on decoupling compo-

nents and allowing users to connect them as they see fit. The simulation core of NCS6

is written using C++11. though not as a program but rather as a library. Developers

instead write their own programs that call library functions to run a simulation. A

Python interface was automatically generated using SWIG [13], and a more user-

friendly interface was wrapped around that. A built-in configuration file was done

away with. Users can instead implement models directly in Python or C++, or they

can read externally-designed configuration files if a converter exists. An example of

a simple brain specification is shown in Figure 4.8.

An example of this workflow is an ongoing project that stores models in JavaScript

Object Notation (JSON) [34]. Models are constructed in a custom-built program and

then exported into JSON. The JSON files are read in via a Python script, which

then converts the input data into the appropriate structures for NCS6, which then

simulates them.

4.4 Results

Two types of experiments were run to gauge the performance of the simulator. In

the first, several sets of Izhikevich neurons were modeled. The size of these models

ranged from 100k to 1 million cells in increments of 100k cells. In each case, 80% of

the cells were modeled as excitatory cells while the remaining 20% were modeled as

inhibitory cells. Excitatory cells are configured such that the result of a excitatory

presynaptic cell firing will raise the voltage of the postsynaptic cell while inhibitory

cells are configured to lower the voltage of the postsynaptic cell when the presynaptic

cell fires. Each cell has 100 outgoing synaptic connections that use a simple synapse

which implements STDP, resulting in 10 million to 100 million synaptic connections

total. For the second experimental setup, a model of NCS LIF cells developed by

neuroscientists was used. To explore the effects of simulation size on performance,



46

import sys

import ncs

def run(argv):

sim = ncs.Simulation()

bursting_parameters = sim.addModelParameters("bursting",

"izhikevich",

{

"a": 0.02,

"b": 0.3,

"c": -50.0,

"d": 4.0,

"u": -12.0,

"v": -65.0,

"threshold": 30,

})

group_1 = sim.addCellGroup("group_1",1,bursting_parameters,None)

if not sim.init(argv):

print "failed to initialize simulation."

return

input_params = {

"amplitude": 18,

"width": 1,

"frequency": 1

}

sim.addInput("rectangular_current", input_params, group_1, 1, 0.01, 1.0)

current_report=sim.addReport("group_1","neuron","synaptic_current",1.0)

current_report.toStdOut()

voltage_report=sim.addReport("group_1","neuron","neuron_voltage",1.0)

voltage_report.toAsciiFile("./bursting_izh.txt")

sim.step(1000)

if __name__ == "__main__":

run(sys.argv)

Figure 4.8: An example NCS6 configuration written in Python.



47

the number of neurons in the model were scaled to various levels while maintaining

the same level of connectivity; that is, the number of synapses affecting a single

neuron remain constant despite scaling. For all experiments, a simulation timestep

of 1 millisecond was used.

Experiments were run on a cluster of eight computers in a graphics lab, each

equipped with two CUDA-capable graphics cards as listed in Table 4.1. It should be

noted that the cards are of varying computational capability in terms of core count

and clock speed. The machines are interconnected using gigabit Ethernet, though

jumbo frames were not used due to administrative constraints. For each combination

of machine count and synaptic count, ten runs were timed and averaged for both 1

second and 10 second simulations.

Table 4.1: Simulation environment.

Machine Device 0 Device 1
slurms GTX 480 GTX 480
kif GTX 480 GTX 460
nibbler GTX 480 GTX 480
hypnotoad GTX 480 GTX 480
clamps GTX 460 GTX 570
bender GTX 480 Tesla C2050
robotDevil GTX 460 GTX 570
wernstrom GTX 480 GTX 480

The results of the Izhikevich model tests are shown in Figure 4.9 and Figure 4.10

for 1 and 10 second simulations respectively. For a single machine, models failed to

run for synapse counts greater than 60 million as a result of memory limits; thus,

for failed runs, a value larger than the maximum recorded time was used to denote

this. This can be seen as the sharp points in the upper left corner of each plot. The

flattened region on lower synaptic counts despite the increase in machine count can be

explained by nodes becoming starved for work, resulting in internode communication

consuming most of the execution time.

For the NCS model tests, results are shown in Figure 4.11 and Figure 4.12. Due



48

10M

20M

30M

40M

50M

60M

70M

80M

90M

100M

11 22 33 44 55 66 77 88
00

22

44

66

88

Number of NodesNumber of Nodes

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Figure 4.9: Execution time vs number of nodes for a 1 second simulation of Izhikevich
neurons. Each line uses a different number of synapses.



49

10M

20M

30M

40M

50M

60M

70M

80M

90M

100M

11 22 33 44 55 66 77 88
00

2020

4040

6060

8080

Number of NodesNumber of Nodes

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Figure 4.10: Execution time vs number of nodes for a 10 second simulation of Izhike-
vich neurons. Each line uses a different number of synapses.



50

6.1M

12.29M

24.49M

49.17M

73.76M

11 22 33 44 55 66 77 88
0.60.6

1.71.7

2.82.8

3.93.9

55

Number of NodesNumber of Nodes

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Figure 4.11: Execution time vs number of nodes for a 1 second simulation of NCS
LIF neurons. Each line uses a different number of synapses.



51

6.1M

12.29M

24.49M

49.17M

73.76M

11 22 33 44 55 66 77 88
66

1717

2828

3939

5050

Number of NodesNumber of Nodes

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Figure 4.12: Execution time vs number of nodes for a 10 second simulation of NCS
LIF neurons. Each line uses a different number of synapses.



52

to the large amount of memory a single NCS synapse consumes compared to the ones

used for the Izhikevich model, fewer synapses could be allocated on a single card,

resulting in the larger plateau area.

The 10 second results appear similar to the 1 second results, showing that execu-

tion time scales linearly with simulation time. Also of notable interest are the upward

trends on execution times with the Izhikevich neurons as the number of machines is

increased, particularly when an eighth one is added. These trends can be explained as

a limitation on the message-passing technique used in conjunction with the selected

network fabric. For gigabit Ethernet, a theoretical 1 billion bits can be transferred

per second to and from a machine. Using a 1 ms time step, the amount of data that

can be transferred for a single time step in real-time is reduced to 1 million bits that

correspond to the firing states of 1 million neurons; however, the number of nodes

that any individual node must broadcast to must also be considered. In the case of

two nodes, each node can possibly simulate up 1 million neurons and broadcast that

data to the other node without oversaturating the network. That number is cut in

half when dealing with three nodes as each node must send twice as much data out.

Table 4.2 shows the theoretical limits for simulation sizes for up to eight machines

with gigabit Ethernet. These numbers scale up or down depending on the network

fabric. Note that this is not a problem exclusive to Izhikevich neurons; rather, it is a

limitation of the bit-vector messaging scheme that was used.

Table 4.2: Theoretical limits for the number of neurons per machine for real-time
simulation.

Machines Neurons Per Machine Total Neurons
2 1M 2M
3 500k 1.5M
4 333k 1.333M
5 250k 1.25M
6 200k 1.2M
7 166k 1.162M
8 143k 1.114M



53

4.5 Conclusions and Future Work

In this chapter, I presented the latest version of the NeoCortical Simulator, NCS6.

Capable of producing results at near real-time for large spiking neural networks on the

order to ten to a hundred million synapses on a relatively small cluster of machines

as exemplified by the dark blue line in Figure 4.9, NCS6 can provide a simulation

solution using readily-available computing resources. It allows for submodels to be

repurposed and reused with minimal effort by allowing for different simulation models

to be combined and is extensible enough that new simulation models can be added

into the system without the need to rebuild the rest of the system.

Though designed for increased user productivity, NCS6 is not without its short-

comings, many of which should be addressed in future work. One that has been

addressed by other research is the message-passing scheme whose drawbacks were

made apparent in the results in Section 4.4. Thibeault et al. [121] uses a hybrid

scheme that switches between the currently-implemented bit vector scheme and a

more traditional address event representation depending on the amount of firing that

is actually occurring. Implementation of this in NCS6 would require the replace-

ment of the communication node of the simulation flow graph with a similar one that

accounts for the firing rates of all the neurons in the system.

