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Abstract. Visualizing planetary terrain presents unique challenges not
found in traditional terrain visualization: displaying features that rise
from behind the horizon on a curved surface; rendering near and far
surfaces with large differences in scale; and using appropriate map pro-
jections, especially near the poles. Projective Grid Mapping (PGM) is a
hybrid terrain rendering technique that combines ray casting and raster-
ization to create a view-dependent mesh in GPU memory. We formulate
a version of PGM for planetary terrain that simplifies ray-sphere inter-
section to two dimensions and ray casts the area behind the horizon. We
minimize the number of rays that do not contribute to the final image
by creating a camera that samples only the area of the planet that could
affect the final image. The GPU-resident mesh obviates host-to-device
communication of vertices and allows for dynamic operations, such as
compositing overlapping datasets. We adapt two map projections to the
GPU for equatorial and polar data to reduce distortion. Our method
achieves realtime framerates for a full-planet visualization of Mars.

1 Introduction

There are three problems of planetary terrain that this work addresses. The
curved body of the planet means that for a viewer on the surface there is a
horizon that marks the boundary between what can be seen and what cannot
be seen. The terrain algorithm must ensure that the area behind the horizon is
adequately sampled so that any mountains that affect the image are sampled.
The second problem is the issue of the large scale of the planet. This affects
the z-buffering algorithm which only maintains a limited precision buffer for
determining surface depths. The final problem is using datasets in appropriate
map projections for the area depicted. This problem commonly demonstrates
itself near the poles of planetary terrain renderers. Distortion is visible since
the underlying map projection used is meant for the equatorial region, and yet
the square mipmap filter is being applied to the distorted polar regions of the
mipmap.

We choose to adapt a planar terrain algorithm to the sphere to enable plan-
etary rendering. Projective Grid Mapping (PGM) is chosen since it allows the
creation of the terrain mesh entirely in GPU memory. This obviates the need for
vertex transfer between the CPU and the GPU. PGM also generates the mesh
in a view-dependent manner with gradual detail transition moving further away
from the viewer.
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The GPU-resident mesh representation allows us to apply dynamic, massively
parallel operations to the terrain mesh at runtime. In the case of planetary data,
usually the visualization involves multiple data maps (heights and colors) that
might overlap. Terrain composition as described by Kooima et al. [1] allows for
these overlapping datasets to be combined at runtime. Using deferred texturing
and PGM, we implement a full planetary terrain renderer.

In order to simplify ray-sphere intersection and to create a conceptual frame-
work through which to solve sampling problems, described later, we reduce ray-
sphere intersection to two dimensions as a function of a ray’s angle to the line
connecting the viewpoint and the sphere’s center (Section 3).

Before PGM can be applied to the sphere we must avoid sampling issues.
This is done by selecting reference spheres for ray casting, and generating a
sampling camera (Section 4). The entities are used in ray casting the sphere.

The purpose of reference spheres is to avoid sampling issues when ray casting.
The sampling camera minimizes the number of rays that don’t contribute either
because they miss or they sample the area of the planet that does not affect the
final image (Section 5).

Finally, the ray casting step uses these entities (Section 3). The goal is to
generate positions relative to the camera to avoid artifacts due to 32-bit floating
point imprecision. The output of PGM are two buffers, sized to the projective
grid; the positions and sphere normals. Positions are used as points on the sphere
to be displaced later. Sphere normals are used to determine a geographic location.

These buffers are fed into the height compositor as done by Kooima et al. [1].
The mesh is then rasterized by displacing each grid point along its composited
height value. Colors are then composited in screen space. In order to read the
data maps, map projections must be implemented on the GPU. We formulate
versions of these equations for the GPU (Section 7). Finally, lighting is applied.

We demonstrate the performance of this algorithm and identify some of its
weaknesses in a simulation of a full-planet of Mars (Section 8).

