
DESIGN A NEURAL NETWORK FOR TIME SERIES FINANCIAL
FORECASTING: ACCURACY AND ROBUSTNESS ANALISYS

LEANDRO S. MACIEL, ROSANGELA BALLINI

Instituto de Economia (IE), Universidade Estadual de Campinas (UNICAMP)

Rua Pitágoras, 65 Cidade Universitária Zeferino Vaz

CEP 13083-857 Campinas – São Paulo – Brasil

Emails: leandro_maciell@hotmail.com; ballini@eco.unicamp.br

ABSTRACT

Neural Networks are an artificial intelligence method for modeling complex target

functions. For certain types of problems, such as learning to interpret complex real-

world sensor data, Artificial Neural Networks (ANNs) are among the most effective

learning methods currently know. During the last decade they have been widely applied

to the domain of financial time series prediction and their importance in this field is

growing. This paper aims to analyze the neural networks for financial time series

forecasting. Specifically the ability to predict future trends of North American,

European and Brazilian Stock Markets. Accuracy is compared against a traditional

forecasting method, generalized autoregressive conditional heteroscedasticity (GARCH).

Furthermore, it is examined the best choice of network design for each sample of data.

It was concluded that ANNs do have the capability to forecast the stock markets studied

and, if properly trained, can improve the robustness according to the network structure.

Key words: Artificial Neural Networks, Finance Forecasting, Economic Forecasting,

Stock Markets.

1. INTRODUCTION

There is a long history of research on finance and economic modeling. Time

series analysis is one of the most widely used traditional approaches in this field. There

are two kinds of models to describe the behavior of time series as follows. The first are

the Linear Models: A linear approach to time series analysis is typically effected

through one of the following techniques: (a) Box-Jenkins techniques, (b) Kalman filters,

(c) Brown’s theory of exponential smoothing, (d) piecewise regression. The second are

the Nonlinear Models: (a) Taken’s Theorem, (b) the Mackey-Glass equation. These

techniques attempt to reconstruct the time series based upon a sampling of the data in

order to forecast future values. Although these techniques are statistically powerful,

they produce low success rates when they are used to forecasting financial markets.

Recent evidence shows that financial markets are nonlinear; however, these

linear methods still provide good ways of describing nonlinear systems found in the

financial market time series analysis (Fang et al., 1994). Bollerslev (1986) provide an

excellent survey of the existence of nonlinearities in the financial data, and developed a

model to predict financial time series called Generalized Autoregresssive Conditional

Heterocedasticity (GARCH) that combines all the features observed in these series. But,

the economy is evolving (rather slowly) over time. This feature cannot easily be

captured by fixed specification linear models, however, and manifests itself in the form

of an evolving coefficient estimate. Many factors interact in finance and economics

including political events, general economic conditions, and trader’s expectations.

Therefore, predicting finance and economics movements is quite difficult.

Artificial Neural Networks (ANNs) are a very powerful tool in modern

quantitative finance and have emerged as a powerful statistical modeling technique.

ANNs provide an attractive alternative tool for both researches and practitioners. They

can detect the underlying functional relationships within a set of data and perform tasks

such as pattern recognition, classification, evaluation, modeling, prediction and control

(Anderson and Rosenfeld, 1988; Hecht-Nielsen, 1990; Hertz et al., 1991; Hiemstra and

Jones, 1994). Several distinguishing features of ANNs make them valuable and

attractive in forecasting. First, ANNs are nonlinear data-driven. They are capable to

perform nonlinear modeling without an a priori knowledge about the relationships

between input and outputs variables. The non-parametric ANN model may be preferred

over traditional parametric statistical models in situations where the input data do not

meet the assumptions required by the parametric model, or when large outliers are

evident in dataset (Lawrence, 1991; Rumelhart and Mcclelland, 1986; Waite and

Hardenbergh, 1998; Wasserman, 1993). Second, ANNs are universal functions

approximation. It has been shown that a neural network can approximate any

continuous function to any desire accuracy (Hornik, 1993; Hornik et al., 1989). Third,

ANNs can generalize. After learning the data presented to them, ANNs can often

correctly infer the unseen part of a population even if the sample data contain noisy

information. Neural Networks are able to capture the underlying pattern or

autocorrelation structure within a time series even when the underlying law governing

the system is unknown or too complex to describe.

Some articles have reviewed journal articles on how ANNs can be applied to

finance and economic. Wong and Selvi (1998) classified the articles by year of

publication, application area, journal, various decision characteristics (problem domain,

decision process phase, level of management, level of task interdependence), means of

development, integration with other technologies, and major contribution. Zang et al.

(1998) surveyed articles that addressed modeling issues when ANNs are applied to

forecasting. They summarized the most frequently cited advantages and disadvantages

of the ANN models. Chatterjee et al. (2000) provided an overview of the ANN system

and its wide-ranging used in the financial markets. Their work has further discussed the

superiority of ANN over traditional methodologies. The study concluded with a

description of the successful use of ANN by various financial institutions. Edward

Gately, in his book, Neural Networks for Financial Forecasting, describes the general

methodology required to build, train, and test a neural network using commercially

available software.

In this paper we aim to analyze and examine the use of neural networks to

predict future trends of North American, European and Brazilian Stock Markets Indexes.

The indexes are: Dow Jones and S&P 500 (United States), DAX (Germany), CAC40

(France), FTSE (UK), IBEX35 (Spanish), PSI20 (Portugal) and IBOVESPA (Brazil).

We hope to give the detailed discussion of the application of a neural networks tool to

forecasting stock markets economic indicators. As a comparison, we analyze GARCH

model applied to each series to evaluate the accuracy of ANNs. A discussion about how

ANNs can incorporate the heteroscedasticity of financial time series was performed to

verify the robustness of the model. This paper is organized as follows. Section 2

discusses applications to stock market index prices forecasting with neural networks.

Sections 3-4 describe GARCH and Neural Networks models respectively. Section 5

shows the structure of neural network applied. Performance comparison between the

methods is described in Sec. 6. Finally, conclusions are given in Sec. 7.

2. APPLICATIONS STOCK MARKET INDEX FORECASTING

The stock market is one of the most popular investments owing to its high-

expected profit. However, the higher expected profit, the higher is the risk implied. The

stock market, which has been investigated by various researches, is a rather complicated

environment.

