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Abstract

This thesis investigates the application of artificial neural networks (ANNs)
for forecasting financial time series (e.g. stock prices).

The theory of technical analysis dictates that there are repeating pat-
terns that occur in the historic prices of stocks, and that identifying these
patterns can be of help in forecasting future price developments. A system
was therefore developed which contains several “agents”, each producing
recommendations on the stock price based on some aspect of technical
analysis theory. It was then tested if ANNs, using these recommendations
as inputs, could be trained to forecast stock price fluctuations with some
degree of precision and reliability.

The predictions of the ANNs were evaluated by calculating the Pearson
correlation between the predicted and actual price changes, and the “hit
rate” (how often the predicted and the actual change had the same sign).
Although somewhat mixed overall, the empirical results seem to indicate
that at least some of the ANNs were able to learn enough useful features
to have significant predictive power.

Tests were performed with ANNs forecasting over different time frames,
including intraday. The predictive performance was seen to decline on the
shorter time scales.
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Chapter 1

Introduction

This chapter summarizes the basic motivation of this thesis and gives a
brief overview of the contents in this report.

1.1 Motivation

The main purpose of the work presented in this report is to investigate if
and how artificial neural networks (ANNs) can be used to forecast financial
time series (i.e. the price curve of financial securities). As we will see in
chapter 4, several researchers have already performed similar investigations,
however there are some novel features of the approach used in this thesis
that separates it from the bulk of the existing research.

Probably the most important of these differences is that the empirical
tests in this thesis were performed with intraday trade data, whereas the
previous research has generally been carried out with only daily data (i.e.
one data value for each day). So while the existing research has been re-
stricted to mid-term and long-term forecasting, this thesis is unique in that
it also investigates the viability of applying ANNs to short-term intraday
forecasting.

Another major difference between this thesis and most other research
is that the forecasting models tested here utilize heuristic methods inspired

1



CHAPTER 1. INTRODUCTION 2

by the discipline of technical chart analysis (chapter 3) in an effort to help
the ANNs extrapolate relevant features of the data. The vast majority of
the existing research is not based on any such method; simply applying the
ANNs to raw price data seems to be the norm. This is discussed at greater
length in chapter 4.

1.2 Krang

The Krang system is an application that was developed to carry out the em-
pirical studies in this thesis. Its functionality, which includes the creation,
training and evaluation of forecasting ANNs with intraday stock price data,
is described with great detail in chapter 5.

1.3 Report Structure

This report can be seen as having three major parts: Chapters 2-4 summa-
rize what was found during the prestudy phase of the thesis work. Chapters
5-6 describe the functionality of the Krang system, and exactly how it was
used to generate the empirical results of this thesis. Chapters 7-9 list these
results, along with some commentary/discussion leading up to the final
conclusion.

As for the contents of the prestudy, chapter 2 provides some background
perspective on financial markets in general. Chapter 3 introduces some of
the concepts of technical analysis, with emphasis on the parts that are
relevant for the Krang system. Chapter 4 provides a brief introduction
to what artificial neural networks are, and reviews some of the existing
research where ANNs have been used to forecast financial markets.



Chapter 2

Financial Markets

Since this report assumes no prior knowledge of finance on the part of the
reader, it seems appropriate to provide an overview of some of the basic
theory. This chapter explains what financial markets are and how they
work. Some key financial concepts are also explained which are relevant to
the rest of this report.

2.1 Financial Securities

A financial security, or financial asset, is basically a marketable contract
that represents a claim on some present or future value. Broadly speaking,
there are three types of securities:[28]

Equity (i.e. stocks) denote part ownership of a business. Each share of
stock typically grants the owner voting rights when stockholders vote
on company decision. It also entitles the holder to any cash dividends
the company might decide pay to its stockholders from their profits.

Debt securities grant the holder rights to some future cash payments from
the issuer of the contract. One example is government bonds, which
are issued by governments when they need to borrow money.

3
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Derivatives are contracts whose present value is tied to the future value of
some other underlying asset. A common example of such a contract
is the stock option. This contract pays a sum of money on a given
date based on how much the price of a stock is above or below a given
level on that date.

2.2 Background

Now that we have a basic understanding of what financial securities are, we
can consider the context in which they are bought and sold. In particular,
some perspective may be gained from considering how these financial mar-
kets are organized and how they came to be that way. We will also explain
the practice of algorithmic trading, where computers programs themselves
become autonomous market participants.

2.2.1 The Evolution of Financial Markets

The earliest known trading of financial securities dates back to several thou-
sand years B.C. when Sumerians would organize auctions for primitive com-
modity futures contracts made out of clay (a futures contract is a type of
derivative that would allow the issuing farmer to secure a price for the
future sale of his crops ahead of harvest). [11][26]

In the western world, financial markets have undergone a tremendous
evolution over the past few centuries. The worlds first official stock ex-
change was opened in Amsterdam in 1602[24], and by the middle of the
19th century there were a large number of exchanges operating all over the
western world. The existence of stock exchanges were vital to the industrial
growth of the world during the 18th and 19th centuries, as they provided
companies with a pool of capital to which they could sell their own shares
in order to fund business expansion.[27]

Until the 1960s, stock exchanges (and financial markets in general) were
organized as physical locations where brokers would meet and exchange
buy/sell orders in an open outcry auction. But with the advent of digital
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communication technology, trading quickly became more and more com-
puter driven, which allowed traders in remote locations to send their orders
electronically to the exchange.

Traditional auction trading still takes place in various locations, as can
be seen in fig. 2.1. This is a photo from a trading pit in Chicago where
traders still trade commodity futures contracts in person. In todays world,
however, the vast majority of financial trading is purely electronical. The
work environment of a modern day trader is more likely to look something
like fig. 2.2.

One of the largest stock exchanges in the world, the NASDAQ, is man-
aged completely electronically.[2, p.5] The same is true for the Norwegian
stock exchange, the Oslo Stock Exchange (OSE), which closed down its
physical stock trading pits in 1999 when it switched to an all-electronic
system.[14]

Financial markets exist for all the previously mentioned types of finan-
cial securities: stocks, bonds and derivatives. In addition to these, there is
also the FX in which currencies are traded. The FX are generally the most
liquid financial markets in the world, totaling more than 4 trillion USD in
trading volume on an average day.[7]
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Figure 2.1: A trading pit in the Chicago Mercantile Exchange (CME)
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Figure 2.2: An example of a modern traders work desk
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2.2.2 Algorithmic Trading

As the financial markets became increasingly tech driven, several investors
and institutions realized that there was a potential for automatic comput-
erized trading systems which could trade securities without human input,
so called algorithmic trading systems.

The earliest such systems would only try to scalp small profits by looking
for arbitrage opportunities (an arbitrage opportunity occurs when some-
thing can be bought and sold at a profit instantaneouly). Consider for
example three FX markets: USD/GBP, GBP/EUR and USD/EUR. Sit-
uations could occur where these currency pairs were being traded with a
small disrepancy so that buying a dollar in pounds, selling the dollar in
euros and buying back pounds with the resulting euros would result in a
small (yet immediate) profit. Such opportunities soon became scarce as
more and more algorithmic systems started competing to find them, driv-
ing tech savvy investors to look for more creative approaches to algorithmic
trading.

As computer technology became more and more pervasive, the algo-
rithmic trading systems also became more sophisticated. By the late 1980s
complex automated trading systems were already a common occurence in
the US markets, especially for rich institutions and hedge funds. When the
worlds stock markets fell by record amounts on October 19, 1987 (“Black
Monday”), many blamed automated trading systems for exacerbating the
decline as they supposedly started blindly selling stocks.[25] Whether these
allegations are true remains speculation to this day, however the mere fact
that they were concieved does indicate that such systems were already com-
mon at that time.