2 Related Work

Terrain algorithms can be classified based on the underlying surface used for
displacement. Extensive research has been performed for plane-based algorithms.
Real-time Optimally Adapting Meshes (ROAM) by Duchaineau et al. [2] is an
effective CPU-based algorithm that progressively refines the terrain mesh for
the current view. Losasso and Hoppe [3] present geometry clipmapping, which
is capable of handling large amounts of static terrain data. Asirvatham and
Hoppe [4] extend geometry clipmaps to use programmable shaders, making the
approach one of the first terrain algorithms to take advantage of modern GPU
capabilities. Dick et al. [5] implement ray casting for terrain and find success
with large amounts of data.

There are few terrain rendering algorithms that address the issue of rendering
on a sphere or planetary body. Cignoni et al. [6] describe Planetary Batched
Dynamic Adaptive Meshes (P-BDAM). Large terrain databases are managed and
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rendered using the batching capabilities of the GPU. The planet is divided into
a number of tiles, where each tile corresponds to an individual triangle bintree.
Accuracy issues presented by high-resolution planetary datasets are resolved
using GPU hardware.

Clasen and Hege [7] update the geometry clipmapping approach of Losasso
and Hoppe [3] for planetary terrain. Although successful, their approach gen-
erates the mesh for the visible part of the user’s current hemisphere entirely,
and does not perform any frustum culling. Therefore, no matter where the user
is looking, there is always wasted triangles being rendered. In addition, this
approach requires the terrain to be static.

Kooima et al. [1] present a method of planetary terrain rendering that builds
a terrain mesh using the CPU and the GPU. The algorithm creates a mesh with
vertices on the sphere, and later displaces these vertices based on composited
heights. First, coarse-grained refinement is performed on the CPU to determine
view-dependent levels of detail within the mesh. Next, the coarse mesh is refined
on the GPU to create the final terrain. The mesh exists on the GPU as raster
data, allowing for various height maps to be composited and displace the mesh.

To create a planetary algorithm that operates entirely on the GPU, we adapt
the projected grid approach or PGM for planetary rendering. PGM is a technique
for approximating a surface displaced from a plane. The technique was first
applied as a method for visualization of waves by Hinsinger et al. [8] and later
extended by Johanson [9]. Bruneton et al. [10] currently uses a projected grid
for ocean wave animation.

PGM was first applied to terrain by Livny et al. [11] and later extended to
make use of screen space error metrics to guide sampling by Löffler et al. [12].
Schneider et al. [13] use PGM for planetary terrain synthesis, however they do
not handle terrain beyond the horizon, instead electing to obscure the horizon
with atmosphere and fog effects.

PGM begins with a regular grid of points stretched across the viewport. Each
point is projected onto the terrain along its corresponding eye ray. The terrain
intersection point of each projected grid point corresponds to a location within
the height map. Therefore at each projected grid point, the height map is queried
and the point is displaced vertically along the base plane normal. The projected
and displaced grid is now interpreted as a triangle mesh and rasterized.

Fig. 1. The grid projected onto the terrain base plane.
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There are some problem with this. The viewing camera may miss areas of the
terrain below the camera which could include mountains that should intersect the
viewing camera. This is solved by creating a special sampling camera. Another
problem is that the sampling rate of the projected grid becomes much lower than
that of the height map as the distance from the viewpoint increases; although
this leads to a positive, gradual reduction of detail, the low sampling leads to
missing details and the appearance of wavy mesh. This can be addressed by
either increasing the number of samples of the projective grid or using filtered
versions of the height map as the distance increases to reduce the sampling
frequency of the terrain function.

3 Projective Grid Mapping for Planetary Terrain

For each grid point, we need to generate a ray to ray cast the reference spheres.
Since we reduce the intersection to two-dimensions, we must also generate the
proper coordinate system transformation for the generated rays. Finally, we must
determine the position of the ray-circle intersection. This position must be cal-
culated in eye space so as to mitigate floating point precision issues that would
arise from measuring the position relative to world space.

The output of PGM consists of two buffers, where each pixel represents data
for a grid point. The first buffer is the positions buffer that holds the ray-sphere
intersection point. The second buffer contains the normals to the sphere at the
intersection points.