There are three degrees of market efficiency. The strong form of the efficient

markets hypothesis state that all information that is knowable is immediately factored

into the market price for a security. If this is true, then all of those price predictors are

definitely wasting their time, even if they have access to private information. In the

semi-strong form of the efficient markets hypothesis, all public information is

considered to have been reflected in price immediately as it became known, but

possessors of private information can use that information for profit. The weak form

holds only that any information gained from examining the security past trading history

of reflected in price. Of course, the past trading history is public information implying

that the weak form is a specialization of the semi-strong form, which itself is a

specialization of the strong form of the efficient markets hypothesis.

Stock market fluctuations are the result of complex phenomena, whose effect

translates into a blend of gains and losses that appear in a stock market time series that

is usually predicted by extrapolation. The periodic variations follow either seasonal

patterns of the business cycle in the economy. Short-term and day-to-day variations

appear at random and are difficult to predict, but they are often the source for stock

trading gains and losses, especially in the case of day traders.

Numerous investigations gave rise to different decision support systems for the

sake of providing the investors with an optional prediction. Many experts in the stock

markets have employed the technical analysis for better prediction for a long time.

Generally speaking, the technical analysis derives the stock movement from the stock´s

own historical value. The historical data can be used directly to form the support level

and the resistance or they can be plugged into many technical indicators for further

investigation. Conventional researches addressing this research problem have generally

employed the time series analysis techniques (i.e. mixed auto regression moving

average (ARMA)) as well as multiple regression models (Huang et al., 2005).

Considerable evidence exists and shows that stock market price is to some extent

predictable (Lo and Mackinlay, 1988).

2.1 DISCUSSION OF INPUT VARIABLES

There are two kinds of theoretical approaches to determine the input variables

for the stock market index forecasting with neural networks. The first one introduces the

relationship among the stock market index price and other macroeconomic indicators.

The second one introduces nonlinearity in the relation among stock prices, dividends

and trading volume.

Chen (1991) studied the relation between changes in financial investment

opportunities and change in the economy. This paper provided additional evidence that

variables such as the default spread, term spread, one-month T-bill rate, lagged

industrial production growth rate and dividend-price ratio are important determinants of

the future stock market index. This study interpreted the ability of these variables to

forecasting the future stock market index in terms of their correlations with changes in

the macroeconomic environment. Fama and French (1993) identified three common risk

factors: the overall market factor, factors related to firm size and book-to-market equity,

which seem to explain average returns on stocks and bonds. Ferson and Schadt (1996)

showed that the omission of variables like lagged stock index and previous interest rates

could lead to misleading results. Sitte and Sitte (2000) discussed the predictive ability of

time delay neural networks for the S&P 500 index time series.

The vector autoregression (VAR) method is mainly used to investigate the

relationship between variables. Its advantage in that multiple variables can be

investigated at the same time and the interdependence can be tested automatically with

the sophisticated statistically significance level. Ao (2003a; 2003b) found that: (1) HK

depends on its past price, JP, Nasdaq, S&P and DJ; (2) AU depends on the past price,

S&P and DJ; (3) depends on its past price, HK, Nasdaq, S&P and DJ; (4) JP depends on

its past price, Nasdaq, S&P and DJ; (5) DJ depends on its past price and Nasdaq; (6)

S&P depends on its past price and Nasdaq. The results from the VAR modeling suggest

that, for the Asian markets, the relevant information is the own historical value as well

as the stock movements from the US markets. It is also positive to know the extent and

time-dependant nature of the markets dynamic when we draw the correlation diagram of

the local market with the US markets. Further investigation can tell us that, at the time

of low correlation like the late 90s of the Asian Financial crisis, the Hong Kong market

(and similarly other Asian markets) is dominated by the local events like the currency

problems. At other periods, the local market is greatly correlated with the US markets.

In summary, the set of potential macroeconomic indicators are as follows: term

structure of interest rates (TS), short term interest rate (ST), long term interest rate (LT),

consumer price index (CPI), industrial production (IP), government consumption (GC),

private consumption (PC), gross national product (GNP), gross domestic product (GDP).

These are the most easily available input variables that are observable to a forecaster.

Though other macroeconomic variables can be used as inputs, the general consensus in

the literature is that the majority of useful information for forecasting is subsumed by

interest rates and the lagged predictive variable. The term structure of interest rates, i.e.

the spread of long-term bond yields over short-term bond yields, may have some power

in forecasting the stock index.

In this paper we utilized as input variables the historical data of each series

studied
1
, which are showed in Table 1. The goal is to analyze the influence of the ANNs

structure in the results of forecasting. After chosen the better structure we compared the

performance of the ANNs method and GARCH model.

Table 1 – Stock Market Indexes that form the Sample.

Country Index Variable

United States Dow Jones DOW

United States S&P 500 S&P

Germany DAX DAX

France CAC40 CAC

United Kingston FTSE FTSE

Spanish IBEX35 IBEX

Portugal PSI20 PSI

Brazil IBOVESPA IBOV

1 The data was obtained in http://finance.yahoo.com/ URL accessed on August 17, 2008

3. GARCH MODELS

The ARIMA models have one severe drawback: they assume that the volatility

2

of the variable being modeled (e. g. stock price) is constant over time. In many cases

this is not true. Large differences (of either sign) tend to be followed by large

differences. In other words, the volatility of asset returns appears to be serially

correlated (Campbell et al., 1997).

ARCH (Autoregressive Conditional Heterocedasticity) model were developed in

order to capture this property of financial time series. The ARCH
3
 process is defined as

ARCH (q): ttty εσ= (1)

∑
=

−+=
q

i

itit y
1

2

0 αασ (2)

where tσ is the conditional standard deviation of ty given the past values of this

process. The ARCH(q) process is uncorrelated and has a constant mean, a constant

unconditional variance (0α), but its conditional variance is nonconstant. This model has

a simple intuitive interpretation as a model for volatility clustering: large values of past

squared returns (2

ity −), give rise to a large current volatility (Martin, 1998).

The ARCH(q) model is a special case of the more general GARCH(p,q) model

defined as (GARCH means “Generalized ARCH”)

GARCH(p,q): ttty εσ= (3)

∑ ∑
= =

−− ++=
p

i

q

j

jtjitit y
1 1

22

0 σβαασ (4)

In this model, the volatility today depends upon the volatilities for the previous q

days and upon the squared returns for the previous p days.