The Black Monday incident is not the only event with which algorithmic
trading has been painted a villain. So called high frequency trading (HFT)
systems, which are a special class of algorithmic trading systems, have re-
cently been accused of manipulating markets and having unfair advantages
over common investors. Some sources estimate that HFT systems presently
account for over 70% of stock trading volume in the U.S.[3] These systems
can make hundreds of thousands of quick trades every day, scalping small
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profits of short term movements in the prices of securities.
From a research perspective, the main problem with these systems is

that although they are clearly being used pervasively by certain institutions,
the specific details of how they are implemented and their actual profitabil-
ity when deployed in practice has never been published for the scientific
community at large. As we shall see in chapter 4, some (public) research
has been conducted in applying various machine learning techniques into
financial trading, but the literature is scarce and the approaches that are
tested are often somewhat simplistic (compared to what you might expect
an investment firm to develop proprietarily).

2.3 Financial Time Series

In general, a time series refers to a series of data points which are measured
at successive points in time spaced at uniform time intervals. This concept
is heavily used in scientific fields like statistics and signal processing, but
also in the context of financial analysis.[29]

The price that a particular security is traded at can be viewed as a
time series, where the value at a given point in time is the price of the last
observed trade at that time. In essence, the time series is then just a simple
price curve for the security. An example is given in fig. 2.3 where the time
series for Google stock is plotted spanning the year 2009. In this particular
plot, the sampling interval is once per day, and so each value in the plot is
the last traded price (or closing price) of that day.

2.3.1 Candlestick Time Series

One drawback of the time series as it was just defined is that it may give an
incomplete picture of the volatility in the price of the underlying security.
This is because each point on the curve only displays a single price value,
and says nothing about whether the price fluctuated in that interval or not.
To get a more complete sense of the price movements for the security in
each time interval, we might instead choose to use the so-called candlestick
series.
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Figure 2.3: Time series (line chart) for Google stock over the year 2009
(source: Yahoo! Finance[31])

An example of a candlestick series is given in fig. 2.4. Here we see that
instead of just singular values, each point in the series is represented by
a colored bar and line. Each of these items is what we call a candlestick,
or just candle for short. The graphical features of a candlestick can be
interpreted as follows:

� The thick rectangular bar stretches from the price of the first trade
in the candle (the open) to the price of the last trade (the close).

� The thin spine of the candle stretches from the highest price of any
trade in the candle (the high) to the lowest price (the low).

� A green colored candle means that the closing price was higher than
the open (i.e. the stock price went up in the time period represented
by the candle). A red colored candle means the opposite (i.e. the
price went down).

� If no trades occured during the time period of the candle, it is simply
displayed as a flat line at the same level as the close of the previous
candle.
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Figure 2.4: Candlestick chart for Google stock over the first few months of
2009 (source: Yahoo! Finance[31])

2.4 The Efficient Market Hypothesis

The efficient market hypothesis (EMH) is a theory which states that all
information about a security is already taken into account by its market
price. The main consequence of this is that it should be impossible to
“outsmart” the overall market.

The theory is based on the assumption that all relevant information is
publicly available and easily accessible to all investors, and that investors
act rationally. If these assumptions hold, competition among investors
should spontaneously and immediately negate any speculative profit op-
portunities from the moment new information becomes available.

A natural consequence of the EMH is that financial time series are
always unpredictable. To further formulate this assertion using statistics,
the random walk hypothesis was proposed by Paul Cootner in 1964[4]. This
theory states that all financial time series are statistically equivalent to a
series of completely random steps, and that attempting to make predictions
based on historical analysis is always a futile endeavor.

If this were true, then it should in general be impossible for algorithmic
trading systems to be more profitable (at least on a risk-adjusted basis)
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than the overall market. It also flies in the face of technical analysis (de-
scribed in chapter 3) which is based entirely on historical analysis and the
assumption that repeating patterns occur in financial time series that allow
for profitable trading opportunities.

There has been a lot of criticism against the EMH. For one, it assumes
that investors are always rational, but many behavioral economists argue
that the presence of cognitive biases (such as overconfidence and overreac-
tion) negate the validity of this assumption. Another problem is that it does
not take into account the presence of insider trading, where small groups
of investors trade based on information which is not publicly available.

Many researchers have attempted to produce falsifications of the EMH
and the random walk hypothesis, with mixed results. One of the most
commonly cited of these efforts is that of Andrew W. Lo and Archie C.
MacKinlay, who in their book A Non-Random Walk Down Wall Street
developed a statistical model for analysing stock prices which they claim
provided significant evidence against random walk theory based on its em-
pirical results.[13]

2.5 Trading Nomenclature

In addition to what we have introduced so far in this chapter, there are
certain terms that exist among traders which are also used in the later
chapters of this report. This section gives a brief review of the terminol-
ogy that it is recommended for the reader to be familiar with in order to
comprehend everything in this report.

2.5.1 The Bull And The Bear

In the context of financial trading, the image of the bull is used allegoricaly
to describe the belief that the price of a stock (or all stocks) is going to
increase in the future. A trader who holds such a belief is said to have a
bullish sentiment.

To represent the opposite belief, namely that the price is going to de-
cline, the image of the bear is invoked.
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2.5.2 Long Or Short

The terms long and short are used in a similar manner to the bull and the
bear, but in somewhat different contexts. The former term, long, is rather
straightforward to understand: An investor who has bought and owns some
positive amount of a given security, is said to have a long position in that
security.

A short position is in principle just as simple, as it is just the opposite
of a long position. A short sale occurs when an investor sells a security he
does not own, meaning he has to borrow it from someone else in order to
sell it. After the sale has taken place, he now owns a negative amount of
the security (i.e. a short position) and will profit only if the price of the
security goes down and he covers his short position by buying the same
amount he sold for the now lower price.

So by allowing both short and long positions, a trader can make money
whether the stock goes down or up, as long as he can predict the direction
of the movement in advance. Short positions can be very dangerous though;
since the price of the stock can climb by more than 100%, the trader may
have to pay more than double what the loan was worth originally to cover
his short. For a long position, the worst case scenario is that the security
becomes worthless which means a loss of 100%. For this reason, short
positions are rarely good long term bets and are mostly used for short term
speculation.
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Figure 2.5: The bull statue on Wall Street symbolizes a positive market
sentiment



Chapter 3

Technical Analysis

Technical analysis is a discipline for analyzing the historical trading activity
of financial securities (with the aim of forecasting future price movements).
It comprises a set of techniques which look for specific reoccuring patterns
in the price charts of the security in order to identify trend formations and
other repeating patterns that may occur.

In this chapter a brief review of technical analysis theory is provided,
with a primary focus on the parts of the theory which are relevant to the
rest of this report.

3.1 Swing Points

In the price history of a security, we refer to the peaks and troughs that oc-
cur in the price over time as the swing points of the time series. In technical
analysis, these points play a key role in the identification of support and
reistance levels on the price curve. Support means a price level at which
we expect the demand of the security to increase relative to the supply.
Resistance means the opposite; a price level where we expect the supply to
increase relative to the demand.

The simplest way to determine potential support and resistance levels
using the swing points on a chart is simply to extend a horizontal line from

15
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Figure 3.1: Using swing points to identify support and resistance levels
(source: StockCharts.com[20])

a swing point. This method is illustrated in fig. 3.1, where we see that
the first (low) swing point determines a support level which the stock price
later retracts towards several times but fails to pierce. We also see that the
subsequent (high) swing point determines a resistance level which acts as
an imaginary roof for the successive price movements.

3.1.1 Trendlines

The swing points can also be used as a basis for identifying trendlines.
Instead of just drawing a horizontal line out from each point, we can connect
two or more consecutive troughs (or peaks) and extend a line through both.
This forms a potential trendline, which we can expect the price curve to
encounter support or resistance when it approahces.
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Figure 3.2: Example of a support trendline (source: StockCharts.com[20])

An example of a trendline is given in fig. 3.2.

3.2 Moving Averages

One of the most commonly referenced technical analysis indicators is the
moving average of the share price. The basic idea of this indicator is to get
a smoothed version of the price curve by taking the average price of the
previous N periods at every point.