While the implementation of more models is an obvious direction for future work,

the workflow for implementing these plugins can prove to be tedious. The general

structure for many neuron models is a set of equations that are used to update their

states. To implement this relatively small set of equations, however, requires a large

deal of boilerplate code to initialize arrays, execute CUDA kernels, and parse input

parameters. Creating tools that can interpret these equations and automatically

generate the necessary plugin code would enhance NCS6’s use as an experimental

platform.

In general, more tools to aid users would be beneficial. There has been some

work done already on visualization tools [29] as well as ongoing efforts to create web-



54

based model repositories and model builders. Finally, while the results presented here

were performed on a small heterogeneous cluster of GPUs, more performance char-

acteristics would be interesting to collect on much larger clusters with more diverse

hardware characteristics.



55

Chapter 5

caVR

5.1 Introduction

As modeling allows users to study things that would be impractical or even impossible

to study otherwise, virtual reality brings the promise of granting users experiences oth-

erwise burdened by similar impracticalities. Though the concept has been around for

quite a while, with Ivan Sutherland in 1965 describing systems that ”[w]ith appropri-

ate programming... could literally be the Wonderland into which Alice walked” [116],

we are not there yet. In fact, the area is an active playground for experimentation

as both researchers and commercial companies alike search for that ”ultimate dis-

play.” Recent advances in rendering and computing technology has only expanded

that playground.

caVR is a library designed to allow developers to quickly design virtual reality

applications by providing a common interface for both input and output method-

ologies. It is extensible enough that new input and output modalities can be added

to the library without need to rebuild the core of caVR or programs that use it in

most cases. The rest of this chapter is structured as follows: Section 5.2 gives some

background on virtual reality both in terms of hardware and software. Section 5.3

discusses the design of caVR while Section 5.4 discusses a few projects and appli-

cations that use it or its predecessor Hydra. I conclude in Section 5.5 with closing

remarks and future work.



56

5.2 Background

Virtual reality is somewhat of a nebulous term, often defined by the presence of

certain pieces of hardware. A more appropriate definition may be found by Steuer:

”A ‘virtual reality’ is defined as a real or simulated environment in which a perceiver

experiences telepresence,” where telepresence ”is the experience of presence in an

environment by means of a communication medium” [113]. I can divide the subject

into three intertwining components: the communication medium, applications that

try to expose telepresence, and the software toolkits that allow those applications to

run on all of this medium. I now delve into each of these topics individually.

5.2.1 Communication Medium

A common misconception about virtual reality is that it is primarily about hard-

ware [113]; however, there is truth in it: a great of hardware has been developed and

experimented with in order to increase a user’s sense of telepresence. Hardware is

usually purposed for either outputting information to the user or receiving input from

that user, though that line is occasionally blurred.

Arguably the most developed space in terms of virtual reality hardware would

be visual rendering technology. In addition to advancing graphics technology, various

display technologies have been developed to better immerse the user. Amongst them

are large screen displays and head-mounted displays. Examples of the former include

literal large screens [30] and walk-in environments such as the CAVE [35]. Examples

of each of these are shown in Figure 5.1 and 5.2 respectively. These devices increase

immersion by attempting to maximize their presence in the user’s field of view. Ad-

ditionally, many of these devices use passive or active stereoscopy in order for users

to perceive depth. With passive stereo systems, the left and right eyes are displayed

on a surface simultaneously; however, each image is polarized in a different manner.

Glasses with corresponding polarities are used to force each eye to see only their

appropriate images. On the other hand, active stereo systems work by alternating



57

Figure 5.1: An example of a large screen display [87].

between the two eyes. A different pair of specialized glasses shutters out the correct

image in a synchronized manner [30]. Meanwhile, head-mounted displays, like the

one shown in Figure 5.3, are worn on the user’s head. While earlier versions were

plagued by weight limitations and other factors [42], recent developments such as the

Occulus Rift [127] are introducing this technology to a much wider audience.

While visual hardware development has been in the limelight, the other senses

have not gone completely ignored. In the audio domain, 3D sound can be presented

using earphones or loudspeakers. Each has its own advantages and disadvantages.

Earphones present sound directly to the user and can block out outside interference

but cannot simulate vibrations in the body that can be felt when low frequency sounds

are generated. Loudspeakers, on the other hand, have difficulty handling interference

as well as conveying spatial information as a cost for being able to generate the



58

Figure 5.2: A CAVE-like environment [38].



59

Figure 5.3: A user with a head-mounted display [105].



60

aforementioned vibrations [42]. On the topic of vibrations, difficulties in accurate

audio output also include the problem of generating the correct sound base on the

virtual environment being conveyed; real-world effects such as echoes can become

computationally expensive to simulate [107].

Other senses, such as touch and smell, have also received some attention. The

former is provided via haptic devices such as exoskeletal gloves or vibrating motors.

Like head-mounted displays, haptic devices suffer from causing fatigue due to the

additional weight [27]. Olfactory displays can generate smells, though this form of

hardware appears to be custom-built for research purposes [132, 133].

The devices discussed so far only facilitate communication in one direction: from

the application to the user. Equally important is communication from the user back

to the application. Input devices for virtual environments go beyond the standard

keyboard and mouse. Given the 3D nature of many output devices, input devices must

also be usable in a 3D space. These devices involve tracking parts of the body includ-

ing the hands, the head, and the eyes. A number of solutions exist that balance cost

with accuracy and precision. Ultrasonic and inertial trackers, such as the Intersense

IS-900 [131], provide information on all six degrees of freedom for any given tracker.

The wand input held by the hand additionally provides button and joystick inputs.

The downside to these trackers is their prohibitive cost; however, developments in the

videogame industry may be ameliorating this problem with more affordable options

such as a Nintendo Wii controller [130] and the Razer Hydra [11], both of which

provide wand-style inputs and can be augmented to only provide 6-DOF tracking.

Tracking can also be achieved via computer vision, and like the previous two exam-

ples, new products like the Microsoft Kinect [94] and Leap Motion Controller [129]

mark an increase in affordability and availability. increased availability.

5.2.2 Applications

There is a large variety of virtual reality applications that have been created over the

years. The purpose of these applications ranges from testing new interaction methods



61

to training users in otherwise impractical environments to testing the effects of virtual

environments themselves. I present a few examples of each of these application types.

In the domain of interaction methodologies, the extra dimension leads to poten-

tially more intuitive or more cumbersome interfaces. Stoakley et al. [114] present a

method for navigation in which the users have access to a miniature version of the

virtual world that they are able to manipulate in order to perform tasks or even

move themselves by picking up their avatars and placing them elsewhere. Poupyrev

et al. [100] present an interaction method in which the user’s hand is tracked. In

order to manipulate nearby objects, users can simply grab or touch them; however,

to manipulate objects out of their physical reach, virtual hands are rendered based

on the direction of their actual hands.

Virtual reality training applications are in no short supply, with a tall order found

just within the medical domain. Ahlberg et al. [4] researched the use of virtual reality

to train residents to perform laparoscopic cholecystectomies. Their findings show a

reduction in error rate when residents were trained in a simulator before performing

a set of real cholecystectomies. Seymour et al. [103] found similar results for the same

task.

There are numerous risks and design considerations that must be addressed with

virtual reality technology. Systems must be designed given the limitations of the

individual senses. A review of these concerns can be found by Stanney et al. [112].

A very real concern is simulator sickness, a phenomenon similar to motion sickness,

though it can occur without actually moving the user [77]. Applications have been

developed to measure the extent of these problems as a function of other variables

such as field of view [81].

5.2.3 Toolkits

Facilitating the development of applications without the need for information about

the underlying hardware are virtual reality toolkits and libraries. A review of many

of these tools can be found by Bierbaum et al. [16].



62

For shared memory machines, FreeVR [104] is an open-source VR library written

in C. Designed to be a low level library, FreeVR abstracts away input and output

details but little else in terms of managing or providing content, though a number

of other libraries have been used in conjunction with it to fill in this gap [106]. The

deficiencies found by Bierbaum et al. [16] led to the creation of VRJuggler. Similar to

FreeVR, it is designed to be low-level and non-intrusive. Additionally, later versions

are able to run on clusters [2].