A long and vigorous line of research followed the basic contributions of Engle

and Bollerslev (developers of ARCH and GARCH model respectively), leading a

number of variants of the GARCH(p,q) model. These include power GARCH

(PGARCH) models, exponential GARCH (EGARCH) models, threshold GARCH

(TGARCH) model and other models that incorporate so-called Leverage effects.

Leverage terms allow a more realistic modeling of the observed asymmetric behavior of

returns according to which a “good-news” price increase yields lower subsequent

volatility, while “bad-news” decrease in price yields a subsequence increase in volatility.

It is also worth mentioning two-component GARCH models which reflect differing

short term and long term volatility dynamics, and GARCH-in-the-mean (GARCH-M)

models which allow the mean value of returns to depend upon volatility (MARTIN,

1998)
4
.

2 Volatility is the synonym of standard deviation.
3 This section is based upon Ruppert (2001).
4 In this work was utilized GARCH(1,1) model as a result of correlation and autocorrelation analysis.

4. NEURAL NETWORKS

Neural Network learning methods provide a robust approach to approximating

real-valued, discrete-valued and vector-value target functions. For certain types of

problems, such as learning to interpret complex real-world sensor data, artificial neural

networks (ANNs) are among the most effective learning methods currently known

(Mitchell, 1997).

The study of ANNs has been inspired in part by the observation that biological

learning systems are built of very complex webs of interconnected neurons. In rough

analogy, ANNs are built out of a densely interconnected set of sample units, where each

unit takes a number of real-valued inputs (possibly the outputs of other units) and

produces a single real-valued output, which may become input to other units (Mitchell,

1997).

 One motivation for ANN systems is to capture this kind of highly parallel

computation based on distributed representations. Most ANN software runs on

sequential machines emulating distributed processes, although faster versions of the

algorithms have also been implemented on highly parallel machines and on specialized

hardware designed specifically for ANN applications.

4.1 BASIC DEFINITIONS

The structure of an artificial network of most commonly used type is the multi-

layer perceptrons. It consists of several layers of processing units (also termed neurons

or nodes). The input values (input data) are fed to the neurons in the so-called input

layer. The input values are processed within the individual neurons of the input layer

and then the output values of these neurons are forwarded to the neurons in the hidden

layer.

Each connection has an associated parameter indicating the strength of this

connection, the so-called weight. By changing the weights in a specific manner, the

network can “learn” to map patterns presented at the input layer to target values on the

output layer. This description of the procedure, by means of which this weight

adaptation is performed, is called learning or training algorithm.

Usually, the data available for training the network is divided in (at least) two

non-overlapping parts: the so-called training and testing sets. The commonly large

training set is used to “teach” the network to desire target function. Then the network is

applied to data in the test set in order to available its generalization ability, i. e. the

ability to derive correct conclusions about the population properties of the data from the

sample properties of the training set (e. g. if a network has to learn a sine function, it

should produce correct results for all real numbers and not only for those in the training

set). If the network is not able to generalize, but instead learns the individual properties

of the training patterns without recognizing the general features of the data (i. e. produce

correct results for training patterns, but has a high error rate in the test set), it is said to

be overfitted or to be subject to overfitting.

4.2 PROPERTIES OF NEURAL NETWORKS

ANN learning is well suited to problems in which the training data corresponds

to noisy, complex sensor data, such as inputs from cameras and microphones. It is also

applicable to problems for which more symbolic representations are often used, such as

the decision tree learning tasks. In this case ANN and decision tree learning produce

result of comparable accuracy (Haykin, 2001).

The backpropagation algorithm is the most commonly used ANN learning

technique. It is appropriate for problems with the following characteristics (Mitchell,

1997):

� Instances are represented by many value pairs. The target function to be learned

is defined over instances that can be described by a vector of predefined features,

such as the pixel values. These input attributes may be highly correlated or

independent of one another. Input values can be any real values.

� The target function output may be discrete-valued, real-valued, or a vector of

several real- or discrete-valued attributes.

� The training examples my contain errors. ANN learning methods are quite

robust to noise in the training data.

� Long training times are acceptable. Network training algorithms typically

require longer training times than, say, decision tree learning algorithms.

Training times can range from a few seconds to many hours, depending on

factors such as the number of weights in the network, the number of training

examples considered, and the settings of various learning algorithm parameters.

� Fast evaluation of the learning target function may be required. Although ANN

learning times are relatively long, evaluating the learning network, in order to

apply it to a subsequent instance, is typically very fast.

� The ability of humans to understand the learning target function is not important.

The weights learned by neural networks are often difficult for humans to

interpret. Learned neural networks are less easily communicated to humans than

learned rules.

4.3 MULTI-LAYER PERCEPTRONS

The network consists of a set of nodes that constitute the input layer, one or

more hidden layers of nodes and an output layer of nodes. The input propagates through

the network in a forward direction, on a layer-by-layer basis. These neural networks are

referred to as multilayer perceptrons (MLPs).

In the 1960s there was a great euphoria in the scientific community about ANN

based systems that were promised to deliver breakthroughs in many fields. Single-layer

neural networks such as ADALINE
5
 were used widely, e. g. in the domain of signal

processing. This euphoria was given an end by the publication of Minsky and Papert

(1969), who showed that the ANNs used at that time were not capable of approximating

target functions with certain properties (target functions that are not linearly separable

such as the “exclusive or” (XOR) function). In the 1970s only a small amount of

research was devoted to ANNs. In the mid-1980s, the ANNs were “revived” by

employment of the error back-propagation (EBP) learning algorithm in combination

with multi-layer networks (Rumelhart and McClelland, 1986).

Basically, the error back-propagation process consists of two phases through the

different layers of the network: a forward pass and a backward pass. In the forward pass,

an input vector is applied to the nodes of the network, and its effect propagates through

the network, layer by layer. Finally, a set of outputs is produce as the actual response of

5 ADALINE = ADAptive LInear NEuron.

the network. During this phase the weights are all fixed. During the backward pass the

weights are all adjusted in accordance with the error-correction rule. Specifically, the

actual response of the network is subtracted from a desired response to produce an error

signal. This error is propagated backward through the network, against the direction of

synaptic connections – hence the name error back-propagation. The synaptic weights

are adjusted so as to make the actual response of the network move closer to desired

response (Haykin, 2001).