A moving average can be calculated in several different ways. Let’s have
a look at two of the more common varieties in detail before we proceed with
our discussion.
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Figure 3.3: Comparison of several simple moving averages on the S&P 500
index curve (source: Yahoo! Finance[31])

3.2.1 Simple Moving Average

The most common type of moving average is the simple moving average
(SMA). An N -period SMA can be calculated at any point in time by taking
the mean price of the preceeding N periods:[20]

SMAN (t) =
1

N

N−1∑
i=0

p(t− i) (3.1)

An example of three different SMA series are given in fig. 3.3. This
chart shows the history of the S&P-500 index over a 1-year period with
three moving averages drawn over: the 20-day (red), the 40-day (green)
and the 60-day (orange). As you can see, the higher the N parameter (i.e.
days) is set, the smoother the curve becomes, and the more its momentum
lags that of the underlying curve.
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3.2.2 Exponential Moving Average

The exponential moving average (EMA) is calculated with the following
recursive relation:[16]

EMAN (t) =
1

N
× p(t) +

(
1− 1

N

)
× EMAN (t− 1) (3.2)

The first EMA value of the series is simply set to the price at that time,
i.e.:

EMAN (t = 0) = p(t = 0)

The EMA can be thought of as an approximation of the SMA that is
somewhat easier to compute. But it has an interesting property in that it
can be viewed as a weighted average in which the more recent values are
weighted with geometric proportion over the older values.[16]

Figure 3.4: Comparison of simple and exponential moving averages on the
S&P 500 index curve (source: Yahoo! Finance[31])

Fig. 3.4 compares a 30-day SMA with a 30-day EMA on the S&P-500
index curve. We can see that the EMA curve seems to be somewhat more
volatile because it swings out further than the SMA in both directions.
The EMA also seems to be less lagging than the SMA, if we take a look at
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how long it takes before their respective directions change after a peak or
trough in the underlying curve. This makes sense in light of the remarks
about how the EMA can be thought of as a weighted average, since the
fact that later values carry more influence implies that the curve should be
more responsive to change.

In the end, we still see that these two moving average varieties are indeed
heavily correlated and almost the same for the most part. This is just as
we would expect based on the inherent similarities of the calculations.

3.2.3 Analysing The Moving Average

The moving average can be used for making different types of observations
when analysing the curve. The two most common are:[20]

� To determine wether the curve is in an upward or downward trend.

� To determine if the curve is near a support or resistance level.

The most obvious type of observation we can make is to use moving av-
erages to classify whether the market is in an upward or downward trend.
This can be done simply by classifying the current trend as an upward
trend if the current price is higher than the moving average, or oppositely
a downward trend if the price lower. This type of classification is illus-
trated in fig. 3.5, where the areas of transition between trend directions
are highlighted for clarification.

A variation of this type of trend classification, is to use two moving
averages, one with a lower and one with a higher number of periods N . We
then classify the trend as downward if the lower-N moving average is below
the higher-N moving average and vice versa for an upward trend.

Another use of moving averages is in looking for support and resistance
levels on the curve. In this analysis, we expect an upward trend to meet
support as it approaches the moving average from above (for a so-called
“bounce”). In the case of a downward trend, we expect it to meet resistance
as it approaches the moving average from below. This type of classification
is illustrated in fig. 3.6, where the green arrows indicate that the moving
average gives support and the red arrows indicate resistance.
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Figure 3.5: Using a moving average for trend classification (source:
StockCharts.com[20])

3.3 Trend Reversal Patterns

Technical analysis dictates that there are specific patterns which often occur
at the end of significant trends. The occurence of these patterns can be
interpreted as a signal that the stock may be headed into a reverse trend.

When identifying reversal patterns, it’s always important to establish
that the stock is coming out of a prior trend (be it an uptrend or down-
trend).

There are several types of reversal patterns. Our discussion shall be
limited to only three of these; the head and shoulders, the double top and
the double bottom.
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Figure 3.6: Using a moving average to find support and resistance levels
(source: StockCharts.com[20])

3.3.1 Head And Shoulders Pattern

The most classic reversal pattern is the head and shoulders (HS) pattern.
An example of the HS pattern is given in fig. 3.7.

The HS is formed by having a high peak (“head”) surrounded by two
lower peaks (“shoulders”). The neckline of the HS is formed by drawing
a line between the two troughs that separate the head from the shoulders.
When the stock goes beneath this line (after the right shoulder) technical
analysis dictates that we should expect the price to fall to the same distance
below this line as the distance from the head to the line.[20]

A reverse HS pattern can occur at the end of a downtrend. The same
principles apply for this pattern, except that the head and shoulders are
marked by troughs in the curve instead of peaks.
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Figure 3.7: Example of the head and shoulder reversal pattern (source:
StockCharts.com[20])

3.3.2 Double Top Pattern

Another important reversal pattern is the double top. This pattern is
relatively simple to recognize, with two peaks occuring consecutively at
approximately the same price level. An example of a double top pattern is
given in fig. 3.8.

As the curve retreats from the second peak, we should look for an in-
crease in volume to further confirm that the pattern is forming. As the price
breaks out below the bottom of the double top channel, we can calculate
the expected value of the further decline as the level difference between the
peaks and the intermediary trough subtracted from price at the bottom of
the channel.[20]

3.3.3 Double Bottom Pattern

The double bottom pattern has the same properties as the double top,
except that it happens after a downtrend and that we should look for two
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Figure 3.8: Example of the double top reversal pattern (source:
StockCharts.com[20])

troughs instead of two peaks. An example of a double bottom pattern is
given in fig. 3.9.

3.4 The Relative Strength Index

The RSI is a transformation of the time series which is used to analyse
the balance of supply and demand of the underlying security. It was first
invented by J. Welles Wilder in 1978.[30]

In order to calculate the RSI we first need to calculate the relative
strength parameter (RS). Given the daily changes of the price in the pre-
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Figure 3.9: Example of the double bottom reversal pattern (source:
StockCharts.com[20])

vious N days, the RS is computed as follows:

RS =
Average value of positive price changes

Average absolute value of negative price changes

Subsequently, we can compute the RSI with the following formula:

RSI = 100− 100

1− 1/RS

Looking at the formula, we see that the RSI oscillates within the range
between 0 and 100. As for the number of days N , Wilder himself rec-
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ommended a period of 14 days. Although other intervals are possible, it
can generally be assumed that when someone refers to the RSI (without
explicitly stating otherwise) he is implicitly refering to the 14-day RSI.

Figure 3.10: Simple RSI analysis (source: StockCharts.com[20])

3.4.1 Analysing The RSI

Wilders stated that in a normal market, the RSI should be expected to
fluctuate in the range between 30 and 70. A value higher than 70, according
to Wilder, indicates that a period of high buying pressure has taken place,
and that the stock may be temporarily overbought. This could mean a
negative pressure on the price, as the ratio of buy and sell activity could
be expected to return to its normal range. Oppositely, a value lower than
30 might mean that the stock has had a period of heavy selling pressure,
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and that the future price would tend upwards as this pressure dissipates.
This type of analysis is illustrated in fig. 3.10, where we see that RSI values
outside these limits coincide nicely with resistance levels in the stock price.

Wilders added a few qualifying statements to this range analysis. If the
security was seen to be in a strong long-term overall uptrend, the limits
should be shifted to 40 and 80. And if the stock was in a downtrend, the
limits should be changed to 20 and 60.

Divergences

Wilders acknowledged that the straightforward range analysis just men-
tioned was a somewhat crude and not always reliable method of forecast-
ing. But he also introduced another observation one can make from the
RSI which he said was a lot more significant and reliable for predicting
price moves, which is the occurence of divergences between the price and
the RSI.

One type of divergence occurs when the price chart makes successively
higher peaks while the RSI has successively lower peaks. This is called a
bearish divergence, and such a disconnect indicates that there is a weakness
developing in the uptrend, signifying that a trend turnaround could be
about to happen.

The other type, which is bullish divergence, occurs when the price makes
successively lower lows while the RSI makes higher lows. This could be
taken as and indication that the stocks downtrend has encountered a sig-
nificant rise in buying pressure (or weakening of selling pressure), and that
the downtrend could be about to turn around.

Fig. 3.11 illustrates an occurence of both these phenomenons.

3.5 Elliot Wave Theory

Elliot Wave Theory is a branch of technical analysis which is used to forecast
trend shifts in financial markets by identifying recurring periodic patterns
in investor behavior. The theory was first developed by Ralph N. Elliot in
1938.[5]
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Figure 3.11: Divergence in the RSI and price chart (source:
StockCharts.com[20])

The theory is based on the observation that markets progress in trends,
and that these trends display a certain degree of symmetry over time. Elliot
stated that,

Because man is subject to rhythmical procedure, calculations
having to do with his activities can be projected far into the
future with a justification and certainty heretofore unattainable.