Unlike the previous two examples, VRUI [78] was designed as a high-level VR

library. A consequence of this is that VRUI applications tend to have the same look

and feel. Higher level concepts like navigation are automatically handled by VRUI.

VRUI is also capable of running in clustered environments.

While many toolkits handle both input and output abstraction, VRPN [118] was

deliberately designed to only handle inputs. The design of VRPN employs a server

daemon that abstracts away input details. Applications then connect over a network

pipe to the server in order to query for updates regarding any particular input.

5.3 Design

The author’s first attempt at a VR library, Hydra, came about from the limitations

brought on by FreeVR. The low-level design allowed for rapid development of ap-

plications; however, the lack of cluster support reduced portability as hardware was

being upgraded from shared memory machines to distributed systems.

caVR is considered to be an upgraded version of Hydra. The goals when designing

both were to create a VR library that was easy to use for developers and users,

extensible to new devices and input paradigms, and could be used on a large variety

of hardware configurations. Several quality-of-life improvements were made in order

to allow developers to more rapidly write programs and users to more quickly configure

their environments. Structurally, the two systems are very similar otherwise; I now

delve into the design of that structure.



63

Inputs alter data in callbacksCallback 
Subsystem

Callbacks control plugin render behavior

Input 
Subsystem

Plugin 
Subsystem

Pl
ug

in
s 

up
da

te
 th

e 
va

lu
es

 o
f i

np
ut

s

Pl
ug

ins
 u

se
 in

pu
ts 

to
 a

lte
r b

eh
av

ior

Figure 5.4: The three core subsystems of caVR and their interactions.

5.3.1 Subsystems

At the most basic level, a VR program collects inputs, updates itself based on those

inputs, and outputs information back to the user. To facilitate all of these activities,

caVR provides three core subsystems: a callback subsystem, an input subsystem, and

a plugin subsystem. The relationship between the three subsystems are visualized in

Figure 5.4.

The callback subsystem allows application developers to customize the behavior

of their programs. Developers register a set of callbacks to a set of strings; caVR

will then call the appropriate callbacks if and when they are needed. Some callbacks,

such as the ”update” callback, will most certainly be used by caVR itself; others

such as ”gl render” will only be called if an OpenGL renderer is configured to call it.

Developers need only specify callbacks for the types of inputs and outputs that they

wish to support. The design is reminiscent of GLUT [74].



64

Within any of these callbacks, developers have access to the input subsystem

that provides details on the current state of every registered input such as whether a

button is pressed or where in physical space a 6-DOF tracker is positioned at a given

point in time. caVR abstracts all inputs into three categories: Buttons, Analogs, and

SixDOFs. Buttons as an input mirror their physical world counterparts; they behave

as a two-state toggle that can be pressed, held, released, or left open. Analogs are used

for inputs whose value resides within a continuous scale; they return a normalized

value between -1 and 1. Finally, SixDOFs represent the position and orientation of a

tracker in space. It should be noted that developers access inputs using alias strings

such as ”exit” or ”head”; the rationale behind this decision is to further separate the

developer from the underlying devices that may be driving the system.

The last component, the plugin subsystem, allows devices to interact with the

program. Plugins have access to both the input and callback subsystems. Its access

to the former subsystem allows plugins to alter the state of any input at any point

in time, facilitating the use of input devices. In these cases, plugins access these

inputs via their device names rather than their functional aliases. The plugin subsys-

tem’s access to the callback system allows plugins to call the appropriate callbacks

to drive output devices. For example, an OpenGL renderer would call a registered

”gl init context” to initialize OpenGL-specific data, ”gl update context” to update

that data before each frame, and ”gl render” to render to each surface that it is re-

sponsible for. Two different plugins might use the same set of callbacks; in the case of

OpenGL callbacks, suppose that a rendering plugin was developed for X11 windows

when running under Linux and a different plugin was developed using WGL to open

windows under the Windows operating system.

5.3.2 Execution Flow

At the start of a program that uses caVR, a configuration file is read that specifies

the machines involved in the system along with a set of plugins that should be loaded

on each machine. A separate input mapping file is also loaded that binds a device



65

name that an input plugin would access to a functional alias that is accessed by

the application developer. The machine that originally executes the application is

deemed the master and is responsible for collecting all inputs. The master machine

forks a copy of the application to every other machine involved in the system via ssh;

these worker machines in return form a master-slave configuration by subscribing to

updates published by the master. Plugins on every machine are then configured, and

each begins executing in an endless loop in its own thread.

A main loop also begins to execute, repeatedly calling the registered ”update”

callback. Before each update call, the current state of every input is locked by the

master; this locked state is the state that is actually visible to the developer during

the execution of the ”update” callback. This state is published to every other machine

in the system along with a time delta. Workers take this state and force the locked

state of their individual input subsystems to be exactly the same as the master’s.

The overall effect of this scheme is that every machine in the system is updated the

same way, resulting in the same application state to be stored on every machine in

order to prevent desynchronization.

An additional step found in caVR but not Hydra is the execution of a ”pub-

lish data” callback by the master after each call of ”update” and the execution of a

”receive data” callback before the ”update” call on each worker. The addition of this

behavior allows for programs to take a split-middle approach to application design;

instead of recomputing information on every machine or perhaps receiving that in-

formation from some external source for every machine, only the master is allowed to

compute this data and then publish it out to subscribing worker nodes to use. The

benefit of this approach is that worker nodes need not be as computationally powerful

as the master node.

Execution of the program stops when the developer calls a specially-defined

”shutdown” function within the ”update” callback, at which point all threads will

break out of their loops and rejoin the main thread. Plugins on each machine are

torn down before the remote processes themselves are destroyed. Finally, the master



66

process terminates.

5.3.3 Extensions

The design of caVR leaves the core incredibly lean and portable; however, it comes

with the drawback of providing little functionality on its own. For example, for

an OpenGL render callback to function properly, the developer needs access to the

transformation matrices required to render the scene properly. Incorporating access

to these structures in the caVR core means that caVR now has a direct dependency

on OpenGL. Instead, a middle ground approach is taken by incorporating extensions.

The caVR GL extension provides this functionality through its own set of thread-local

variables and function calls. Plugin developers who need to expose GL properties to

application developers use this interface to communicate these details. Both the

plugin and application link to the extension’s library to harness this functionality.

This approach allows caVR to be extensible without being weighed down by more

and more dependencies as new APIs start being used.

5.3.4 Implementation Details and Differences from Hydra

Unlike Hydra which was written in C++, caVR is written in C++11. The primary

boon gained from the language update is simplification of the callback subsystem

as constructs such as lambdas can be used. Threading constructs are also built-

in, increasing ease of portability. A templatized mathematics library is also provided

with swizzle semantics similar to that of GLSL, and some basic geometry and graphics

libraries were created to replace the legacy fixed functionality lost in recent versions

of OpenGL.

While networking in Hydra was also specified using plugins that could allow it to

form networks using anything from TCP to Morse code, it was deemed cumbersome

and superfluous for the user to configure for very little gain. The networking structure

was replaced with a single networking library, ZeroMQ [61], that makes the underlying

communication transparent to the user.



67

import("defaults.cfg");

self = {

hostname = HOSTNAME;

ssh = HOSTNAME;

address = "tcp://" .. HOSTNAME .. ":8888";

plugins = {

x11_renderer = x11_renderer;

vrpn = vrpn;

};

};

machines = { self; };

self.hostname = OVERRIDE_NAME ;

Figure 5.5: An example configuration of a caVR system in Lua.

Further simplifying the configuration of systems is the new configuration file

scheme. Hydra used a custom-designed configuration language that would most likely

be described akin to JSON. While simple enough for users to understand, it lacked

the ability for users to embed logic within those files, resulting in the use of multiple

sets of files based on whether the user wanted a certain parameter to be enabled or

not. To ameliorate this situation, the configuration files now use Lua [70] instead.

While remaining readable, the Lua configuration files allow for logic to be employed

and precise parameters to be overrode later on through table accesses (overrides in

Hydra usually required respecification of entire sections). Configuration files are also

separated into two sets of files for similar reasons. The first file specifies only the

machines (which can be seen in Figure 5.5) and their plugins while the second file

specifies the input mapping between device names and functional names as the second

file represents input bindings that are usually highly specific to the application while

the first file can be reused for all applications running on a given system.