MLP network consists of at least three layers: input layer, one or more hidden

layers and output layer. The nodes are connected by links associated to real number

named weights. Each node takes multiple values as input, processes them, and produces

an output, which can be “forwarded” to other nodes. Given a node j, its output is equal

to

()()∑= jijij wxtransfero (5)

where jo is the output of node j, jix is the ith input to unit j, jiw the weight associated

with ith input to j and transfer is the non-linear transfer function responsible for

transferring the weighted sum of inputs to some value that is given to the next node
6
. A

neuron may have an arbitrary number of inputs, but only one output. By changing the

weights of the links connecting nodes, the ANN can be adjusted for approximating a

certain function.

4.4 LEARNING ALGORITHMS

Usually, the weights of the ANN must be adjusted using some learning

algorithm in order for the ANN to be able to approximate the target function with a

sufficient precision. In this section is presented stochastic gradient descent back-

propagation learning algorithm as follows
7
.

The term “neural network” refers to a MLP trained with this learning algoritm,

often called “back-propagation” or “error back-propagation” (EBP). Assume an ANN

uses the following error function

()∑ ∑
∈ ∈

−=
Dd outputsk

kdkd otwE
2

2

1
)(

r
 (6)

where kdo is the output value produced by output neuron k, kdt the desire (correct) value

this neuron should produce and D denotes the set of all training patterns, i. e.)(wE
r

 is

the sum of prediction error for all training examples. Prediction errors of individual

training examples are in turn equal to the sum of the differences between output values

produced by the ANN and the desire (correct) values, where w
r

 is the vector containing

the weights of the ANN.

The goal of a learning algorithm is to minimize)(wE
r

for a particular set of

training examples. There are several ways to achieve this, one of them being the so-

called gradient descent method. Basically, it works in the following way (Schraudolph

and Cummins, 2002):

6 There are a several types of transfer functions and they can be seen in Haykin (2001).
7 See more learning algorithms in Haykin (2001).

1. Choose some (random) initial values for the model parameters.

2. Calculate the gradient G of the error function with respect to each model

parameter.

3. Change the model parameters so that we move a short distance in the direction

of the greatest rate of decrease of the error, i. e., in the direction of –G.

4. Repeat steps 2 an 3 until G gets close to zero.

Let ()xfG ∇= the gradient of function f is the vector of first partial derivatives

() () () ()

∂

∂

∂

∂

∂

∂
=∇

nx

xf

x

xf

x

xf
xf ,...,,

21

 (7)

In our case, ()wEG
r

∇= (i. e. the derivative of the error function E with respect

to the weight vector w
r

).

Having this in mind, we will now explore the gradient descent back-propagation

(error back-propagation) learning algorithm. First, a neural network is created and the

parameters are initialized (the weights are set to small random numbers). Then, until the

termination condition (e.g. the mean squared error of ANN is less than a certain error

threshold) is met, all training examples are “taught” the ANN. Inputs of each training

example are fed to the ANN, and processed from the input layer, over the hidden layer(s)

to output layer. In this way, vector o of output values produced by the ANN is obtained.

In the next step, the weights of the ANN must be adjusted. Basically, this

happens by “moving” the weight in the direction of steepest descent of the error

function. This happens by adding to each individual weight the value

jij xw ηδ=∆ (8)

where η is the learning rate that determines the size of the step that we use for

“moving” towards the minimum of E, and jδ represents the error term of neuron j
8
. The

learning rate can be through of as the length of the arrows
9
.

There are many improvements of this algorithms such as momentum term,

weight decay etc described in the appropriated literature (Bishop, 1996). Nevertheless,

MLP in combination with stochastic gradient descent learning algorithm is the most

popular ANN used in practice
10

. Another important feature of this learning algorithm is

that it assumes a quadratic error function, hence it assumes there is only one minimum.

In practice, the error function can have – apart from the global minimum – multiple

local minima. There is a danger for the algorithm to land in one of the local minima and

thus not be able to reduce the error to highest extent possible by reaching a global

minimum. Next section shows an ANN design to our data, and step by step a

comparison with GARCH model.

8 Stochastic gradient descent backpropagation learning algorithm derivative can be see in Haykin (2001).
9 Usually, ℜ∈η , 9.00 ≤<η . Note that too large η leads to oscillation around the minimum, while to small η can lead to a

slow convergence of the ANN.
10 This structure was utilized in the present work.

5. DESIGN OF ANN IN STOCK MARKET FORECASTING

The methodology described in this section is based upon Kaastra and Boyd

(1996). The design of a neural network successfully predicting a financial time series is

a complex task. The individual steps of this process are listed bellow:

1. Variable Selection

2. Data Collection

3. Data Preprocessing

4. Data Partitioning

5. Neural Network Design

6. Training ANN

Detailed description of each step is presented below.

5.1 VARIABLE SELECTION

Success in designing a neural network depends on a clear understanding of the

problem (Nelson and Illingworth, 1991). Knowing which input variables are important

in the market being forecasted is critical. This is easier said than done because the very

reason for relaying on a neural is for its powerful ability to detect complex nonlinear

relationships among a number of different variables. However, economic theory can

help in choosing variables which are likely important predictors. At this point in design

process, the concern is about the raw data from which a variety of indicators will be

developed. These indicators will from the actual inputs to the neural networks (Kaastra

and Boyd, 1996).

The financial researcher interested in forecasting market prices must decide

whether to use both technical and fundamental economic inputs from one or more

markets. Technical inputs are defined as lagged
11

 values of dependent variable
12

 or

indicators calculed from the lagged values.

The model applied in this paper uses lagged values of the dependent variables as

a result of correlation and autocorrelation analysis
13

. Table 2 shows input structures

performed for each data utilized.

11 “Lagged” means an element of the time series in the past. For example, at time t, the values

pttt yyy −−− ,, 21
 are said to be

lagged values of the time series y.
12 Dependent variable is the variable whose behavior should be modeled or predicted (Doughrty, 1992).
13 Such models have outperformed traditional ARIMA-based models in price forecasting, although not in all studies (Sharda and
Patil, 1994; Tang et al., 1990).