In the theory, security prices are observed to go into cycles over various
scopes of time. A supercycle takes place over multiple decades. Within
a supercycle there are several normal cycles which take place over one or
more years. Within these are primary cycles which lasts for several months.
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According to the theory, this fractal-like structure of cycles within cycles
goes down to cycles taking place on the level of minutes.

Each cycle is broken down into a set of waves (trends). For a bull
market, Elliot observed a typical pattern of 8 waves taking place, the first
5 marking increased positive sentiment among investors, with the overall
peak of the cycle taking place at the end of the 5th wave. For each of
wave, Elliott described certain features in investor psychology and market
behavior that will typically be prevalent at that stage.

Figure 3.12: The fractal structure of Elliot wave cycles [15, p.162]

3.5.1 Fibonacci Retracements

The Fibonacci sequence, in which each number is the sum of its two prede-
cessors (0, 1, 1, 2, 3, 5, 8, . . . ), plays a key role in Elliot wave analysis. When
Elliot himself analysed the mathematical symmetries of waves and patterns,
he was led to conclude that “the Fibonacci summation series is the basis
of The Wave Principle”.[5]
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Looking at the Fibonacci sequence, we can note that there are certain
ratios that are approximately constant along the sequence:

� The “golden ratio” of 61.8% is found by dividing one number in the
series by the number that follows it (e.g. 55/89 ≈ 0.6179).

� When dividing a number by the number two places before it in the
series, we get the approximate ratio of 38.2%.

� Going one step further (i.e. dividing by the element three places
before) yields the approximate ratio of 23.6%.

Elliot claimed to have observed that there is a significant relationship
between these ratios and the waves in his market cycle theory. Whenever
the market had completed a wave, he claimed that the following (oppositely
directed) wave would find support (or resistance) when the retracement was
at one of these levels compared to the magnitude of the original wave. This
is illustrated in fig. 3.13. Note that practitioners of this theory also count
the halfway point (i.e. 50%) level as one to watch.

3.6 Volume

An important feature of the trade history that is overlooked by simply
focusing on the candlestick chart itself is the volume of trading in each
interval. The volume can be tricky to interpret, but it seems intuitive to
think that a sudden surge in volume signifies that something significant is
happening with the stock.

Some technical analysis practitioners use the volume to analyse the
strength of trends. According to some literature, a trend which coincides
with a surge in volume is less likely to be reversed than a trend of lighter
volume.

The Percentage Volume Oscillator

The PVO is a technical indicator that is computed purely on the basis of
the volume (i.e. ignoring the price). It is configured with two exponential
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Figure 3.13: Fibonnaci retracement support levels

moving averages of the volume, of different scope (e.g. 20-day and 10-day).
Given these, the PVO is computed as follows:[20]

PV O = 100.0× (Longer EMA− Shorter EMA)

Longer EMA

From looking at this formula, it should be clear that the PVO oscillates
about the zero axis, and that a negative PVO indicates decreasing volume,
while a positive PVO indicates increasing volume.

An example of a PVO chart is given in 3.14. In this figure, the volume
and PVO (using 26- and 12-day moving averages) are given for the Gold-
man Sachs stock in the spring of 2010. It’s interesting to note the sudden
spike in volume that was triggered by a relevant news event on April 16th
(specifically, that was the day Goldman was sued by the US Securities and
Exchange Commission on securities fraud charges).
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Figure 3.14: Candlestick chart with volume and percentage volume oscilla-
tor (source: StockCharts.com[20])

The most common use of the PVO among practitioners seems to be for
trend confirmation. If the market is in a clear overall trend, and the volume
is rising overall, we can expect that trend to be less likely to be reversed.
So a downtrend on heavier volume (i.e. positive PVO) is a clear negative
sign, while an uptrend on heavier volume is a clear positive sign.
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Artificial Neural Networks

Artificial neural networks (ANNs) are a class of machine learning algo-
rithms that draw inspiration from biological neural systems. They are
generally implemented in computer software with the aim of enabling au-
tomatic learning and subsequently autonomous problem solving.

This chapter begins with brief introduction to biological nervous sys-
tems, followed by an explanation of how these systems are emulated in
ABBs. It is not the aim of these explanations to get too bogged down in
technical details, but rather to give readers of this report who might not
be too familiar with computer science (and machine learning in particular)
a chance to gain a basic intuition of the principles behind this thesis.

Having briefly explained what ANNs are, we explore some existing re-
search in applying them to financial time series analysis. We wrap off this
discussion with a brief comment on some other types of machine learning
mechanisms and how they can be applied to financial forecasting.

4.1 Biological Nervous Systems

The science of nervous systems (i.e. neuroscience) is a complex body of
knowledge which could fill several books (if not entire libraries), so a brief
introduction like this one will necessarily be somewhat simplistic. Even

33
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worse, there are still central questions (especially with regards to learning)
which remain unanswered by scientists of the field to this day.

That being said, ANNs are by no means exact replicas of their biological
counterparts. Only a very rudimentary understanding of biological neural
systems should be sufficient for grasping the basic motivation behind the
design of ANNs.

4.1.1 Neurons

The nervous system consists of assemblies of interconnected cells called
neurons. The basic topological structure of a neuron is visualized in fig.
4.1.

Out of each neuron there grows several branch-like structures called den-
drites. It is through its dendrites that a neuron is able to receive electrical
signals from other neurons. There is also a single larger filament called the
axon which carries outgoing signals from the cell. The axon branches out
to come in contact with up to several other neurons.[6, p.167]

Where the outgoing axon meets the dendrite of another neuron, a con-
nection is made in the form of an electrochemical device called a synapse.
Electrical signals mediated through the axon triggers the release of cer-
tain chemicals across the synapse, known as neurotransmitters. When the
dendrite reacts with these chemicals, a complex reaction begins which uti-
mately results in the buildup of ionic charge in the dendrite membrane.
This charge further translates to a voltage difference that is propagated
through the dendrite down into the recieving neurons cell body.

Each neuron has a certain activation threshold that the sum of the
incoming voltages (from the dendrites) need to exceed in order to activate
an outgoing electrical signal in the axon. When this occurs, we say the the
neuron is excited, or that it is firing.

There are several more complicating factors in how neurons operate
that will not be discussed further here. The very simplistic picture laid out
so far should be sufficient for the context of this thesis. For a more detailed
and complete analysis of how neurons work, see [6].
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Figure 4.1: The basic structure of neurons
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4.1.2 Adaptation

Neural systems give organisms the ability to adapt to their environment
during their lifetime. On a macroscopic level this adaptation has several
manifestations. These include things like habituation, forming associations
and memorization of people and places. On a microscopic scale, what allows
for adaptation are mainly the processes that affect the strengths of synaptic
connections between neurons. In other words, given a neuron with several
incoming connections, what will change with adaptation is which of the
connections it “listens more closely” to and which of them it ignores. The
exact nature of this mechanism was hypothesized more than 50 years ago
by Canadian psychologist Donald Hebb:

When an axon of cell A is near enough to excite cell B or re-
peatedly or consistently takes part in firing it, some growth or
metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.[8, p.62]

In other words, when a source neuron is often involved in the activation
of a receiving neuron, the receiving neuron will become more sensitive to
signals from that source neuron. This mechanism, commonly referred to
as Hebb’s rule, was later verified in several experimental studies.[10] As
it turns out, the opposite effect has also been shown to hold; when two
neurons are connected and the source is rarely involved in the activation of
the destination, the connection weakens over time as the destination neuron
starts “ignoring” that source.

There are also other neurophysiological processes that can contribute to
neural adaptation, such as dynamic growth and death of connections, but
these normally act over much longer time periods and are much less fre-
quent in occurence. Most computational approximations of neural systems
therefore focus exclusively on Hebb-style adaptation.
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4.2 Artificial Neural Networks

As was already mentioned, ANNs are computational models implemented
in computer systems in an attempt to replicate some of the behavioral and
adaptive features of biological neural systems.