Eye Rays. PGM is carried out by binding the output buffers to the current
framebuffer and rendering a fullscreen quad. Each fragment represents a grid
point. Thus, we can generate the eye rays for each screen fragment in parallel.
The sampling camera matrix and the inverse of the sampling projection matrix
are uploaded to the GPU and a fullscreen quad is rendered to start this process.
The derivation of these matrices is described in Section 5.

In order to find the eye ray associated with the current fragment, we must
first transform the current fragment coordinate into clip space. We can then move
into sampling camera coordinates with the use of the inverse sampling camera
projection matrix uploaded earlier. A perspective divide is then performed to
finish the transformation. Since the origin of the sampling coordinates is the
eye, the position of the grid point in sampling coordinates is also a vector from
the eye to the grid point. Therefore, we can normalize the position and get the
eye ray for the grid point.

Two-Dimensional Reduction. Inspired by the work of Fourquet et al. [14] in
displacement mapping a spherical underlying surface, we simplify ray-sphere
intersection in three dimensions to ray-circle intersection in two dimensions.
This approach not only simplifies the GPU implementation, but also provides a
mathematical framework to solve the sampling issues (Section 4 and Section 5).

We derive the trigonometric equation that maps the elevation ω of an eye ray
to the elevation γ of the sphere normal at the ray-sphere intersection point, as
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shown in Figure 2. The angle ω is the angle between the eye ray r̂ and the nadir
n̂, and the angle γ is the angle between the sphere normal ŝ at the ray-sphere
intersection point I and the antinadir −n̂. All vectors are assumed to be unit
vectors unless otherwise noted.
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Fig. 2. The calculation of the ray angle.

In order to convert an eye ray to its ray angle ω, we must calculate the local
coordinate system. This calculation begins with determining the right vector
from the cross product of the eye ray and the nadir, transformed into sampling
camera space by the sampling camera view matrix. The cross product of the
right vector with the nadir then produces the up vector.

The three basis vectors of the coordinate system are î, ĵ, and k̂, corresponding
to the x-, y-, and z-axes. The nadir n̂ is taken to be the first basis vector î. The
cross product of î and r̂ produces the right vector ĵ. Finally, the cross product
of ĵ and î produces the up vector k̂.

Before calculating the normal angle, we must first calculate the ray angle
ω. Working in the plane of the two-dimensional cross section, we use the dot
product and a trigonometric identity.

Figure 2 shows the angle ω between r̂ and n̂, as well as the angle α between
r̂ and k̂. Then the equation

r̂ · k̂ = cosα (1)

relates r̂ and k̂ to the angle α between them. Using the knowledge that k̂ is
perpendicular to n̂, we note that ω = π/2−α. The trigonometric identity cosα =
sin(π/2−α) implies that cosα = sinω. Substituting this result into Equation 1,
we get

ω = asin(r̂ · k̂). (2)

We can now calculate the normal angle as a function of the ray angle. Fig-
ure 3 illustrates the situation with a ray cast against a sphere. Points I1 and I2
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Fig. 3. Ambiguous solutions using the law of sines.

represent the first and second intersections of the ray with the sphere. The angles
γ1 and γ2 represent the normal angles for the intersection points respectively.
With the distance d of the viewpoint from the center of the sphere, the radius r
of the sphere, and the ray angle ω, we have a situation in which the ambiguous
cases of the law of sines can be used to find either ε1 or ε2. Either of these angles
can then be used to find γ1 or γ2.