The same style of Lua files are also used to define the configuration file schemas

themselves. The advantage of this is that configuration files can be validated without

running the program itself. This is particularly advantageous for the configuration

of plugins; a validated configuration file will be guaranteed to successfully configure



68

import("plugin.lua")

machine = {

hostname = {

type = "string";

required = true;

description = "hostname as specified by the environment variable

HOSTNAME";

}; -- hostname

ssh = {

type = "string";

required = true;

description = "ssh address to machine; assumes shared keys";

}; -- ssh

address = {

type = "string";

required = true;

description = "zeromq-style address of the machine for communications";

}; -- address

plugins = {

type = "list";

required = true;

subtype = plugin;

}; -- plugins

}; -- machine

Figure 5.6: A caVR schema for the specification of a ”machine” in Lua.

a plugin, which reduces the amount of boilerplate error checking that must be done.

Additionally, the schema files are available outside of the program, allowing config-

uration tools to be more easily developed. An example of a schema file is listed in

Figure 5.6.

Both versions of the VR library come with some simulator tools to aid in devel-

opment. Particularly, all X11 rendering plugins come with the capability to capture

keyboard input from the window itself. Additionally, a flag can be set that forces the

window to entire a simulator state where developers have access to a set of dummy

Analogs and SixDOFs. The ability to open multiple windows allows developers to

check whether their rendering algorithms are correct or not. Figure 5.7 shows the

simulator running on a very simple test application.



69

Figure 5.7: A caVR application running with simulator windows to test behavior.

5.4 Results

caVR is the latest iteration on the development of a VR library that began with Hy-

dra. Over the years, a number of projects have successful used Hydra to create VR

applications, the first of which was VFire [65], a wildfire simulation and visualization

tool. The application allows users to load terrain information about an area including

vegetation and moisture details and simulate wildfire spread using that data. Param-

eters such as wind speed and direction can be altered on the fly, and the effects of

adding barriers can also be visualized. Figure 5.8 shows VFire running in a CAVE-like

environment.

Another application developed in the same environment was the Radiological

Immersive Survey Training (RIST) tool [76]. RIST places Civil Support Team mem-

bers into a virtual environment where some radioactive source has been placed. The

system mimics the real-world task of CST members, where they must havigate the

environment and locate the source without exposing themselves to too much radi-



70

Figure 5.8: VFire, a Hydra application, running in a CAVE-like environment [65].



71

Figure 5.9: RIST, a Hydra application, running in a CAVE-like environment [76].

ation in the process. Shielding models are provided, and the system also employs

a unique multiperspective rendering technique since survey teams generally work in

pairs. Figure 5.9 shows RIST running in a CAVE-like environment.

For the purposes of improving immersion in virtual environments, Hydra was also

used in researching global illumination performance in those environments. While

real-time performance is already a difficult problem in a regular desktop setting, find-

ing an adequate solution for a clustered, multi-screen environment only complicates

matters. Two techniques were implemented with markedly different performance and

image quality characteristics [62]. An example of one of the techniques running in a

CAVE-like environment is seen in Figure 5.10.

On the plugin developer front with experimental outputs, remote streaming plu-

gin was successfully added that allowed for images to be rendered by a more pow-

erful server machine and then streamed to less powerful devices such as tablets and

smartphones. This allows any device with a screen to be used as an output device

regardless of whether the application itself is installed or whether it has adequate

rendering power to render images. As an example, Figure 5.11 shows VFire running

on a smartphone.

Beyond its use for research project, Hydra has been employed in teaching a class

about virtual reality. Students successfully created applications such as immersive

paint programs, planetary simulators, molecular visualizers, and games.



72

Figure 5.10: Experimental global illumination techniques being tested in a CAVE-like
environment [62].



73

Figure 5.11: An Android phone being used as a rendering surface with Hydra [63].



74

5.5 Conclusions and Future Work

In this chapter, I presented caVR and its predecessor Hydra. The design of caVR

allows it to be flexible for the application developer, the plugin developer, and the

end users. The flexibility also extends to the hardware on which applications using

caVR can run, from shared memory machines, to Beowulf clusters made from ordinary

computers in graphics labs, to powerful dedicated clusters driving CAVE-like systems.

I discussed a variety of applications that have used Hydra in order to create new

virtual environments, explore rendering techniques, and experiment with new output

devices.

While these results are promising, there is nevertheless room for improvement.

Beyond the obvious need for more applications and plugins, there are other less

apparent areas for future research. For example, while the input subsystem allows

for inputs of three specific types, it could be restructured to support any arbitrary

combination of input types by combining the concept of extensions with the new

callbacks that allow for user data to be broadcast across all nodes in the system.

Explained in depth, each input type could be an extension that registers itself with

caVR. The input synchronization step would then have each input extension serialize

its own data to be published to the worker nodes, where those same extensions would

be responsible for deserializing and updating its own data on the remote machines.

Along the same vein, a layer of software could be built on top of caVR to acceler-

ate development. In particular, one could imagine an API that allows parameters of

various types to be specified by the developer along with the names, descriptions, and

default values of these parameters. These same parameters would then be available

to plugins that could automatically generate the correct interfaces, such as an HTML

page accessible by any device with a web browser. Analog values could be represented

by sliders, buttons by checkboxes, and string inputs by text boxes. Changing these

values would automatically be reflected in the application as well as any other auto-

matically generated interfaces. Forseen difficulties include automatic generation of a



75

reasonable mapping given the characteristics of a parameter. For example, a floating

point value that scales from 1 to 10000 may not be effectively presented as a small

linear slider between the two values; it may be more advantageous to provide a slider

with a logarithmic mapping.

Finally, on the topic of inputs, the newly designed schema files allow for config-

urations to be validated externally. And while the switch to Lua goes a long way

in increasing the power and simplicity of configuration files, they still require an end

user to understand the programming language and all its idiosyncrasies. A more

reasonable approach would be to provide configuration tools through some sort of

graphical user interface as valid values for each parameter are also specified within

the schema. Once the user configures their system in this more intuitive interface, the

configuration tool can automatically generate the appropriate configuration files.



76

Chapter 6

Conclusions

This dissertation presents a method for dealing with clusters of heterogeneous hard-

ware in an efficient, extensible fashion. I apply this approach to two very different

applications: a throughput-critical neuron simulator and a latency-critical virtual re-

ality library. In the former application, I developed NCS6, a neocortical simulator

capable of harnessing all available hardware in a cluster. It allows multiple models

to be connected and simulated together, and I show how certain non-trivial models

to CUDA devices. For the latter application, I designed a library that accounts for

the ever-shifting input and output devices and paradigms found in virtual reality re-

search. I discussed improvements made to the library and presented various projects

that have successfully applied the library.



77

Bibliography

[1] GENESIS Modeling Tutorial. http://www.genesis-sim.org/GENESIS/
Tutorials/genprog/chantut.html. Accessed April 22nd, 2014.

[2] The VR Juggler Suite. http://vrjuggler.org/features.php. Accessed April
28, 2014.

[3] Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency models:
A tutorial. Computer, 29(12):66–76, 1996.

[4] Gunnar Ahlberg, Lars Enochsson, Anthony G Gallagher, Leif Hedman, Chris-
tian Hogman, David A McClusky III, Stig Ramel, C Daniel Smith, and Dag
Arvidsson. Proficiency-based virtual reality training significantly reduces the
error rate for residents during their first 10 laparoscopic cholecystectomies. The
American journal of surgery, 193(6):797–804, 2007.

[5] Thomas E Anderson, David E Culler, and David Patterson. A case for NOW
(networks of workstations). Micro, IEEE, 15(1):54–64, 1995.

[6] Edward Angel. Interactive computer graphics. Addison-Wesley Longman Pub-
lishing Co., Inc., 2006.