4.2.1 Artificial Neurons

Every ANN consists of a set of units (or neurons) and a set of connections
between them. Each neuron is basically just a mathematical function Φ
(the activation function) that takes as parameter the activation a, which
is a weighted sum of all the incoming signals to the neuron. The value of
Φ(a) is the outgoing signal of the neuron.

It is important to note that the activation parameter of a given neuron
is a weighted sum of all its incoming signals:

a =
∑

wi × xi (4.1)

Here wi is the weight of the incoming connection i, and xi is the signal
value that was sent by the neuron on the other side of that connection. It’s
clear that the higher the weight of the connection is, the more influence it
will have on the neuron. In correspondence with the Hebbian principles we
discussed above, it therefore seems intuitive that we can simulate adapta-
tion by adjusting the values of these weights. This is typically done using
a method called backpropagation, which we will come back to later.

The exact nature of the activation function Φ(a) can be defined in sev-
eral different ways. One very simple and somewhat common approach is to
use a step function which is either 1 or 0 based on whether the activation
a is greater than some constant threshold υ, i.e.:

Φ(a) =

{
1, if a ≥ υ
0, otherwise

(4.2)

While this approach works well enough in many situations, it is clear
that more information could be produced by each neuron if its activation
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function was continuous instead of just binary. This is because a binary Φ
means the neuron can only take on one of two states, whereas a continuous
Φ can take on any number of different values. One of the most popular
choices of continuous activation functions, which is also the one used by
the Krang system to be discussed in chapter 5, is the symmetric sigmoid
function:

Φ(a) = tanh(k × a) (4.3)

Here k is a scaling factor which determines how steep the curve is. The
resulting value is bound to the range 〈−1,+1〉. Fig. 4.2 shows the shape
of this function with k = 1.

Figure 4.2: The symmetric sigmoid activation function (with k = 1)

4.2.2 Layer Architecture

Now that we understand the basic mechanism of how these artificial neurons
operate individually, we can next consider how a network of them operates
in unison. The standard way of designing ANNs is to group the neurons
into N layers, including one input layer, one output layer, and up to several
hidden (internal) layers. Such a network is illustrated in fig. 4.3. Notice
that in this network, a given neuron in one layer is not necessarily connected
to all the neurons in the next. This is what we call a sparse network. A
complete network is one in which any given neuron is always connected to
every neuron in the next layer.
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Figure 4.3: Example of an artificial neural network with layers

The Input Layer

The input layer can be thought of as the “sensor organ” of the ANN. It is
where we set the parameters of the environment (i.e. the information we
want the ANN to make a decision about). The neurons in this layer have
no incoming connections, since their values are set from an external source.
The outgoing connections send these values to the neurons of the next layer
in the hierarchy.

The Hidden Layer(s)

In between the input and output layers, we put a series of one or more
“hidden” layers. The reason we call them hidden is that they are invisi-
ble to any external processes that interact with the ANN. The neurons in
these layers have both incoming connections from the preceding layer and
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outgoing connections to the succeeding layer, and work just as described
earlier in this section. The hidden layers can be thought of as the “cognitive
brain” of the network.

The Output Layer

The output layer holds the end result of the computations of the ANN. If
the input layer holds the parameters of a problem, the information here can
be interpreted as the proposed solution. The neurons in this layer have no
outgoing connections, because their Φ-values are read directly by whatever
external process is using the network.

Running The Network

To test the network, we simply load the problem information into the input
layer neurons, and compute Φ for every neuron in each of the succeeding
layers (layer by layer untill we reach the output layer). The resulting values
in the output layer will depend on what training we have previously exposed
the network to.

4.2.3 Training The ANN

Our discussion of ANNs so far has explained what they do (i.e. what
calculations are made) when they are given some input that is transformed
into some output (as the neurons are updated through the network from the
input to the output layer). In this section we will see how we can attempt
to teach the network to solve specific problems by showing it examples of
problems with given correct solutions.

We already mentioned briefly that biological adaptation can be simu-
lated by varying the weights of the connections in the network. This is
typically done by implementing a process called backpropagation of error.
Qualitatively, the process can be described roughly as follows:

1. Load a an example problem from the training data.

2. Run the network normally with the problem information.
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3. Calculate the error between the resulting output of the ANN and the
actual correct solution.

4. Iterate backwards through the layers of the network, and slightly
tweak the weights of all the connections in the direction (positive or
negative) that minimizes the error of the output.

This process is repeated over a set of training data. The “tweaking” of the
weights is done using a formula called the Delta rule, which is based on the
principle of gradient descent. We won’t go into further detail about the
actual mathematics involved here; the curious reader can look to e.g. [6,
p.221] for a more complete descritpion.

Now that we have seen what ANNs are and have a basic understanding
of how they work, we can begin investigating how they can be applied to
financial security analysis.

4.3 ANNs Applied To Financial Analysis

Our discussion of ANN applications to security analysis will begin with a
review of some existing literature. This will be followed by a brief commen-
tary where some potential improvements to these approaches are discussed.

4.3.1 Forex Forecasting With ANNs (Huang et. al.)

Huang et. al. published a neat review of several research attempts for
applying ANNs to forecast the foreign exchange markets.[9]

Their analysis defines a general design framework consisting of three
main steps, that they use as a basis of comparing the various efforts made
by different researchers. These three steps are: selecting inputs, preparing
data and finally deciding ANN architecture. Let’s take a quick glance at
what each of these steps should entail (according to Huang) and what
choices have been explored by the research cited in their review.
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Selecting inputs

According to Huang et.al., the first step in designing a neural network for
forecasting a financial time series should be to decide what variables the
network should take into account.

Most of the research they cite use a design referred to as a univariate
model, where the only variable taken into account by the ANN is the price
time series. A simple (and common) example to realize this is to have a
time series of daily intervals, and an ANN with an input layer of N neurons
and output layer with only one neuron. The input layer then holds the time
series data points of N consecutive days, and after the ANN is computed
the output layer would hold the prediction for the “(N + 1)th” day.

Other researchers have attempted to implement multivariate models in
which several other variables than just the price is take into account by
the ANN. In the context of foreign exchange forecasting, examples of such
variables might be forward lending rates, central bank lending rates, or the
spot prices of commodities like oil or gold.

Walczak and Cerpa [23] suggested a method for isolating useful vari-
ables for multivariate networks. In their method, one first gathers as many
potentially useful variables as possible, then carefully eliminates the irrele-
vant ones one by one by comparing network performance with and without
each variable.

Smith [19] claimed that having input variables which are heavily cor-
related to the time series which is to be forecasted should be avoided. His
reasoning is that the information such variables provide is already inherent
in the time series itself, and will therefore be taken into account more than
once by the ANN, leading to a biased forecast decision.

As for whether univariate or multivariate models are to be preferred,
Huang et.al. don’t draw any general conclusions in their review. They
note that univariate models are simpler to train and need less input, but
multivariate models might be more credible as long-term forecasting tools
since they take a more complete picture of the financial environment into
account.
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Figure 4.4: Example of simple univariate ANN

Preparing Data

After we have decided whether we are using a univariate or multivariate
model (and which variables should be included for the latter), the next step
is to decide how this information should be presented to the input layer of
the ANN, and what a good set of training data would be.

The main question that all models (whether uni- or multivariate) need
to have decided is how to present the price data to the ANN. The most
common method seems to be one where the neurons of the input layer are
treated as a rolling window over the time series. In a daily series, each
neuron then holds the price data for a single day. A simple univariate net-
work which uses this type of input is illustrated in fig. 4.4. In multivariate
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models, the input layer may be split into several such rolling windows (one
for each variable).

A central design issue for this type of model is deciding how many
neurons the input vector should hold (i.e. how far into the past the ANN
should look to best forecast the future). Feeding the network too many
past periods will introduce too much complexity and make it harder to
train the network properly, while too few periods may not be sufficient to
unveil useful features in the data. According to Huang, the best method
for deciding the input size is therefore a process of trial and error, where
one attempts to add or subtract input neurons until simulations show that
the minimum of essential neurons is found.