The ambiguous case of the law of sines states that ε1 is obtuse, ε2 is acute.
Applying the law of sines obtains the acute angle ε2, implying that ε1 = ε2 − π.
Using the law of sines

ε2 = asin(
d

r
sin ω). (3)

Using the fact ω, ε2, and γ2 are three angles of a triangle, γ2 = π − ω − ε2.
Solving for ε2, we get

γ2 = −asin(
d

r
sin ω) − ω + π, (4)

which signifies the second intersection point. We also know that γ1 = π − ω −
ε1 since these three angles are of the same triangle as well. Again using the
ambiguity of the law of sines, we substitute ε1 = π − ε2 into the above equation
to obtain γ1 = ε2 − ω. Substituting Equation 3 into this new equation obtains
the first intersection point:

γ1 = asin(
d

r
sin ω) − ω, (5)

When Equation 5 is implemented on the GPU, the ratio c = d/r can be

precomputed. Additionally, let u = r̂ · k̂. Then substituting Equation 2 for ω in
Equation 5 results in

γ1 = asin(c u) − asin(u). (6)
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Sphere Normal. Next we use Equation 6 and the ray angle to find the normal
angle at the front facing intersection point for both reference spheres.

The minimum value for a ray angle is zero, corresponding to the nadir, and
the maximum value for a ray angle is equal to the tangent angle, which can
be found using Equation 9. Let b = ζ τ0 be the beginning angle of the range,
where the result of interpolation is entirely from the primary reference sphere.
ζ is defined as a user-defined threshold for blending from [0, 1]. The blending
factor is calculated with the following equation:

f = (ω − τ0)/(b− τ0) (7)

where ω is the ray angle.
A factor of zero corresponds to using only the primary reference sphere in-

tersection, and a factor of one corresponds to using only the secondary reference
sphere intersection.

This blending factor can be used to intersect the secondary reference sphere
by mixing between the beginning ray angle and the angle of the ray tangent to
the secondary reference sphere. The dot product between the new ray and the
up vector in the local coordinate system is taken. With this information, we can
calculate the normal angle with the new ray and the secondary reference sphere.

To get the final normal angle, we use the blend factor to mix between the
normal angle from the primary reference sphere and the normal angle from the
secondary reference sphere. The normal angle γ along with k̂ and −n̂ allow us
to calculate the sphere normal ŝ.

The expression cos γ represents the horizontal component of the sphere nor-
mal with respect to the antinadir, while sin γ represents the vertical component.
Therefore, calculation of the sphere normal is accomplished using sine and cosine
in a linear combination of the vectors:

ŝ = −n̂ cos γ + k̂ sin γ (8)
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Fig. 4. The intersection position in eye space.

Position. To maintain precision, the position is generated in sampling camera
space as opposed to world space. Our method of generating positions in this space
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uses the law of sines. Consider Figure 4. a, r̂, ω, and γ are known. Although there
are two reference spheres, the altitude a is the viewer’s distance from the primary
reference sphere. This does not make a difference for grid points that are a result
of interpolating intersection results of the two reference spheres since γ describes
a position on the planet independent of either reference sphere. The angle χ is
calculated from γ using

χ =
π

2
− γ

2

When we observe that any triangle formed from an arc is an isosceles triangle,
the angle ρ is then

ρ =
π

2
+
γ

2

With ρ known, we can now calculate the distance t to the intersection point
using the law of sines.

t = a
sin ρ

sinχ

t and r̂ are then used to calculate the position in sampling camera space using
P = tr̂.

4 Reference Spheres

We select two reference spheres, the primary and secondary reference sphere,
each defined by a center and a radius. The primary reference sphere minimizes
stretching and avoids shrinking while the secondary reference sphere produces
intersection points that represent the occluded area. The PGM step projects the
grid points onto both spheres and interpolates the results. Because the center of
the planet is the same for both spheres, we are concerned only with the radii.

Sampling Issues. In preparation for PGM, the reference spheres ensure that no
stretching or shrinking occurs and that the pertinent area is visible. The sampling
camera is tasked with ensuring that all of the pertinent rays are generated.

Stretching occurs when grid points are excessively displaced toward the
viewer. The greater the displacement distance, the larger the triangles appear in
screen space.

The effects of stretching are apparent in the extreme case where the mesh
is maximally displaced. This can result in parts of the mesh extending beyond
the viewing frustum. Since our objective is to generate approximately pixel-
sized triangles, the displacement distance must be minimized by choosing an
appropriate reference sphere.