[7] Sridhar Reddy Anumandla, Laurence C Jayet Bray, Corey M Thibeault,
Roger V Hoang, Sergiu M Dascalu, FC Harris, and Philip H Goodman. Model-
ing oxytocin induced neurorobotic trust and intent recognition in human-robot
interaction. In Neural Networks (IJCNN), The 2011 International Joint Con-
ference on, pages 3213–3219. IEEE, 2011.

[8] Mark Bakery and Rajkumar Buyyaz. Cluster computing at a glance. High Per-
formance Cluster Computing: Architectures and System. Upper Saddle River,
NJ: Prentice-Hall, pages 3–47, 1999.

[9] Amnon Barak, Tal Ben-Nun, Ely Levy, and Amnon Shiloh. A package for
OpenCL based heterogeneous computing on clusters with many GPU devices.
In Cluster Computing Workshops and Posters (CLUSTER WORKSHOPS),
2010 IEEE International Conference on, pages 1–7. IEEE, 2010.

[10] Jorge Barbosa, João Tavares, and Armando J Padilha. Linear algebra algo-
rithms in a heterogeneous cluster of personal computers. In Heterogeneous Com-
puting Workshop, 2000.(HCW 2000) Proceedings. 9th, pages 147–159. IEEE,
2000.



78

[11] Aryabrata Basu, Christian Saupe, Eric Refour, Andrew Raij, and Kyle Johnsen.
Immersive 3DUI on one dollar a day. In 3D User Interfaces (3DUI), 2012 IEEE
Symposium on, pages 97–100. IEEE, 2012.

[12] Olivier Beaumont, Vincent Boudet, Antoine Petitet, Fabrice Rastello, and Yves
Robert. A proposal for a heterogeneous cluster ScaLAPACK (dense linear
solvers). Computers, IEEE Transactions on, 50(10):1052–1070, 2001.

[13] David M Beazley. Swig: An easy to use tool for integrating scripting languages
with C and C++. In Proceedings of the 4th USENIX Tcl/Tk workshop, pages
129–139, 1996.

[14] Donald J Becker, Thomas Sterling, Daniel Savarese, John E Dorband, Udaya A
Ranawak, and Charles V Packer. BEOWULF: A parallel workstation for sci-
entific computation. In Proceedings, International Conference on Parallel Pro-
cessing, volume 95, 1995.

[15] Mohammad A Bhuiyan, Vivek K Pallipuram, and Melissa C Smith. Accelera-
tion of spiking neural networks in emerging multi-core and GPU architectures.
In Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE International Symposium on, pages 1–8. IEEE, 2010.

[16] Allen Bierbaum, Christopher Just, Patrick Hartling, Kevin Meinert, Albert
Baker, and Carolina Cruz-Neira. VR juggler: A virtual platform for virtual
reality application development. In Virtual Reality, 2001. Proceedings. IEEE,
pages 89–96. IEEE, 2001.

[17] David Blythe. The Direct3D 10 system. In ACM SIGGRAPH 2006 Papers,
SIGGRAPH ’06, pages 724–734, New York, NY, USA, 2006. ACM.

[18] C. George Boeree. General Psychology. http://webspace.ship.edu/cgboer/
genpsy.html. Accessed April 20th, 2014.

[19] James M Bower and David Beeman. The book of GENESIS: exploring realistic
neural models with the GEneral NEural SImulation System. Electronic Library
of Science, The, 1995.

[20] James M Bower, David Beeman, and Michael Hucka. The GENESIS simulation
system. http://authors.library.caltech.edu/36220/1/bower_2003.pdf,
2003. Accessed May 14th, 2014.

[21] Laurence C Jayet Bray, Sridhar R Anumandla, Corey M Thibeault, Roger V
Hoang, Philip H Goodman, Sergiu M Dascalu, Bobby D Bryant, and Freder-
ick C Harris Jr. Real-time human–robot interaction underlying neurorobotic
trust and intent recognition. Neural Networks, 32:130–137, 2012.

[22] Laurence C Jayet Bray, Emily R Barker, Gareth B Ferneyhough, Roger V
Hoang, Bobby D Bryant, Sergiu M Dascalu, and Frederick C Harris. Goal-
related navigation of a neuromorphic virtual robot. BMC Neuroscience,
13(Suppl 1):O3, 2012.



79

[23] Adrienne Breland, Harpreet Singh, Omid Tutakhil, Mike Needham, Dickson
Luong, Grant Hennig, Roger Hoang, Torbjorn Loken, Sergiu M Dascalu, and
Frederick C Harris Jr. A GPU algorithm for comparing nucleotide histograms.
Proceedings of the 2012 ISCA International Conference on Advanced Computing
and Communication, pages 13–18, 2012.

[24] Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David Bee-
man, James M. Bower, Markus Diesmann, Abigail Morrison, Philip H. Good-
man, Frederick C. Harris Jr., Milind Zirpe, Thomas Natschlger, Dejan Pecevski,
Bard Ermentrout, Mikael Djurfeldt, Anders Lansner, Olivier Rochel, Thierry
Vieville, Eilif Muller, Andrew P. Davison, Sami El Boustani, and Alain Des-
texhe. Simulation of networks of spiking neurons: A review of tools and strate-
gies. Journal of computational neuroscience, 23(3):349–398, 2007.

[25] David T Brown, Roger V Hoang, Matthew R Sgambati, Timothy J Brown,
Sergiu M Dascalu, and Frederick C Harris, Jr. An application for tree detection
using satellite imagery and vegetation data. Journal of Computational Methods
in Science and Engineering, 10:13–25, 2010.

[26] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for GPUs: Stream computing on graphics
hardware. In ACM Transactions on Graphics (TOG), volume 23, pages 777–
786. ACM, 2004.

[27] Grigore C Burdea. Haptics issues in virtual environments. In Computer Graph-
ics International, 2000. Proceedings, pages 295–302. IEEE, 2000.

[28] Anthony N Burkitt. A review of the integrate-and-fire neuron model: I. homo-
geneous synaptic input. Biological cybernetics, 95(1):1–19, 2006.

[29] Justin E Cardoza, Alexander K Jones, Denver J Liu, Roger V Hoang, Devyani
Tanna, Laurence C Jayet Bray, Sergiu M Dascalu, and Frederick C Harris Jr.
Design and implementation of a graphical visualization tool for NCS. In Proceed-
ings of the 2013 International Conference on Software Engineering and Data
Engineering, pages 37–43, 2013.

[30] Daniel C Cliburn. Virtual reality for small colleges. Journal of Computing
Sciences in Colleges, 19(4):28–38, 2004.

[31] Katherine Compton and Scott Hauck. Reconfigurable computing: A survey of
systems and software. ACM Computing Surveys (csuR), 34(2):171–210, 2002.

[32] Microsoft Corporation. HLSL. http://msdn.microsoft.com/en-us/library/
windows/desktop/bb509561(v=vs.85).aspx. Accessed January 16th, 2014.

[33] Keenan Crane, Ignacio Llamas, and Sarah Tariq. Real-time simulation and
rendering of 3D fluids. GPU Gems, 3(1), 2007.

[34] Douglas Crockford. The application/json media type for Javascript Object
Notation (JSON). http://tools.ietf.org/html/rfc4627, 2006. Accessed
May 8th, 2014.



80

[35] Carolina Cruz-Neira, Daniel J Sandin, and Thomas A DeFanti. Surround-
screen projection-based virtual reality: the design and implementation of the
CAVE. In Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, pages 135–142. ACM, 1993.

[36] Leonardo Dagum and Ramesh Menon. OpenMP: An industry standard API
for shared-memory programming. Computational Science & Engineering, IEEE,
5(1):46–55, 1998.

[37] Andrew P Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif
Muller, Dejan Pecevski, Laurent Perrinet, and Pierre Yger. PyNN: A com-
mon interface for neuronal network simulators. Frontiers in neuroinformatics,
2, 2008.

[38] Thomas A DeFanti, Gregory Dawe, Daniel J Sandin, Jurgen P Schulze, Pe-
ter Otto, Javier Girado, Falko Kuester, Larry Smarr, and Ramesh Rao. The
StarCAVE, a third-generation CAVE and virtual reality OptIPortal. Future
Generation Computer Systems, 25(2):169–178, 2009.