To compensate for the fact that the scale of the price level might vary
wildly over time, which might confuse the ANN, the prices are typically
normalized to relative rather than absolute values. This process is especially
important for multivariate models, because here some values are likely to
be on a higher level than others in absolute terms, and these will then
automatically be given preference in the ANN. The most common method
for normalization (at least in the research cited by Huang et.al.’s review) is
to apply a so called “n-day lag” transformation to the price series, where
the value corresponding to a given day is the price of that day minus the
price n days prior.

Another approach entirely, which is not discussed by Huang et.al., is
to analyse and rate the data heuristically using techniques from technical
analysis, and to feed these “TA-ratings” to the neural net instead of the
raw time series itself. This approach has been previously employed by
Larsen[12], and will be discussed at greater length later in this chapter.

The last question we must ask ourselves in this phase is what sample
data we should use, and how it should be split between training and sim-
ulation data. Walczak [22] did a relatively thorough investigation where
he compared network performance with various sizes of training data sets.
In his discussion, he claimed to have discovered what he referred to as the
Time Series Recency Effect, which states that:

More recent data is better suited for training (i.e. gives better
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forecasting performance) than older data.

A possible explanation for this is that the predictive power of the features
that are learned from observing a slice of the time series declines over time,
because the underlying market forces that drive the movement of the price
undergo fundamental changes over time.

Walczaks empirical results point to 2 years as being the optimal amount
of training data. It may be worth noting that he used a univariate model
with daily time series data in his tests.

Deciding ANN Architecture

The last step of Huang et.al.’s design framework is deciding the ANN archi-
tecture. In addition to standard feedforward networks (which is what we
described earlier), they also mention two other types of ANNs as viable op-
tions. These are feedback networks and competitive networks. We will not
describe the technical details of these types of ANNs further here; suffice it
to say that Huang et.al. conclude their discussion with a recommendation
of feedforward networks over the alternatives.

As for choosing the number and size of the hidden layers in the ANN,
few guidelines are provided by Huang et.al. They simply say that trial and
error is needed to determine the optimal structure for a given context. Of
course, one should not carry out this trial and error process on the same
data that is to be used when determining the performance of the network
(as that would be “cheating”). They therefore recommend splitting the
simulation data not only into training and test sets, but also a separate
validation set. One would then use the training and validation data when
trying to tweak performance, and go on to use the test data exclusively for
the final performance evaluation.

Performance Review

Out of the 11 studies considered by Huang et.al., 4 reported mixed and
inconclusive results while the remaining 7 reported statistically significant
positive results. However, it is difficult to draw general conclusions on
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the basis of these papers because different researchers have used different
performance measures and no standardized benchmark exists by which the
empirical results of these studies can be compared with any rigour.

Some of the studies also compared performance with other methods of
machine learning. The details of these systems go beyond the scope of this
report, so we can just note that none of them showed significantly better
results than ANNs.

4.3.2 Larsen: Automatic Stock Trading Based On Technical
Analysis

Larsen[12] implemented a neural network forecasting model using a novel
approach which was not considered in the review by Huang et.al. His
approach is based on a so-called agent architecture.

In this system, the raw time series is analysed using heuristically defined
methods that are based on methods from technical analysis (as discussed in
chapter 3). Each technical analysis method (e.g. moving averages) is imple-
mented as a separate agent, which makes the necessary computations and
produces an enumerated rating indicating either a buy recommendation, a
sell recommendation, or a neutral rating of the stock being analysed.

In addition to this set of technical analysis agents, he defined a set of
aggregate agents which used various machine learning methods in an at-
tempt to learn the most efficient utilisation of the technical analysis signals
taken in combination. The learning algorithms he used include a simple
voting classifier, a voting classifier trained with a genetic algorithm, two
different decision trees, and finally an ANN classifier.

Each of the aggregate agents were trained and tested individually, on the
same training and simulation data, before the results where compiled. His
measure of performance was a simulated portfolio which bought and sold
the stock whenever a buy or sell rating was produced. The best performing
aggregate agent turned out to be one of the voting classifiers, while the
ANN-based agent had mixed results in the various tests.

The Krang system, which is described in chapter 5, uses a similar ar-
chitecture to the TA-based agent design introduced by Larsen. But while
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the two implementations share a lot in common (particularly Larsens ANN
aggregate agent), there are still considerable differences between the two.
Some of these differences arise from several observed weaknesses in Larsens
system which the Krang system tries to avoid. Some of the main problems
witnessed are:

� Larsen exclusively uses daily candlestick data. This makes it hard for
his system to make observations in different time scales (both longer-
term views and intraday). It would certainly be interesting to see
if this type of system could be used for intraday trading, which is
what a lot of the proprietary systems (HFTs in particular) seem to
specialize in.

� His agents can only produce three different signals: buy, sell or neu-
tral. This makes it simpler for algorithms like decision trees to use the
agents, but for ANNs there is no good reason not have a non-discrete
rating system in which each signal carries more information (so it
could at least differentiate between e.g. a “weak buy” and “strong
buy” signal).

� Every prediction in his system is always for the next day, while a
real life chart analyst would be more likely to produce predictions for
different time horizons.

� The performance measure he uses, with a simple single stock portfolio
simulation, is rather crude. There are many trading strategies one
could think of in using the signals for trading the stock (e.g. using
mechanisms like stop-loss, where there is a limit to how much a single
trade can lose). There may even be better ways of measuring the
predictive power of the generated predictions which avoid simulated
trading altogether.

� While it is indeed interesting to compare the effectiveness of different
machine learning algorithms, one might wonder if better performance
could have been attained from any individual method if there was
a more concentrated effort in that implementation. The ANN agent
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in particular has been given little focus in the report, compared to
some of the other methods. This can be taken to indicate that the
same was true for the implementation phase of his research, and that
better performance could have been achieved from the ANN if more
effort had been put into e.g. finding an optimal network structure.
This is also supported by the fact that he doesn’t mention having
used validation sets like Huang et.al.[9] recommend for selecting ANN
architecture (as mentioned on page 45).

4.3.3 Using ANNs For Pattern Recognition In Financial
Time Series

A big challenge in making an automated technical analysis system is finding
a way to reliably identify trend reversal patterns such as the head and
shoulders pattern. While the presence of such patterns are often obvious
for a person looking at a chart, this type of classification is notoriously
tricky to implement heuristically in a computer algorithm.

Because ANNs have been applied with great success to problems like fea-
ture recognition in photographs (e.g. for recognizing faces[17]), one might
think that they could be equally efficient for time series pattern recognition
(as those problems are structurally similar).

Indeed, there does exists some prior research in this area. Zapranis and
Samolada[18] outlined a method for implementing an automated ANN-
based recognizer of the head and shoulder pattern. Aamodt and Larsen
[1] tested this approach with somewhat promising initial results. Still, the
problem of finding a good set of example patterns with which the networks
can be trained and tested properly remains a big challenge.



Chapter 5

The Krang System

5.1 Introduction

The Krang system is a computer program that was developed for the pur-
pose of this report. The primary aim of Krang was to enable the creation,
training and testing of ANNs that are able to predict the fluctuations of
financial time series with some degree of precision and reliability.

Inspired by the approach of Larsen[12], which was described in section
4.3.2, the system uses techniques from technical analysis to guide the ANNs
in their forecast computations. The way this is implemented is principally
similar to his agent architecture.

Krang was developed with Microsoft Visual C++ 2008. It uses libraries
that are native to the Windows operating system, so the code is not cross-
platform compatible. As a digression, it bears mentioning that the name
of the application was inspired by a famous comic book supervillain.

5.2 System Overview

This section is intended to give a brief overview of the various components
of the Krang system and how they interact.

49



CHAPTER 5. THE KRANG SYSTEM 50

5.2.1 The Agents

One of the main components of the Krang system is its set of agents, each
of which uses a different aspect of technical analysis to evaluate the price
curve. The implementation of this analysis is defined heuristically based
on recommendations from technical analysis literature. The result of the
analysis is stored as a signal value, which is a decimal number between -1.0
and +1.0. A negative value is taken to mean that a bearish observation
was made, and likewise a positive value means a bullish observation. If
the conclusion of the analysis was neutral or undecided, the signal is set to
zero.