Table 2 – Variables Selection

Variables Input Past Closing Values

DOW
321 ,, −−− ttt DOWDOWDOW

S&P
21 &,& −− tt PSPS

DAX
21, −− tt DAXDAX

CAC
4321 ,,, −−−− tttt CACCACCACCAC

FTSE
321 ,, −−− ttt FTSEFTSEFTSE

IBEX
21, −− tt IBEXIBEX

PSI
4321 ,,, −−−− tttt PSIPSIPSIPSI

IBOV
321 ,, −−− ttt IBOVIBOVIBOV

The frequency of the data depends on the objectives of the researcher. A typical

of-floor trader in the stock or commodity futures markets would likely use daily data if

design a neural network as a component of an overall trading system. An investor with a

longer term horizon may use weekly or monthly data as inputs to the neural network to

formulate the best asset mix rather than using a passive buy and hold strategy (Kaastra

and Boyd, 1996).

5.2 DATA COLLECTION

The research must consider cost and availability when collecting data for the

variables chosen in the previous step. Technical data is readily available from many

vendors at a reasonable cost whereas fundamental information is more difficult to obtain.

Time spend collecting data cannot be used for preprocessing, training and evaluating

network performance. The vendor should have a reputation of providing high quality

data; however, all data should still be checked for errors by examine day to day changes,

ranges, logical consistency and missing observations (Kaastra and Boyd, 1996).

Missing observations which often exist can be handled in a number of ways. All

missing observations can be dropped or a second option is to assume that the missing

observations remain the same by interpolating or averaging from nearby values. In this

work, we assume that there are not missing observations in the sample and, some values

that can be seen as outliers are presents in the data, because we aim to modeling stock

markets mainly in turbulence scenes, characterized by low losses.
14

5.3 DATA PROCESSING

As in most other neural networks applications, data processing is crucial for

achieving a good prediction performance when applying neural networks for finance

time series prediction. The input and output variables for which the data was collected

are rarely fed into thee network in raw form. As the very least, the raw data must be

scaled between the upper and lower bonds of the transfer functions (usually between

zero and one minus one and one).

Two of the most common data transformations in both traditional and neural

network forecasting are first differencing and taking logarithm of a variable. First

14 The sample beginning on January 12, 2000 and finished on July 27, 2008.

differencing, or using changes in a variable, can be use to remove a linear trend of data.

Logarithmic transformation is useful for data which can take on both small and large

values. Logarithmic transformations also convert multiplicative or ratio relationships to

additive which is believed to simplify and improve the network training (Masters,

1993)
15

. In this work we used the logarithmic transformation of return

 −
=

−

−

1

1ln
t

tt
t

Index

IndexIndex
R (9)

where tR represents the normal logarithmic of returns. This approach is especially

useful in financial time series analysis and produce good results according to the

literature (see Fama, 1965; Granger and Morgenstern, 1970). Also, the returns behavior

is more approximated to a Normal probability distribution, but, as will be show in this

work, it is a very hardly hypothesis.

5.4 DATA PARTIONING

Common practice is to divide the time series into three distinct sets called the

training, testing and validation
16

 (out-of-sample) sets. The training set is the largest set

and is used by neural network to learn the patterns present in data. The testing set,

ranging in size from 10% to 30% of the training set, is used to evaluate the

generalization ability of a supposedly trained network. A final check on the validation

set chosen must strike a balance between obtaining a sufficient sample size to evaluate a

trained network and having enough remaining observations for both training and testing.

The validation set should consist of the most recent contiguous observations. In this

work the approach in evaluation neural networks used as fallows:

1. Training Set: 80%

2. Testing Set: 15%

3. Validation Set: 5%

5.5 NEURAL NETWORK DESIGN

There are an infinite number of ways to construct a neural network.

Neurodynamics and architecture are two terms used to describe the way in which a

neural network is organized. The number of input neurons is one of the easiest

parameters to select once the independent variables have been reprocessed because each

independent variable is represented by its own input neuron
17

. The tasks of selection of

the number of hidden layers, the number of the neurons in the hidden layers, the number

of input neurons as well as the transfer functions are much more difficult.

15 Another popular data transformation is to use ratios of input variables. See Tomek and Querin (1984).
16 In some of studies, the term testing set is used as a name for the validation set.
17 Each data has its specific input variables as described in Table 1.

5.5.1 NUMBER OF HIDDEN LAYERS

The hidden layer(s) provide the network with its ability to generalize. In practice,

neural networks with one and occasionally two hidden layers are widely used and have

performed very well. Increasing the number of hidden layers also increases computation

time and the danger of overfitting which leads to poor out-of-sample forecasting

performance. In the case of neural networks, the number of weights, which is inexorably

linked to the number of hidden layers and neurons, and the size of the training set

(number of observations), determine the likelihood of overfitting (Baum and Haussler,

1989). It was applied neural networks structure with one and two hidden layers to a

comparison.

5.5.2 NUMBER OF HIDDEN NEURONS

Despite its importance, there is no “magic” formula for selecting the optimum

number of hidden neurons. Therefore researches fall back on experimentations.

However, some rules of thumb have been advanced. A rough approximation can be

obtained by the geometric pyramid rule proposed by Masters (1993). For a three-layer

network with n input neurons and m output neurons, the hidden layer would have

mn ⋅ neurons. Baily and Thompson (1990) suggest thet the number of hidden layer

neurons is a three-layer neural network should be 75% of the number of input neurons.

Katz (1992) indicates that the optimal number of hidden neurons will generally be

found between one-half to three times the number of input neurons. Ersoy (1990)

proposes doubling the number of hidden neurons until the network´s performance on the

testing set deteriorates. Klimasauskas (1993) suggests that there should be at least five

times as many training facts as weights, which sets an upper limit on the number of

input and neurons. Because of these features, this work applied different structures to all

data, chosen randomly, with 22, 34, 40, 52 and 60 neurons in the hidden layer as to

describe the best structure according to the index.

5.5.3 NUMBER OF OUTPUT NEURONS

Deciding on the number of neurons is somewhat more straightforward since

there are compelling reasons to always use only one output neuron. Neural network with

multiple outputs, especially if these outputs are widely spaced, will produce inferior

results as compared to a network with a single output (Masters, 1993). The modeling

applied in this work aims to one day past closing value in the future forecasting, and as

cited above, was utilized one output layer structure.

5.5.4 TRANSFER FUNCTION

The majority of current neural network models use the sigmoid transfer function,

but others such as the tangens hyperbolicus, arcus tangens and linear transfer functions

have also been proposed (Haykin, 2001).