[39] André DeHon and John Wawrzynek. Reconfigurable computing: What, why,
and implications for design automation. In Proceedings of the 36th annual
ACM/IEEE Design Automation Conference, pages 610–615. ACM, 1999.

[40] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili,
and Nathan Clark. Ocelot: A dynamic optimization framework for bulk-
synchronous applications in heterogeneous systems. In Proceedings of the 19th
international conference on Parallel architectures and compilation techniques,
pages 353–364. ACM, 2010.

[41] Rich Drewes, Quan Zou, and Philip H Goodman. Brainlab: A Python toolkit
to aid in the design, simulation, and analysis of spiking neural networks with
the neocortical simulator. Frontiers in neuroinformatics, 3, 2009.

[42] Nathaniel I Durlach and Anne S Mavor. Virtual Reality: Scientific and Tech-
nological Challenges. National Academies Press, 1994.

[43] Erich Elsen, Vaidyanathan Vishal, Mike Houston, Vijay Pande, Pat Hanrahan,
and Eric Darve. N-body simulations on GPUs. arXiv preprint arXiv:0706.3060,
2007.

[44] Jochen Martin Eppler, Moritz Helias, Eilif Muller, Markus Diesmann, and
Marc-Oliver Gewaltig. PyNEST: A convenient interface to the NEST simu-
lator. Frontiers in neuroinformatics, 2, 2008.

[45] Andreas K Fidjeland, Etienne B Roesch, Murray P Shanahan, and Wayne Luk.
Nemo: A platform for neural modelling of spiking neurons using GPUs. In
Application-specific Systems, Architectures and Processors, 2009. ASAP 2009.
20th IEEE International Conference on, pages 137–144. IEEE, 2009.

[46] Andreas K Fidjeland and Murray P Shanahan. Accelerated simulation of spik-
ing neural networks using GPUs. In Neural Networks (IJCNN), The 2010 In-
ternational Joint Conference on, pages 1–8. IEEE, 2010.



81

[47] James Frye. Parallel optimization of a neocortical simulation program. Master’s
thesis, Citeseer, 2003.

[48] David Geer. Chip makers turn to multicore processors. Computer, 38(5):11–13,
2005.

[49] David Geer. Vendors upgrade their physics processing to improve gaming.
Computer, 39(8):22–24, 2006.

[50] NVIDIA GeForce. 8800 GPU architecture overview. Technical Brief TB-02787-
001 v0, 9, 2006.

[51] Al Geist, William Gropp, Steve Huss-Lederman, Andrew Lumsdaine, Ewing
Lusk, William Saphir, Tony Skjellum, and Marc Snir. MPI-2: Extending the
message-passing interface. In Euro-Par’96 Parallel Processing, pages 128–135.
Springer, 1996.

[52] Marc-Oliver Gewaltig and Markus Diesmann. NEST(neural simulation tool).
Scholarpedia, 2(4):1430, 2007.

[53] Nigel H Goddard and Greg Hood. Large-scale simulation using parallel GEN-
ESIS. In The Book of GENESIS, pages 349–379. Springer, 1998.

[54] Dan FM Goodman and Romain Brette. The Brian Simulator. Frontiers in
neuroscience, 3(2):192, 2009.

[55] Simon Green. The OpenGL framebuffer object extension. In Game Developers
Conference, volume 2005, 2005.

[56] Gold Standard Group. OpenGL Shading Language. http://www.opengl.org/
documentation/glsl/. Accessed January 16th, 2014.

[57] Boris Gutkin, David Pinto, and Bard Ermentrout. Mathematical neuroscience:
from neurons to circuits to systems. Journal of Physiology-Paris, 97(2):209–219,
2003.

[58] Mark Harris. GPGPU: General-purpose computation on GPUs. SIGGRAPH
2005 GPGPU COURSE, 2005.

[59] Reiner Hartenstein. A decade of reconfigurable computing: A visionary retro-
spective. In Proceedings of the conference on Design, automation and test in
Europe, pages 642–649. IEEE Press, 2001.

[60] Michael L Hines and Nicholas T Carnevale. The NEURON simulation environ-
ment. Neural computation, 9(6):1179–1209, 1997.

[61] Pieter Hintjens. Ømq-the guide. Online: http://zguide.zeromq.org/page:all,
Accessed on April 27, 2014, 23, 2011.

[62] Roger Hoang, Steve Koepnick, Joseph D Mahsman, Matthew Sgambati, Cody J
White, and Daniel S Coming. Exploring global illumination for virtual reality.
ACM SIGGRAPH 2010 Posters, page 125, 2010.



82

[63] Roger V Hoang, Joshua Hegie, and Frederick C Harris Jr. Scrybe: A tablet
interface for virtual environments. In CAINE, pages 105–110, 2010.

[64] Roger V Hoang, Joseph D Mahsman, David T Brown, Michael A Penick, Fred-
erick C Harris Jr., and Timothy J Brown. Vfire: Virtual fire in realistic envi-
ronments. In Virtual Reality Conference, 2008. VR’08. IEEE, pages 261–262.
IEEE, 2008.

[65] Roger V Hoang, Matthew R Sgambati, Timothy J Brown, Daniel S Coming, and
Frederick C Harris Jr. Vfire: Immersive wildfire simulation and visualization.
Computers & Graphics, 34(6):655–664, 2010.

[66] Roger V Hoang, Devyani Tanna, Laurence C Jayet Bray, Sergiu M Dascalu,
and Frederick C Harris Jr. A novel CPU/GPU simulation environment for
large-scale biologically realistic neural modeling. Frontiers in neuroinformatics,
7, 2013.

[67] Roger Viet Hoang. Wildfire simulation on the GPU. Master’s thesis, University
of Nevada, Reno, 2008.

[68] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal
of physiology, 117(4):500, 1952.

[69] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat Hanrahan. In-
teractive kd tree GPU raytracing. In Proceedings of the 2007 symposium on
Interactive 3D graphics and games, pages 167–174. ACM, 2007.

[70] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Ce-
les Filho. Lua-an extensible extension language. Softw., Pract. Exper.,
26(6):635–652, 1996.

[71] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on
neural networks, 14(6):1569–1572, 2003.

[72] Dana A Jacobsen, Julien C Thibault, and Inanc Senocak. An MPI-CUDA im-
plementation for massively parallel incompressible flow computations on multi-
GPU clusters. In 48th AIAA Aerospace Sciences Meeting and Exhibit, vol-
ume 16, 2010.

[73] Richard M Karp and Vijaya Ramachandran. A survey of parallel algorithms for
shared-memory machines. Handbook of Theoretical Computer Science. North-
Holland, 1988.

[74] Mark J Kilgard. The OpenGL utility toolkit (GLUT) programming interface
API version 3. http://users.informatik.uni-halle.de/~schenzel/ws02/
opengl/spec3.pdf, 1996. Accessed May 8th, 2014.

[75] David Kirk. NVIDIA CUDA software and GPU parallel computing architecture.
In ISMM, volume 7, pages 103–104, 2007.



83

[76] Steven Koepnick, Roger V Hoang, Matthew R Sgambati, Daniel S Coming,
Evan A Suma, and William R Sherman. RIST: Radiological immersive survey
training for two simultaneous users. Computers & Graphics, 34(6):665–676,
2010.

[77] Eugenia M Kolasinski. Simulator sickness in virtual environments. Technical
report, DTIC Document, 1995.

[78] Oliver Kreylos. Environment-independent VR development. In Advances in
Visual Computing, pages 901–912. Springer, 2008.

[79] Lutz Lata. Building a million particle system. In Proceedings of the Game
Developers Conference 2004, pages 54–60, 2004.

[80] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: A
compiler framework for automatic translation and optimization. ACM Sigplan
Notices, 44(4):101–110, 2009.

[81] JJ-W Lin, Henry Been-Lirn Duh, Donald E Parker, Habib Abi-Rached, and
Thomas A Furness. Effects of field of view on presence, enjoyment, memory,
and simulator sickness in a virtual environment. In Virtual Reality, 2002. Pro-
ceedings. IEEE, pages 164–171. IEEE, 2002.