More detailed descriptions of each agent in Krang can be found later in
this chapter, in section 5.3.

5.2.2 The ANN

The other major component of Krang is its neural network module. Every
time the Krang application is launched, a single ANN is instantiated, either
through creation of a new network (for the purpose of training) or by loading
a previously trained network from disk (for the purpose of testing).

Every ANN used by Krang is configured externally in an XML file,
which specifies structure of the input layer, the hidden layer(s) and the
output layer. The format of these XML files are described later in this
chapter (section 5.4.2).

Input Layer

The input layer of the ANN contains a set of neurons, each corresponding
to one agent. The amount of neurons, and what agent each of them should
use, is configured in the ANN configuration file.

Hidden Layers

The ANN created by Krang can have an arbitrary number of hidden layers,
with an arbitrary number of neurons in each of them.
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Output Layer

The output layer of the ANN holds the predicted price changes of the stock,
for various future times. Each output neuron is assigned one time duration,
which decides how far into the future its prediction should be for (e.g. 10
minutes, 1 hour, 1 day or 1 month). So if an output node assigned to 2
hours holds the value −0.015, then we can read that as a prediction that
the price will change by -1.5% over the next two hours.

Typically we will only have a single neuron in the output layer of the
ANN, but Krang nevertheless supports several.

5.2.3 Training Parameters

When training the network, we first have to set two parameters for the
backpropagation training algorithm. These are the learning rate and the
training momentum parameters. Both of these values have to be set some-
where in the range 〈0, 1〉.

The learning rate describes how much each training example is allowed
to affect the connection weights. A lower value means that weights are only
changed slightly, while a larger value means that weights change consider-
ably.

If the training momentum is non-zero, the change in the connection
weight on one iteration will depend slightly on not only that example, but
also how much it changed in the previous iteration. This way, the delta of
change in the connection weights are somewhat smoothened over time.

There is no general formula for finding good values of the learning rate
and momentum. The normal approach is simply a process of trial and error.

5.2.4 The Simulation Loop

When the Krang application is launched, it begins by loading its configu-
ration parameters from an external XML file. These parameters describe
what simulation data should be used (i.e. which stock and over what time
period), whether the simulation is for testing or training the ANN, and
what ANN to use. Once these parameters are parsed and the simulation
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environment has been initialized accordingly, Krang enters into its simula-
tion loop.

The simulation trade data is a list of every trade that took place in the
specified time period for the stock (specified by time, price and volume).
Starting from the beginning of this list, the simulation begins iterating and
step-by-step produces a candlestick series with 1-minute intervals that we
will refer to as the atomic candlestick series. Every time a new candlestick
is added to the atomic series, all the agents re-analyse the data and update
their signals. Once this is done, the ANN is updated with the new signals.

It’s worth noting that in early versions of Krang, the simulation loop
was designed without the concept of an atomic candlestick series, and so
everything (the agents and the ANN) was updated on every trade (instead
of on every minute passed). It quickly became apparent that this was not
a good solution, for several reasons. One problem was that some of the
stocks have such a high number of trades (over a million per year in some
cases) that updating all the agents and the ANN with each trade simply
took too much time. Also, when keeping record of the generated ANN
predictions, it is much easier to generate meaningful statistics from them if
they are sampled at uniform time intervals (i.e. 1-minute) than sporadically
(whenever trades might occur). Both of these issues are resolved by having
the atomic candlestick series.

The process flow of a Krang simulation is summarized in figure 5.1.
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Initialization:
� Load the trades for the specified stock and time period.

Training only:
� Create a new ANN with the specified architecture.
Testing only:
� Load a previously trained ANN.

� Instantiate all the agents that are required by the ANN.

Loop:
� Generate the next atomic candlestick (using the trades that occur in

the time interval it represents).
� Update all the agents.
� For every output node in the ANN, peek ahead in the trade data to

see what the correct prediction would be.
� Load the agent signals into the input layer.

Training only:
� Set the output layer nodes to their correct predictions.
� Run the training algorithm (i.e. backpropagation).
Testing only:
� Run the network so all the neurons get updated.
� Log the computed forecasts from the output layer, and their

error.
� If there are no more trades, the simulation ends. Otherwise, run the

loop again.

Figure 5.1: Process flow description for Krang simulations
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5.3 The Agents

This section provides a detailed description of all the agents that were
implemented in the Krang system. As mentioned earlier, each agent uses a
different method of technical analysis to generate a signal value from -1 to
+1, indicating whether it perceives a positive or negative bias on the stock
price.

5.3.1 The SPSupportAgent

The SPSupportAgent uses the peaks and troughs (swing points) of the
price curve to look for support/resistance levels, in a way similar to that
described in section 3.1.

To identify the swing points on a curve, an algorithm was implemented
which analyses the back of the curve and stores a swing point any time
a swing has been made greater than a given threshold (e.g. 15%) in the
opposite direction of the previous peak/trough. This algorithm was imple-
mented in the separate support class SwingPointVector, which is used by
this and several other agents to identfy the swing points of the curve.

On every update, the agent looks at the past few swing points and tests
to see whether the price curve is currently approaching one of these levels.
If one of these levels are being approached from below, the agent generates
a negative signal (expecting resistance). If a level is being approached from
above, the agent generates a positive signal (expecting support).

5.3.2 The TrendLineAgent

The TrendLineAgent uses the swing points of the curve to try and identify
potential support or resistance trendlines, as described in section 3.1.

The heuristic of this agent calculates the line extended from the last
two peaks and last two troughs and tests too see whether the price curve
is approaching either of these lines. If the agent is approaching support, a
positive signal is generated. If it’s approaching resistance, a negative signal
is generated.
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5.3.3 The MATrendAgent

The MATrendAgent is an agent class which was implemented so as to pro-
duce signals based on the trend classification methods outlined in section
3.2.3.

To calculate the moving average, the support class MovingAverageTransform
is used, which computes and stores a simple moving average of the candle-
stick series. On every iteration of the simulation loop, the moving average
is updated to reflect the latest trade information.

The MATrendAgent combines three such moving averages of different
interval sizes (e.g. 20-day, 15-day and 10-day). It’s resulting agent sig-
nal value (in the range [−1.0,+1.0]) depends on whether the stock is in a
downtrend (negative value) or uptrend (positive value).

The classification is based on a comparison of the three moving averages.
Let’s denote the longest average by the variable L, the shortest average as
S and the middle average as M . The trend classification heuristic makes
the following comparisons to determine the signal value:

� If L > M > S, then the stock is in a clear downtrend, and the value
is −1.0.

� If L < M < S, then the stock is in a clear uptrend, and the value is
+1.0.

� If none of these holds, we check whether L > M , L > S and M > S.
If two of these three conditions are true, we classify an uncertain
downtrend, with value −0.5. If not, we classify and uncertain uptrend
with value +0.5.

� If the moving averages are exactly equal (extremely unlikely), the
returned value is 0.0.

5.3.4 The MASupportAgent

The MASupportAgent uses a moving average to look for support or resis-
tance levels on the curve. As discussed in 3.2.3, the general idea is that
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when the candlestick series approaches the moving average, it will tend
to encounter some resistance (if approaching from below) or support (if
approaching for above).

The agent is configured with a moving average of a given time horizon,
as well as a proximity threshold (given as a percentage) of how close the
curve has to be to the moving average for the classification to work. The
actual heuristic used to calculate the signal value is a little too involved
to be described in full detail. One thing it does is look back a certain
amount of candles to check that the moving average was not already pierced.
A negative signal is then generated if it is determined that the curve is
approaching from below (and we expect the moving average to provide
resistance), and the signal is positive if the curve approaches from above
(for support).

5.3.5 The RSILevelAgent

The RSILevelAgent is based on the RSI of the price curve, as discussed in
section 3.4. This agent computes the RSI (using the RSITransform support
class) and generates its agent signal based on whether the RSI is found to
be in oversold or overbought territory.

The heuristic which generates the signal is quite simple. If the RSI is
found to be greater than 70, a positive signal is produced in linear pro-
portion to how much the RSI exceeds this threshold. A negative signal is
produced in the same manner when the RSI is below 30.