Linear transfer functions are not useful for nonlinear mapping and classification.

Levich and Thomas (1993) and Kao and Ma (1992) found that financial markets are

nonlinear and have memory suggesting that nonlinear transfer functions are more

appropriate. Transfer functions such as the sigmoid are commonly used for time series

data because they are nonlinear and continuously differentiable which are desirable

properties for network learning. In this study, sigmoid transfer function was applied in

the network proposed
18

.

5.6 TRAINING THE ANN

Training a neural network to learn patterns in the data involves iteratively

presenting it with examples to the correct known answers. The objective of training is to

find the set of weights between the neurons that determine the global minimum of the

error function. Unless the model is overfitted, this set of weights should provide good

generalization. The backpropagation network, applied in this work, uses the gradient

descent training algorithm which adjusts the weights to move down the steepest slope of

the error surface. Finding the global minimum is not guaranteed since the error surface

can include many local minima in which the algorithm can become “struck”. This

section will discuss when to stop training a neural network and the selection of learning

rate and momentum values.

5.6.1 NUMBER OF TRAINING ITERATIONS

Many studies that mention the number of training iterations report convergence

from 85 to 5000 iterations (Deboeck, 1994; Klaussen and Uhrig, 1994). However, the

range is very wide as 50000 and 191400 iterations (Klimasauskas, 1993; Odom and

Sharda, 1992) and training times of 60 hours have also been reported. Training is

affected by many parameters such as the choice of learning rate and momentum values,

proprietary improvements to the backpropagation algorithm, among others, which differ

between studies and so it is difficult to determine a general value for the maximum

number of runs.

Also, the numerical precision of the neural network software can affect training

because the slope of the error derivative can become very small causing some neural

networks programs to move in the wrong direction due to round off errors which can

quickly build up in the highly iterative training algorithm. It is recommended that

researches determine for their particular problem and test as many randomly starting

weights as computational constraints allow (Kaastra and Boyd, 1996). We utilized 500,

1000, 2500, 5000, 8000 and 12000 iterations randomly to choose the best perform to

each index.

5.6.2 LEARNING RATE

During training, a learning rate that is too high is revealed when the error

function is changing wildly without showing a continued improvement. A very small

learning rate also requires more training time. In either case, the research must adjust

the learning rate during training or “brainwash” the network by randomizing all weights

and changing the learning rate for the new run through the training set.

Initial learning rates used in this work vary widely from 0.1 to 0.9. Most neural

network software programs provide default values for learning rate that typically work

18 Sigmoid transfer function is default in MATLAB® neural network toolbox.

well. Common practice is to start training with a higher learning rate such as 0.7 and

decrease as training proceeds. Many network programs will automatically decrease the

learning rate as convergence is reached (Haykin, 2001).

6. COMPARISON ANALYSIS

In this section we will go to present the neural network structure implemented

for the data that resulted in a minimum error. Also, the results of ANNs and GARCH

model are described to a comparison.

Table 3 shows the best neural network structure performed for each index

studied.

Table 3 – Neural Network Design

Index Inputs Hidden

Layer(s)

Hidden

Neurons

Iterations Learning

Rate

DOW 3 2 40 8000 0.4

S&P 2 2 60 5000 0.6

DAX 2 1 22 8000 0.4

CAC 4 2 34 12000 0.5

FTSE 3 1 22 5000 0.7

IBEX 2 1 52 8000 0.5

PSI 4 2 22 2500 0.6

IBOV 3 2 34 80000 0.5

The results show that the choice of structure is different according to the data.

Then, do not have any “magic” formula to describe a structure that minimize the error

and result in a best result. The best choice have must be search by the randomly

alternatives according to the data.

The experimental results revealed that the proposed algorithm provide a

promising alternative to stock market prediction resulting in low errors (see Table 4).

Table 4 compares the ranked Coefficients of Multiple Determination for each model.

The R square value represents the proportion of variation in the dependent variable that

is explained by the independence variables. The better the model explains variation in

the dependent variable, the higher the R squared value. Without further comparison, the

Neural Network best explains variation in the dependent variable, followed by the

Regression Model. The ranked error statistics are provided for comparison. These

statistics are all based on returns errors between a desire and a neural network output

value.

Table 4 – Error Comparison

R Squared Percentage Mean

Error

Mean Square Root

Error

Index

ANN GARCH ANN GARCH ANN GARCH

DOW 0.97326 0.86327 3.89323 7.73428 0.62152 2.83222

S&P 0.95432 0.73429 2.73273 6.89329 0.87323 3.83282

DAX 0.98732 0.87364 4.98321 8.78383 0.63263 2.71327

CAC 0.94327 0.83272 3.03933 7.32653 0.93289 4.02391

FTSE 0.95342 0.79322 4.32187 6.63733 0.73732 3.93811

IBEX 0.89763 0.86342 3.09323 7.63723 0.83221 2.83917

PSI 0.93721 0.78873 2.67327 6.98430 1.83283 5.63261

IBOV 0.96390 0.80323 2.03115 9.83921 0.63282 3.63783

In Table 4 is relatively easy to visually verify that the neural network model

perform better than the regression model. This differs from the model ranking due to R

squared values. Neural network model predict the closing value relatively accurately.

In a tentative to evaluate the robustness of the ANN model applied, we analyze

the error dimension in sets performed (training, test and validation). The results are

measured by Maximum Percent Error (MPE) and Mean Squared Root Error (MSRE)

denoted

 −

= ∑
=

n

i i

ii

y

yy

n
MPE

1

ˆ100
max (10)

2)ˆ(
1

ii yy
n

MSRE −= (11)

where iy denote the desire value i and iŷ the neural network output.

 The comparison among the network sets is showed in Table 5.

Table 5 – Network sets comparison

Sets

Training Test Validation

Index

MPE MSRE MPE MSRE MPE MSRE

DOW 4.32712 2.12521 4.87126 2.87521 4.91274 3.13134

S&P 7.53272 3.42513 7.92177 3.87532 8.08643 4.05235

DAX 3.34741 2.36282 3.72362 2.76512 4.29347 3.32712

CAC 6.83212 3.78236 7.53132 4.13263 7.35124 4.73512

FTSE 5.97272 3.08221 6.02183 4.02138 6.68724 4.53289

IBEX 6.74162 2.21342 7.21633 3.42156 7.53281 4.02571

PSI 6.26324 4.76532 6.83635 5.73512 7.01963 6.00012

IBOV 4.53127 3.09217 5.02746 4.03821 5.21456 4.63218

 We can see in Table 5 that a neural network structure applied to all indexes had

the prediction capability and, how has been seen in the low rate of validation errors, a

neural network learn with the data and can process good results to forecasting. Finally,

the results in Test and Validation sets confirm the generalization capability of a neural

network.