Shrinking occurs when grid points are displaced away from the viewer. There-
fore, edges of the mesh can fall within the view frustum. Although shrinking can
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be solved by using the minimum sphere as the reference sphere, this results in a
large amount of stretching.

The pertinent area is the geographic area of the planet that affects the final
image. We must take care not to undersample or oversample this area. Rays
that intersect the pertinent area on the sphere are known as pertinent rays.
Using the appropriate reference sphere and sampling the entire pertinent area
allows mountains within the occluded area to be seen in the visualization.

Primary Reference Sphere. To select the radius of the primary reference sphere,
we can use the minimum visible planetary radius from the previous frame. During
the rasterization step, the planetary radius for each fragment is written to a
screen-sized buffer. To calculate the minimum value in the buffer, a min mipmap
is constructed on the GPU. After the min mipmap in constructed, the texel in
the highest level of the mipmap is read from the GPU to the CPU and saved for
the next frame. Obtaining the radius this way results in a more robust rendering
that minimizes stretching while avoiding shrinking.

Secondary Reference Sphere. To calculate the radius, the extent of the occluded
area is needed. This extent is defined by the maximum possible normal angle.
This upper bound is dependent on the viewpoint, the primary reference sphere,
and the maximum sphere. To find the upper bound, the tangent ray of the
primary reference sphere is intersected with the maximum sphere. The upper
bound is then the normal angle for the back facing intersection point, as shown
in Figure 5. Let the angle τ be the angle of the tangent ray t̂ to the primary
reference sphere P. The ray intersects the maximum sphere M, and the vector ŝ
represents the sphere normal at the back facing intersection point. The normal
angle for ŝ is γ0. Consider an eye ray that is just above t̂, that is, a ray with a
ray angle greater than τ .

O C

t̂

ŝ

ŝτ
γ0

P M

Fig. 5. The upper bound of the normal angle.

To calculate the upper bound of the normal angle, the angle of the tangent
ray to the primary reference sphere is used, as shown in Figure 6. The tangent
ray t̂ forms a right angle to the line segment CI. The right triangle implies that
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sin τ = r/d, which can be rewritten as

τ = asin(r/d). (9)

To calculate the upper bound of the normal angle γ0, we use the tangent angle
τ and Equation 4 to calculate the normal angle at the back facing intersection
of the tangent ray with the maximum sphere.

O C

I

d

r
t̂
τ

Fig. 6. The tangent angle.
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Fig. 7. The radius of the secondary reference sphere.

As Figure 7 shows, the ray t̂p is tangent to the primary reference sphere P
and intersects the maximum sphere M as it exits the sphere. The back facing
intersection produces the normal angle γ0 that represents an upper bound on all
normal angles for this viewpoint. The secondary reference sphere S should be the
sphere with a tangent ray t̂s that results in a normal angle of γ0 when intersected
with S. The distance d to the center of the planet is the same for all spheres,
and the ray t̂s forms a right triangle with respect to S. Therefore, the radius
rs of the secondary reference sphere is included in the equation cos γ0 = rs/d,
which can be written as

rs = d cos γ0. (10)
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When the tangent ray t̂s is intersected with S, it produces the normal angle that
represents the farthest possible point on P that could rise into view.

Figure 8 demonstrates how the occluded area of the primary reference sphere
becomes part of the visible area on the secondary reference sphere. The red area
on the primary reference sphere is a subset of the visible geographic area on the
secondary reference sphere.

O C S P M

Fig. 8. The occluded area is visible on the secondary reference sphere.

The secondary reference no longer exists when Equation 10 returns a negative
value for the radius. Because the ratio between the minimum sphere and the
maximum sphere for actual planets is small, the distance at which this occurs is
sufficiently far away to replace the planet with an impostor.