[82] Youquan Liu, Xuehui Liu, and Enhua Wu. Real-time 3D fluid simulation on
GPU with complex obstacles. In Computer Graphics and Applications, 2004.
PG 2004. Proceedings. 12th Pacific Conference on, pages 247–256. IEEE, 2004.

[83] William R Mark, R Steven Glanville, Kurt Akeley, and Mark J Kilgard. Cg:
a system for programming graphics hardware in a C-like language. In ACM
Transactions on Graphics (TOG), volume 22, pages 896–907. ACM, 2003.

[84] John M Mellor-Crummey and Michael L Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Transactions on Computer
Systems (TOCS), 9(1):21–65, 1991.

[85] Michele Migliore, C Cannia, William W Lytton, Henry Markram, and Michael L
Hines. Parallel network simulations with NEURON. Journal of computational
neuroscience, 21(2):119–129, 2006.

[86] Jayram Moorkanikara Nageswaran, Nikil Dutt, Jeffrey L Krichmar, Alex Nico-
lau, and Alexander V Veidenbaum. A configurable simulation environment
for the efficient simulation of large-scale spiking neural networks on graphics
processors. Neural Networks, 22(5):791–800, 2009.

[87] Tao Ni, Greg S Schmidt, Oliver G Staadt, Mark A Livingston, Robert Ball, and
Richard May. A survey of large high-resolution display technologies, techniques,
and applications. In Virtual Reality Conference, 2006, pages 223–236. IEEE,
2006.

[88] Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey of issues
and algorithms. Computer, 24(8):52–60, 1991.



84

[89] NVIDIA. GeForce GTX 780. http://www.geforce.com/hardware/
desktop-gpus/geforce-gtx-780/specifications. Accessed January 21st,
2014.

[90] NVIDIA. OpenGL geometry shader extension. http://developer.download.
nvidia.com/opengl/specs/GL_EXT_geometry_shader4.txt. Accessed De-
cember 16th, 2014.

[91] NVIDIA. OpenGL transform feedback extension. http://developer.
download.nvidia.com/opengl/specs/GL_NV_transform_feedback.txt. Ac-
cessed December 17th, 2014.

[92] NVIDIA. CUDA C best practices guide, 2013. http://docs.nvidia.com/
cuda/pdf/CUDA_C_Best_Practices_Guide.pdf.

[93] NVIDIA. CUDA C programming guide, 2013. http://docs.nvidia.com/
cuda/pdf/CUDA_C_Programming_Guide.pdf.

[94] Iason Oikonomidis, Nikolaos Kyriazis, and Antonis A Argyros. Efficient model-
based 3D tracking of hand articulations using Kinect. In BMVC, pages 1–11,
2011.

[95] Sohei Okamoto, Roger V Hoang, Sergiu M Dascalu, Frederick C Harris, and
Noureddine Belkhatir. SUNPRISM: An approach and software tools for col-
laborative climate change research. In Collaboration Technologies and Systems
(CTS), 2012 International Conference on, pages 583–590. IEEE, 2012.

[96] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. GPU computing. Proceedings of the IEEE, 96(5):879–899,
2008.

[97] Michael A Penick, Roger V Hoang, Frederick C Harris Jr, Sergiu M Dascalu,
Timothy J Brown, William R Sherman, and Philip A McDonald. Managing data
and computational complexity for immersive wildfire visualization. Proceedings
of High Performance Computing Systems (HPCS07), 2007.

[98] Jesse D. Phillips, Roger V. Hoang, Joseph D. Mahsman, Matthew R. Sgambati,
Xiaolu Zhang, Sergiu M. Dascalu, and Frederick C. Harris Jr. Scripted arti-
ficially intelligent basic online tactical simulation. In CAINE, pages 292–297,
2008.

[99] Hans E Plesser, Jochen M Eppler, Abigail Morrison, Markus Diesmann, and
Marc-Oliver Gewaltig. Efficient parallel simulation of large-scale neuronal net-
works on clusters of multiprocessor computers. In Euro-Par 2007 parallel pro-
cessing, pages 672–681. Springer, 2007.

[100] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. The
go-go interaction technique: Non-linear mapping for direct manipulation in vr.
In Proceedings of the 9th annual ACM symposium on User interface software
and technology, pages 79–80. ACM, 1996.



85

[101] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. Distributed shared mem-
ory: Concepts and systems. Parallel & Distributed Technology: Systems &
Applications, IEEE, 4(2):63–71, 1996.

[102] Mark Segal and Kurt Akeley. The design of the OpenGL graphics interface.
Technical report, Silicon Graphics Computer Systems, 1994.

[103] Neal E Seymour, Anthony G Gallagher, Sanziana A Roman, Michael K OBrien,
Vipin K Bansal, Dana K Andersen, and Richard M Satava. Virtual reality
training improves operating room performance: results of a randomized, double-
blinded study. Annals of surgery, 236(4):458, 2002.

[104] William R Sherman. FreeVR. http://freevr.org/, 2013. Accessed May 8th,
2014.

[105] William R Sherman and Alan B Craig. Understanding virtual reality: Interface,
application, and design. Elsevier, 2002.

[106] William R Sherman, Simon Su, Philip A McDonald, Yi Mu, and Frederick C
Harris Jr. Open-source tools for immersive environmental visualization. Com-
puter Graphics and Applications, IEEE, 27(2):88–91, 2007.

[107] Russell D Shilling and Barbara Shinn-Cunningham. Virtual auditory displays.
Handbook of virtual environment technology, pages 65–92, 2002.

[108] Anand Lal Shimpi. Inside the titan supercomputer: 299k AMD x86 cores and
18.6k NVIDIA GPUs. AnandTech online computer hardware magazine, October,
2012.

[109] Michael Showerman, Jeremy Enos, Avneesh Pant, Volodymyr Kindratenko,
Craig Steffen, Robert Pennington, and Wen-mei Hwu. QP: A heterogeneous
multi-accelerator cluster. In Proc. 10th LCI International Conference on High-
Performance Clustered Computing, 2009.

[110] Michael J Smith, Roger V Hoang, Matthew R Sgambati, Sergiu Dascalu, and
Frederick C Harris Jr. A dynamic multi-contextual GPU-based particle system
using vector fields for particle propagation. In CAINE, pages 203–208, 2008.

[111] Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian learn-
ing through spike-timing-dependent synaptic plasticity. Nature neuroscience,
3(9):919–926, 2000.

[112] Kay M Stanney, Ronald R Mourant, and Robert S Kennedy. Human factors is-
sues in virtual environments: A review of the literature. Presence: Teleoperators
and Virtual Environments, 7(4):327–351, 1998.

[113] Jonathan Steuer. Defining virtual reality: Dimensions determining telepresence.
Journal of communication, 42(4):73–93, 1992.

[114] Richard Stoakley, Matthew J Conway, and Randy Pausch. Virtual reality on a
WIM: Interactive worlds in miniature. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 265–272. ACM Press/Addison-
Wesley Publishing Co., 1995.



86

[115] John E Stone, David Gohara, and Guochun Shi. OpenCL: A parallel program-
ming standard for heterogeneous computing systems. Computing in science &
engineering, 12(3):66, 2010.

[116] Ivan E Sutherland. The ultimate display. Multimedia: From Wagner to virtual
reality, 1965.

[117] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency
in software. Dr. Dobbs Journal, 30(3):202–210, 2005.

[118] Russell M Taylor II, Thomas C Hudson, Adam Seeger, Hans Weber, Jeffrey
Juliano, and Aron T Helser. VRPN: A device-independent, network-transparent
VR peripheral system. In Proceedings of the ACM symposium on Virtual reality
software and technology, pages 55–61. ACM, 2001.

[119] James D Teresco, J Fair, and Joseph E Flaherty. Resource-aware scientific
computation on a heterogeneous cluster. Computing in science & engineering,
7(2):40–50, 2005.

[120] Corey M Thibeault, Roger V Hoang, and Frederick C Harris Jr. A novel multi-
GPU neural simulator. In Bioinformatics and Computational Biology, pages
146–151, 2011.

[121] Corey M Thibeault, Kirill Minkovich, Michael J O’Brien, Frederick C Harris Jr,
and Narayan Srinivasa. Efficiently passing messages in distributed spiking neu-
ral network simulation. Frontiers in Computational Neuroscience, 7, 2013.