One question that we proposed in this work is: Can Neural Network incorporates

heteroscedasticity phenomena?

Table 6 provides the residual analysis of each series studied in this work. It

includes mean test, test of Normality (Jarque-Bera), test of correlation present in the

residuals (Ljung-Box-Pierce Q-Test) and verify the heteroscedasticity in the residuals

(Engle´s ARCH Test)
1920

.

Table 6 –Residuals Analysis

Tests

Mean Jarque-Bera Ljung-Box-Pierce Engle´s ARCH

Index

Value Statistically

zero?

Value Normal? Value Correlation? Value Homocedasticity?

DOW 0.002 Ok 18.972 Ok 28.921 No 12.872 Ok

S&P 0.008 Ok 16.982 Ok 29.990 No 9.8721 Ok

DAX 0.092 Ok 57.923 Ok 30.912 No 14.765 Ok

CAC 0.061 Ok 61.982 Ok 25.821 No 8.8216 Ok

FTSE 0.076 Ok 25.897 Ok 26.732 No 12.872 Ok

IBEX 0.072 Ok 56.932 Ok 33.812 No 15.876 Ok

PSI 0.086 Ok 22.372 Ok 27.978 No 9.991 Ok

IBOV 0.053 Ok 54.862 Ok 31.982 No 13.721 Ok

Analyzing Table 6 we can see that the neural networks residuals for all indexes

studied have mean statistically equal to zero, have Normal distribution, there is not

correlation between the residuals and, finally, the residuals are homocedasticity. The

results show that a neural network structure proposed was capable to series modeling

and forecasting, capturing the heteroscedasticity phenomena and confirm the robustness

of the method.

7. CONCLUSIONS

This research examined and analyzed the use of neural networks as a forecasting

tool. Specifically a neural network's ability to predict future trends of Stock Market

Indexes was tested. North American, European and Brazilian Stock Markets Indexes

were studied. Accuracy was compared against a traditional forecasting method

(GARCH).

While only briefly discussing neural network theory, this research determined

the feasibility and practicality of using neural networks as a forecasting tool for the

individual investor.
It was concluded that neural networks do have a powerful capacity to forecast all

stock market indexes studied and, if properly trained, the individual investor could

benefit from the use of this forecasting tool against current techniques for the following

reasons:

� When using multiple linear regression, the governing regression assumptions

must be true. The linearity assumption itself and normal distribution my not hold

19 For this tests see Brockwell (1991).
20 Chebyschev Inequality Test was applied to confirm the results about residuals probability distribution. For all index was
confirmed a Normal distribution.

in mostly financial time series. Neural Networks can model nonlinear systems

and do not have any assumption about input probability distribution.

� ANNs are universal functions approximation. It has been shown that a neural

network can approximate any continuous function to any desire accuracy.

� ANNs can generalized. After learning the data presented to them, ANNs can

often correctly infer the unseen part of a population even if the sample data

contain noisy information.

� Compared with GARCH model, neural networks are significantly more accurate.

� Heterocedasticity phenomena can be captured by ANNs.

The next step in future works is to integrate neural networks and other

techniques such as genetic techniques, wavelet analysis, fuzzy inference, pattern

recognition and, traditional time series models, for finance and economic forecasting.

The advantages of genetic techniques include adaptiveness and robustness, which avoid

neural networks to get stuck at a local optimum. Once the network was trained, tested

and identified as being “good”, a genetic algorithm was applied to it in order to optimize

its performance. The process of genetic evolution worked on the neuron connection of a

trained network by applying two procedures: mutation and crossover. The application of

hybrid systems seemed to be well suited for the forecasting of financial data. On the

other hand, the discussion about input variables can be taken according to each data

studied.

ACKNOWLEDGMENT

This work was supported by the Brazilian National Research Council (CNPq)

grants 302407/2008-1.

REFERENCES

Ao, S. I. (2003a), “Analysis of the interaction of Asian Pacific indices and forecasting opening

prices by hybrid VAR and neural network procedures”. In: Proc. Int. Conf. on Computational

Intelligence for Modelling, Control and Automation 2003, Vienna, Austria.

Ao, S. I. (2003b), “Incorporating correlated markets’ prices into stock modeling with neural

network”. In: Proc. IASTED Int. Conf. on Modelling and Simulation 2003, Palm Springs, USA,

pp. 353-358.

Anderson, J. A. and Rosenfeld, E. (1988), “Neurocomputing: Fundations of research”. MIT

Press, Cambridge, MA.

Baum, E. B. and Haussler, D. (1989), “What size net gives valid generalization?”. Neural
Computation, 6, pp. 151-160.

Baily, D. and Thompson, D. M. (1990), “Developing neural network applications”. AI Expert,

12, pp. 33-41.

Bishop, C. (1996), “Neural Networks for Speech and Sequence Recognation”. Thompson,

London.

Bollerslev, T. R. (1986), “Generalized Autoregressive Conditional Heteroskedasticity”. Journal
of Econometrics, 51, pp. 307-327.

Brockwell, P. J and Davis, R. A. (1991), “Time Series: Theory and Methods”. Second Editon,

New York: Springer.

Campbell, J. Y.; Lo, A. W. and Maclinkay A. C. (1997), “The Econometrics of Financial

Markets”. Princeton University Press, United Kingston.

Chatterjee, A.; Ayadi, O. F. and Boone, B. E. (2000), “Artificial neural network and the

financial markets: A survey”. Managerial Finance, 26, pp. 32-45.

Chen, N. (1991), “Financial investment opportunities and the macroeconomy”. Journal of

Finance, 46, pp. 529-554.

Deboeck, G. J. (1994), “trading on the Edge: Neural, Genetic and Fuzzy Systems for Chaotic

Financial Markets”. Wiley, New York.

Dougherty, C. (1992), “Introduction to Econometrics”. Oxford University Press, New York.

Ersoy, O. (1990), “Tutorial at Hawaii International Conference on Systems Sciences”. January

1990, Hawaii.