5 Sampling Camera

Since the purpose of the sampling camera is to capture only the geographic area
that could affect the final image, the sampling camera is crucial to the efficiency
and visual fidelity of our approach. Similar to the viewing camera, the sampling
camera is defined by a view matrix and a projection matrix. These two matrices
are required for projecting the grid and rasterizing the resulting mesh.

Pertinent Rays. To ensure that the sampling camera minimizes rays that miss
the sphere and maximizes pertinent rays, we intersect the set of eye rays defined
by the viewing camera and the entire set of rays that intersect the sphere from
the viewer’s current position.

The former is determined by the viewing frustum. The latter is determined
by an infinite cone emanating from the viewpoint and containing the sphere
entirely. To simplify intersecting these two regions, we approximate the planet
cone with a frustum, called the planet frustum, which contains the planet. Every
side of this frustum is tangent to the sphere.

A third area that needs to be included is the region below the viewing frustum
between the nadir and where the frustum intersects the planet, as shown in
Figure 9.
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To generate the sampling camera, we intersect the viewing frustum with the
planet frustum and include the nadir.

n̂

I

Fig. 9. The area below the viewing frustum could include terrain that should intersect
the frustum.

Frustum-Frustum Intersection. The algorithm for intersecting frusta is simplified
by the observation that the viewing frustum and the planet frustum share an
apex, the viewpoint. The algorithm represents each frustum with respect to the
corners where its sides meet, and defines each corner using a ray. The viewing
frustum’s corner rays can be obtained from the attributes used to define the
frustum, i.e.the left, right, bottom, and top values which are in eye space. The
planet frustum corner rays are defined by generating a frustum that is oriented
so that its up direction is aligned to the plane of the viewing camera’s up and
forward directions.

Let frustum A be the viewing frustum, B be the planet frustum, and C be
the intersection of A and B. Given the corner rays of A and B, the corner rays
of C can be determined by applying two rules. First, any corner ray of A that
is in B or of B that is in A is a corner ray of C. Second, possible corner rays
of C result from the intersection of the planes of A with the planes of B. Any
such ray that is bounded by both A and B is a corner ray of C.

The planes of a frustum are the planes that contain each side of the frustum.
These planes are defined by their normals, which are obtained from the cross
product of the corner rays.

Using these two rules, our algorithm is as follows:

1. Find the rays of A that exist within B.
2. Find the rays of B that exist within A.’
3. Calculate the normals of the planes of A and B.
4. Intersect the planes of A with the planes of B.
5. For each resulting ray, if the ray is bounded by A and B it is a corner ray

of C.

This algorithm requires the ability to determine whether a ray is bounded
by a frustum and the ability to intersect planes. To determine whether a ray
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is bounded by a frustum, we test the ray’s angle to each plane of the frustum.
Given the normal n̂ to a plane and a ray direction r̂, the ray is on the positive
side of the plane if n̂ · r̂ > 0. When generating plane normals for the frusta,
we ensure that each plane normal points inward to the frustum. The second
requirement is to intersect to the planes. The ray that lies in the intersection of
two planes can be determined by the cross product of the planes normals.

In the case that there is no intersection between the frusta, as when the
viewer looks away from the planet, we use the corner rays of the planet frustum.

We carry out the intersection in a special coordinate system based on the
viewing camera. This coordinate system is a rotated version of the viewing cam-
era such that the up direction lies in the plane of the view direction and the
nadir. The purpose of this is to generate a sampling camera that is oriented
such that the top edge of the sampling frustum is aligned with the horizon. This
minimizes the number of rays that miss the sphere, especially when the viewer
is close to the surface of the planet.

View Matrix. The output of frustum-frustum intersection is a set of rays that
describes the corners of the intersection frustum.

To build the view matrix of the sampling camera, we first need to choose
a view direction based on the intersection rays. The view direction should take
into account all of the intersection rays, since a skewed view direction leads
to nonuniform distribution of grid points when the projective grid is stretched
across the viewport of the sampling camera. To obtain the view direction, we
first set its x-component to zero, since the previously described rotated space
already aligns the top of the camera to the horizon. We then take the average
of the y- and z-components of all intersection rays. We include the nadir in this
average in order to include the area below the viewing camera on the planet, as
described earlier.