[122] Timothy J Todman, George A Constantinides, Steven JE Wilton, Oskar
Mencer, Wayne Luk, and Peter YK Cheung. Reconfigurable computing: Ar-
chitectures and design methods. IEE Proceedings-Computers and Digital Tech-
niques, 152(2):193–207, 2005.

[123] Stanimire Tomov, Michael McGuigan, Robert Bennett, Gordon Smith, and
John Spiletic. Benchmarking and implementation of probability-based simula-
tions on programmable graphics cards. Computers & Graphics, 29(1):71–80,
2005.

[124] Kuen Hung Tsoi and Wayne Luk. Axel: A heterogeneous cluster with FP-
GAs and GPUs. In Proceedings of the 18th annual ACM/SIGDA international
symposium on Field programmable gate arrays, pages 115–124. ACM, 2010.

[125] Suresh Venkatasubramanian. The graphics card as a stream computer. In
SIGMOD-DIMACS workshop on management and processing of data streams,
volume 101, page 102, 2003.

[126] Jeffrey S Vetter, Richard Glassbrook, Jack Dongarra, Karsten Schwan, Bruce
Loftis, Stephen McNally, Jeremy Meredith, James Rogers, Philip Roth, Kyle
Spafford, et al. Keeneland: Bringing heterogeneous GPU computing to the
computational science community. Computing in Science & Engineering, pages
90–95, 2011.



87

[127] Oculus VR. Oculus rift-virtual reality headset for 3D gaming. http://www.
oculusvr.com, 2014. Accessed May 8th, 2014.

[128] David W Walker. The design of a standard message passing interface for dis-
tributed memory concurrent computers. Parallel Computing, 20(4):657–673,
1994.

[129] Frank Weichert, Daniel Bachmann, Bartholomäus Rudak, and Denis Fisseler.
Analysis of the accuracy and robustness of the leap motion controller. Sensors
(Basel, Switzerland), 13(5):6380, 2013.

[130] Chadwick A Wingrave, Brian Williamson, Paul D Varcholik, Jeremy Rose, An-
drew Miller, Emiko Charbonneau, Jared Bott, and JJ LaViola. The wiimote
and beyond: Spatially convenient devices for 3D user interfaces. Computer
Graphics and Applications, IEEE, 30(2):71–85, 2010.

[131] Dean Wormell and Eric Foxlin. Advancements in 3D interactive devices for
virtual environments. In Proceedings of the workshop on Virtual environments
2003, pages 47–56. ACM, 2003.

[132] Tomoya Yamada, Satoshi Yokoyama, Tomohiro Tanikawa, Koichi Hirota, and
Michitaka Hirose. Wearable olfactory display: Using odor in outdoor environ-
ment. In Virtual Reality Conference, 2006, pages 199–206. IEEE, 2006.

[133] Yasuyuki Yanagida, Shinjiro Kawato, Haruo Noma, Nobuji Tetsutani, and
Akira Tomono. A nose-tracked, personal olfactory display. In ACM SIGGRAPH
2003 Sketches & Applications, pages 1–1. ACM, 2003.



88



89

Appendices



90

Appendix A

Publications

This appendix details the various publications and projects with which the author

has been involved. Though there is a bit of overlap on a few publications, they

can be categorized into four particular areas: virtual reality, wildfire visualization

and simulation, GPU computing, and neural simulation. Table A.1 provides these

publications in chronological order along with the areas that they are categorized in.

A.1 Virtual Reality

Work in virtual reality actually began with work in wildfire visualization in the origi-

nal VFire project [97], which visualized precomputed wildfire simulations in a CAVE

environment using FreeVR with a shared memory computer driving the rendering.

Early work focused on improving the rendering quality [64] and incorporating real-

world data such as tree positions derived using supervised tools [25].

The installation of a six-sided CAVE-like environment served as impetus to the

development of Hydra as the number of graphics cards required to drive up to twelve

displays simultaneously made a shared-memory system impractical. VFire was even-

tually modified to run using Hydra [65] with run-time simulation capabilities incor-

porated from some interim research [67], marking its transition from solely a visu-

alization tool to an interactive simulator. Hydra was also used for the RIST [76], a

project designed to train civil support teams to perform radiological surveys in vir-

tual environments. In order to test the performance of various global illumination



91

techniques in virtual reality, Hydra was also employed [62].

During this time, the author was also involved in a set of side projects, one devel-

oping a GPU-based particle system that could run in an environment with multiple

rendering contexts such as the CAVE [110], and another developing Scrybe, an exten-

sion to Hydra that allowed remote devices to become interfaces for a corresponding

Hydra application [63]. SUNPRISM [95] is a project that employs Hydra in order to

visualize climate change data in virtual environments such as the CAVE.

A.2 Wildfire Visualization and Simulation

The VFire project originally attempted to provide realistic visualizations of wildfires

in a CAVE [97, 64]. Tree positioning using a developed computer-vision tool was

later added [25]. VFire’s sole purpose as a visualization tool that could only show

data that took too long to process made it less effective as a tool for experimentation

and real-time use; as such, research was done to create a wildfire simulator that could

execute on the GPU; the advantage of this approach was the exploitation of the

GPU’s data parallellism as well as the instant availability of that data for rendering

afterwards [67], a system that would be later incorporated into the newly Hydra-

driven VFire [65], which provided interactive tools to users to allow them to start

fires, manipulate weather conditions, and test the effects of various countermeasures

such as fire breaks.

A.3 GPU Computing

The majority of publications discussed in this appendix are related in some way to

GPU computing. In addition to the previously described GPU implementations of a

fire simulator [67] and a particle system [110], a GPU algorithm was developed for

comparing nucleotide sequences was also developed using CUDA [23]. The global

illumination application also employed some GPU ray-tracing as a component of one

of its algorithms [62]. The author’s involvement in all of the publications discussed



92

in the next section about neural simulation can be attributed to some form of GPU

computing used in each one.

A.4 Neural Simulation

The version of NCS6 [66] described in Chapter 4 was the capstone to a body of work

in neural simulation. The idea for using bit vectors as the primary communication

message between devices was originally developed in a prototype Izhikevich simulator

that could run on multiple GPUs [120]. A visualization application for the output of

NCS6 was developed by another group of students [29].

Before work began on NCS6, a CUDA implementation of a gabor filter was devel-

oped to assist with research using NCS5, particularly in modeling trust and the neu-

rotransmitter oxytocin [7, 21]. Additionally, it was used in the simulation of a brain

architecture that could successfully navigate virtual environments [22].



93

Table A.1: Publications sorted chronologically with subject areas.

Publication Virtual
Reality

Wildfire
Simulation

GPU
Computing

Neural
Simulation

Managing data and computational
complexity for immersive wildfire
visualization[97]

X X

VFire: virtual fire in realistic envi-
ronments [64]

X X

Wildfire simulation on the GPU [67] X X

A dynamic multi-contextual GPU-
based particle system using vector
fields for particle propagation [110]

X X

Scripted Artificially Intelligent Ba-
sic Online Tactical Simulation [98]

X

Scrybe: a tablet interface for virtual
environments [63]

X

An application for tree detection us-
ing satellite imagery and vegetation
data [25]

X

Exploring global illumination for
virtual reality [62]

X X

VFire: Immersive wildfire simula-
tion and visualization [65]

X X X

RIST: Radiological immersive sur-
vey training for two simultaneous
users [76]

X

Modeling oxytocin induced neuro-
robotic trust and intent recognition
in human-robot interaction [7]

X X

A novel multi-GPU neural
simulator[120]

X X

Real-time humanrobot interaction
underlying neurorobotic trust and
intent recognition [21]

X X

Goal-related navigation of a neuro-
morphic virtual robot [22]

X X

A GPU algorithm for comparing nu-
cleotide histograms [23]

X

SUNPRISM: An approach and soft-
ware tools for collaborative climate
change research [95]

X

Design and implementation of a
graphical visualization tool for
NCS [29]

X

A novel CPU/GPU simulation envi-
ronment for large-scale biologically
realistic neural modeling [66]

X X