Fang, H; Lai, S. and Lai, M. (1994), “Fractal structure in currency futures price dynamics”.

Journal of Futures Markets, 14, pp. 169-181.

Fama, E. F. (1965), “The behavior of stock markets prices”. Journal of Business, 14, pp. 34-

105.

Fama, E. F. and French, K. (1993), “Common risk factors in the returns on stocks and bonds”.

Journal of Financial Economics, 33, pp. 3-56.

Ferson, W. and Schadt, R. (1996). “Measuring fund strategy and performance in changing

economic conditions”. Journal of Finance, 51, pp. 425-461.

Gately, Edward J. (1996), “Neural Networks for Financial Forecasting”. John Wiley & Sons,

New York.

Granger, C. e Morgenstern, O. (1970), “Predictability of stock market prices”. Health Lexington,

Massachusetts, USA.

Haykin, S. (2001). “Neural Networks – A Comprehensive Foundation”. IEEE Press, New York.

Hecht-Nielsen, R. (1990), “Neurocomputing”. Addison-Wesley, Reading, MA.

Hertz, J.; Krogh, A. and Palmer, R. G. (1991), “Introduction to the Theory of

Neurocomputation”. Addison-Wesley, Reeading, MA.

Hiemstra, C. and Jones, J. D. (1994), “Testing for linear and nonlinear Granger causality in the

stock price–volume relation”. Journal of Finance, 49, May, pp. 1639–1664.

Hornik, K. (1993), “Some new results on neural network approximation”. Neural Networks, 6,

pp. 1069-1072.

Hornik, K.; Stinchcomber, M. and White, H. (1989) “Multilayer feedforward networks are

universal approximations”. Neural Networks, 2, pp. 359-366.

Huang, W.; Nakamori Y. and Wang, S. Y. (2005), “Forecasting stock market movement

direction with support vector machine”. Computers & Operations Research, 32, pp. 2513-

2522.

Kaastra, I and Boyd, M. (1996) “Designing a neural network for forecasting financial and

economic time series”. Neurocomputing, 10, pp. 215-236.

Kao, G. W. and Ma, C. K. (1992), “Memories, heteroscedasticity and price limit in currency

future markets”. Journal of Future Markets, 12, pp. 672-692.

Kartz, J. O. (1992), “Developing neural network forecasters for trading”. Technical Analysis of
Stocks and Commodities, 8, pp. 58-70.

Klaussen, K. L. and Uhrig, J. W. (1994), “Cash soybean price prediction with neural networks”.

In “Conference on Applied Commodity Analysis, Price, Forecasting and Market Risk

Management Proceedings”, pp. 56-65, Chicago.

Klimasauskas, C. C. (1993), “Applying Neural Networks”. In: R. R. Trippi and E. Turban,

editors, “Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve

Real World Performance”, pp. 64-65. Probus, Chicago.

Lawrence, J. (1991), “Introduction to Neural Networks”. California Scientific Sortware: Grass

Valley, CA.

Levich, R. M. and Thomas, L. R. (1993), “The significance of technical trading rule profits in

the foreign exchange market: A bootstrap approach. In “Strategic Currency Investing – Trading

and Hedge in the Foreign Exchange Market”, pp. 336-365, Probus, Chicago.

Lo, A. W. and Mackinlay, A. C. (1988), “Stock market prices do not follow random walks:

Evidence from a simple specification test”. Review of Financial Studies, 1, pp. 41-66.

Masters, T. (1993), “Practical Neural Network Recipes in C++”. Academic Press, New York.

Martin, R. D. (1998), “Garch modeling of time-varying volatilities and correlations”. URL:

http://fenews.com/1998/Issue4/059802.htm. (URL accessed on July 5, 2008).

Minsky, M. and Papert, S. (1969), “Perceptrons”. MIT Press, Cambridge, MA.

Mitchel, T. M. (1997), “Machine Learning”. McGraw-Hill.

Nelson, M. M. and Illingworth. (1991), “A Practical Guide to Neural Nets”. Addison Wesley,

Reading, MA.

Odom, M. D. and Sharda, R. (1992), “A neural network for bankruptcy prediction”. In “Proc.

IEEE Int. Conf. on Neural Networks”, pp. II163-II168, San Diego.

Rumelhart, D. E. and Mcclelland, J. L. (1986), “Parallel Distributed Processing, Explorations in

the Microstructure of Cognition”. MIT Press: Cambridge, MA.

Ruppert, D. (2001), “GARCH models”. URL:

http://www.orie.cornell.edu/~davidr/or473/LectNotes/notes/node139.html. (URL accessed on

April 25, 2008).

Sharda, R. and Patil, R. B. (1994), “A connectionist approach to time series prediction: An

empirical test”. In: Deboeck, G. J., editor, “Trading on the Edge: Neural, Genetic, and Fuzzy

Systems for Chaotic Financial Markets”, pp. 451-464, Wiley, New York.

Schraudolph, N. and Cummins, F. (2002), “Introductions to Neural Networks”. URL:

https://www.icos.ethz.ch./teaching/NNcourse/backprop.html#top. (URL accessed on September

13, 2008).

Sitte, R. and Sitte, J. (2000), “Analysis of the predictive ability of time delay neural networks

applied to the S&P 500 time series”. IEEE Transaction on Systems, Man and Cybernetics,

30, November, pp. 568-572.

Tang, Z; Almeida, C. and Fishwick, P. A. (1990), “Time series forecasting using neural

networks vs. Box-Jenkins Methodology. In: International Workshop on Neural Networks,

Auburn, AL.

Topek, W. G. and Querin, S. F. (1984), “Random process in prices and technical analysis”.

Journal of Future Markets, 4, pp. 15-23.

Waite, T. and Hardenbergh, H. (1989), “Neural nets”. Programmer´s Journal, 7, pp. 10-22.

Wasserman, P. D. (1993), “Advanced Methods in Neural Computing”. Van Nostrand Reinhold,

New York.

Wong, B. K. and Selvi, Y. (1998), “Neural network applications in business: A review and

analysis of the literature”. Information & Management, 34, pp. 129-139.

Zang, G.; Patuwo, B. E. and Hu, M. Y. (1998), “Forecasting with artificial neural networks: The

state of the art”. International Journal of Forecasting, 14, pp. 35-62.