The view direction and the nadir are then used in a series of cross products
to build a basis which defines the coordinate system of the sampling camera.
The three vectors of this basis are used to create the sampling camera’s view
matrix.

Projection Matrix. The frustum of the sampling camera can be described using
the standard left, right, top, bottom, near, and far values used to create a projec-
tion matrix. These values relate to the corners of the frustum on the user-chosen
near plane.

We obtain these values by intersecting all of the intersection rays, along with
the nadir, with an arbitrary near plane. This is carried out in coordinates relative
to the sampling camera, which were defined in the previous section. The user-
chosen near plane is perpendicular to the view direction within that coordinate
system. We then find the minimum and maximum x− and y−components of the
resulting intersections on the near plane. The output is the left, right, bottom
and top values. The distance to the far plane, like the near plane, is chosen
arbitrarily. Thus, the near and far values can be the same values used to generate
the viewing frustum’s projection matrix.
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6 Deferred Texturing

For height map composition, we must iterate over all height maps and combine
the height values for each grid point. The accumulated heights are stored in a
buffer of 32-bit floating points that has the same dimensions as the projective
grid. This process can be performed on the GPU by using the map equations
from Section 7. Color and surface normal data is composited in a similar manner,
expanded for three channels of data.

The sphere normals, positions, and accumulated heights buffers describe the
final terrain mesh. In order to decouple the performance of PGM from the perfor-
mance of deferred texturing, we rasterize the grid-sized buffers into screen-sized
buffers, an optimization described by Kooima [15]. This accomplishes perfor-
mance throttling by allowing the grid size to differ from the screen size.

In order to use the three buffers as geometry, we render a triangle strip where
each vertex corresponds to a grid point in the projective grid. Each vertex then
has an (x, y) position equal to the corresponding grid point’s texel coordinates
within the three buffers. By sampling each buffer, we can determine the vertex’s
final position, which is displaced along the sphere normal.

To mitigate the issues of 24-bit depth buffer precision, we perform a two-pass
rasterization approach [16], rendered with a near frustum and a far frustum. If
secondary objects are to be rendered, a stencil buffer can be maintained to track
which pixels are occluded by the near terrain.

The final step is to render the outer atmosphere and combine the accumulated
color and surface normal buffers using standard Phong lighting equations with
atmospheric effects. The shaders for rendering the outer and inner atmospheric
effects are given by Sean O’Neil [17].

7 Map Projections

For the composition of different datasets on the GPU, we must transform the
normals of the sphere into texture coordinates. Using the buffer of normals, we
can calculate the geographic location of each fragment by using a simple mapping
from Cartesian to spherical coordinates.

Once the geographic coordinates have been determined, they must be trans-
formed into projection coordinates using either an equirectangular or polar stere-
ographic projection. We modify the forward mapping equation for equirectangu-
lar projection [18] by removing the radius. This serves to reduce floating point
errors from a large planetary radius.

p = (λ− λ0) cosφ0,

q = φ,

where λ and φ are the longitude and latitude components of the geographic
coordinates and λ0 and φ0 are the center longitude and latitude of the projection.
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For polar stereographic projection, a slightly different equation must be used.

p = c sin(λ− λ0),

q = −c s cos(λ− λ0),

where s = sin(φ0) is the scaling value equal to −1 for the south pole or 1 for the
north pole and c is a factor similar to both equations, calculated using

c = 2 tan(
π

4
− sφ

2
).

We have modified the common equation [18] to allow the center latitude
(either 90◦ for the north pole or −90◦ for the south pole) to affect whether the
equations produce projection coordinates for a south or north polar stereographic
projection. Also, note that again the radius has been removed from this equation
for the same reason as the equirectangular projection equation.

Once the projection coordinates for a fragment have been obtained, the tex-
ture coordinates can be calculated. Using GDAL [19], we can determine the
projection coordinates of the corners of a given dataset on the CPU. With this
information, the width and height of the dataset can be calculated in projection
coordinates. Assuming a projection point P (defined by the above projection
equations) an upper-left dataset coordinate U , and the dimensions of the dataset
D, we can determine the (s, t) texture coordinates by

(s, t) =
P − U

D

giving us texture coordinates in the range of [0, 1].

8 Results

Experimental Method. To test the execution time of the algorithm, we used a
machine with an Intel Core i7 processor running at 2.8GHz and 8GB of RAM.
In addition, we used an Nvidia GeForce GTX 480 graphics card. For these tests,
the amount of texture data in GPU memory is kept constant.

Table 1 lists detailed information about all of the datasets used, including the
map scale in kilometers per pixel, which describes the resolution of the dataset
at the center of projection. Dataset sizes are reported in megabytes (MB).

In order to understand the performance of separate parts of the algorithm,
we measure the runtime of the PGM step as well as the entire algorithm. In
order to see how the view affects the efficiency of the algorithm, we use three
different views shown in Figure 10. We test a global view of the planet, a view
close the planet using low-resolution data, and finally a view close to the planet
using high-resolution data of Victoria Crater.

Finally, the problem size is varied with respect to two variables: the grid size
and the screen size.
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Name Scale Width Height Size

MOLA Global 2.606 8192 4096 128.0
MOLA Areoid 3.705 5760 2880 63.3
Victoria Heights 0.001 1279 1694 8.3
MOC Tile 1 1.302 8192 8192 192.0
MOC Tile 2 1.302 8192 8192 192.0
Victoria Colors 0.002 3635 8192 8.3
MOLA Normals 2.606 8192 4096 96.0

Table 1. Information about the datasets used for timing.

Fig. 10. Three tested views

Fig. 11. Total FPS for all three cases.

Performance Analysis. Figure 11 graphs the framerate in frames per second
(FPS) for all three cases. As is evident from the graph, all three cases respond
similarly to changes in grid and screen size. In addition, the graph shows that
the second test case runs faster than the first test case and the third test case
runs faster than the second test case. This pattern is exaggerated as both grid
size and screen size approach 1024×1024. The first test case performs the slowest
because it is a global view, and all of the datasets are visible. The second and
third test cases are close to the terrain, meaning that texture lookups are both
limited to the same textures and cover a smaller area. This leads to more of a
performance benefit from the caching of texture reads.
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Fig. 12. The execution time in ms of the PGM step for the first test case.

Fig. 13. The execution time in ms of the entire algorithm for the first test case.

The PGM step is unaffected by the dimensions of the screen because of the
nature of the PGM algorithm. This observation is shown in Figure 12, where
the execution time shows small variations with increasing screen size but large
variations with increasing grid size. However, both the grid size and the screen
size affect the overall performance of the algorithm, as shown in Figure 13. This
graph shows that although deferred texturing operates on screen-sized buffers,
an increase in grid size affects the overall execution time of the algorithm more
than an increase in screen size. This is because the rasterization step requires
the entire projected grid to be rendered as a triangle mesh at once, thus testing
the triangle throughput of the GPU.

9 Conclusions and Future Work

Using a spherical approach to PGM, we have presented a planetary terrain ren-
derer that accurately handles differently projected data. Additionally, we have
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shown how reducing the ray-sphere intersection to a two-dimensional cross sec-
tion can greatly optimize the ray casting process.

To improve our algorithm, we suggest sorting the datasets into a spatial
hierarchy therefore allowing for visibility tests to be performed by the CPU,
possibly eliminating entire composition passes. Additionally, finding the radius
of the primary reference sphere through min mipmapping is effective but slow
due to the reduction performed on the GPU. To improve this, we suggest the
use of CUDA [20] which allow for easier management of the shader cores. Lastly,
we would like to provide a method for streaming data from the disk to RAM to
GPU memory so that high-resolution data can be rendered.
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