5.3.6 The RSIDivergenceAgent

The RSIDivergenceAgent is also based on the RSI, but this agent uses the
somewhat more sophisticated approach of looking for divergences between
the RSI and the price curve (see p. 3.4.1).

The agent computes the RSI series and identifies the swing points (peaks
and troughs) of the curve. It then compares the peaks and troughs of the
RSI with the peaks and troughs of the candlestick series. If the price curve is
found to make successively higher peaks while the RSI makes successively
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lower highs, a negative signal is produced by the agent. Oppositely, a
positive signal is produced if the price curve makes lower troughs while the
RSI makes higher troughs.

The agent is configured with an RSI series (typically 14-day), and a
swing point identification threshold.

5.3.7 The FibonacciAgent

The FibonacciAgent is based on the principle of Fibonacci retracements,
which was discussed in the context of Elliot Wave Theory in section 3.5.1.
To generate its signal, the agent computes the difference between the previ-
ous peak and trough of the price curve, and calculates the appropriate sup-
port/resistance levels using the Fibonacci retracement ratios (0.236, 0.382,
0.500, 0.618 and 1.0). Some of these ratios are given a higher weighting
than others (e.g. the golden ratio of 0.618 is seen as more significant than
0.236). Whenever the curve approaches one of these levels, a signal is gen-
erated based on whether the level acts as resistance (negative signal) or
support (positive signal).

5.3.8 The VolumeAgent

The VolumeAgent analyses the PVO (section 3.6) and compares it to the
current trend of the price curve (which is classified by comparing moving
averages).

If the PVO is positive, a signal is produced in proportion to the PVO.
If the curve is in an uptrend, the signal is positive, and oppositely negative
for a downtrend. If there is no clear trend, or the PVO is negative, the
signal is set to 0.

The agent is configured with two interval counts, one for each of the
volume moving averages that are used by the PVO.

5.3.9 The DoubleTopAgent and DoubleBottomAgent

The DoubleTopAgent and DoubleBottomAgent look for the occurence of
either double top- or double bottom trend reversal patterns, respectively.
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This is done heuristically by testing for a prior trend and analysing the three
latest swing points of the curve to see if they fulfill the required features of
these patterns, as described in section 3.3.

During preliminary tests, it was observed that the patterns were recog-
nized too rarely by these agents for them to be of any particular use in the
ANN training process. It may be that the heuristics used were too strict in
how they tested for the required properties of the patterns. Using pattern
recognition ANNs (as mentioned in section 4.3.3) might have been a better
way to go about this problem.

5.4 Using Krang

In this section, the Krang interface is introduced. We will start by looking at
the various graphical components of Krang and how they can be intepreted
and manipulated to obtain information about a simulation. Next we will
describe how simulations can be configured and customized.

5.4.1 The Graphical Interface

When the Krang application is launched, it automatically reads the param-
eters of the simulation to be performed from a configuration file and runs
the simulation. During (and after) the simulation, three main windows are
displayed with various controls and information. The overall view looks
something like the screencap in fig. 5.2.

The Status Dialog

The top left window is the status dialog. This window contains messages
from the core engine of the simulations, as well as a progress bar indicating
approximately how much of the simulation is done (and how much is left).
It also has button controls to pause, resume and exit the simulation.
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Figure 5.2: The three main windows in the Krang application

The Simulation Data Window

The top right window primarily displays the trade information processed
by the simulation. Every candlestick series (e.g. hourly, daily) used in the
simulation can be selected from the “Series” menu. The selected series is
displayed in the main area of the window.

In the lower part of this window is the companion plot of the candlestick
series. The default display is the volume, but you can also select the various
technical analysis agents that are active in the simulation. This plot will
then display the signal generated by the agent (vertically synchronized to
the candlestick series above). In figure 5.3, the signals generated by a
VolumeAgent are displayed in the companion plot.
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Figure 5.3: The simulation data window, displaying a daily candlestick
series (above) and the signals generated by a VolumeAgent (below)

At the bottom of the window is a scrollbar that can be used to browse
the available history of the data. When you move the mouse over the
window, the information text changes to describe whatever time interval
you’re currently hovering.

The ANN Window

The bottom of three windows in fig. 5.2 is the ANN window. This window
displays the structure of the neural network, with each neuron drawn as a
separate numbered circle. Below this graph, the current activation value
in each neuron is listed. For neurons in the input layer, the corresponding
agent class is listed next to its number. For neurons in the output layer,
the time length of the neuron is displayed.

As you can see, the simple ANN in 5.2 consists of 4 neurons; 1 in the
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input layer, 2 in the single hidden layer, and 1 in the output layer. The input
neuron is connected to the VolumeAgent, and at this particular instant of
the simulation, that agents signal is equal to 0. The output neuron holds
the networks predicted values for 48 hours into the future.

The Simulation Statistics Log

When a simulation has finished, Krang displays the results of the sessions
in a new window. When the simulation is for training an ANN, the mean
squared error of the network on the training data is displayed. When
the simulation is for testing a previously trained ANN, more sophisticated
statistics are computed to evaluate network performance. These statistical
values are described in the next chapter (section 6.3).

5.4.2 Configuration

As previously mentioned, Krang simulations are configured through exter-
nal XML files. XML files are normal text files that encode data following
a well-defined format[21], which allows the data to be interpreted easily by
both computers and humans.

The Simulation Configuration

When the Krang application is executed, it starts with reading the param-
eters of the simulation configuration file. This file contains the following
information:

� The simulation type, which can be either “training” or “test”.

� What data the simulation should use. This includes the ticker symbol,
and the range of dates for which data should be loaded.

� The name of the neural network. The actual network configuration
is loaded from another XML file with this name (e.g. if the name is
“MyANN”, then Krang will look for the file “MyANN.xml” for the
ANN configuration).
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Figure 5.4: An example simulation configuration

� Configuration parameters for the training algorithm. This includes
the learning rate and momentum.

� A boolean “load” parameter indicating whether Krang should try to
load previously trained connection weights before training. If this is
set to “false”, the connection weights are initially randomized.

An example of how this file might look is given in fig. 5.4. In this
example, the simulation will perform network training on a network named
“testann”, with data from the “DNBNOR” stock in the time period 2003-
2005. Krang will attempt to load previously trained connection weights for
“testann” before training.

The ANN Configuration

The configuration file for a neural network contains the following informa-
tion:

� A list of agents for the input layer.

� A list of hidden layers, and their sizes.

� A list of prediction time frames for the nodes in the output layer.

An example of an ANN configuration file is given in fig. 5.5. This net-
work contains four agents: two MATrendAgent’s), and two MASupportAgent’s.
Further, there are two hidden layers, with sizes 4 and 3. The output layer
contains two nodes: one for making 2-hour predictions and one for making
24-hour (i.e. 1-day) predictions.
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Figure 5.5: An example ANN configuration

5.4.3 Simulation Data

The stock price data used by Krang in its simulations is loaded from an
external file based on the ticker symbol and date range given in the simu-
lation configuration. The data files contain a binary array of trades, each
trade an instance of the following C-structure:

struct Trade {

time_t time ; // 64-bit POSIX time

double price ;

unsigned long volume ;

} ;

For anyone reading this report with the intent of utilizing the Krang
system with custom data, just make sure it’s prepared as an array of such
structures and Krang should be able to make use of it. The filename should
be the stock ticker and the file extension should be “.DAT” (e.g. the trade
data of the stock DNBNOR should be stored in the file “DNBNOR.DAT”).

Data Filtering

When Krang has finished reading the trade data, the first thing it does is
to filter it for irregular trade records (so-called “blips”), that might have
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occured because someone entered an incorrect order to the exchange (or
due to some other error). This filtering is performed by iterating the trade
data from beginning to end, and for every trade with a price which deviates
more than some threshold (say, 20%) from the trades surrounding it (before
and after), that trade is removed.



Chapter 6

Simulations

The purpose of this chapter is to describe how the Krang simulations were
set up in order to generate the results which are presented in the following
chapter. We begin by discussing the data that was used to train and test
the ANNs. Next, we describe how the ANNs were designed and trained.
Lastly, we discuss what tests will be performed, and introduce the various
performance measures that are used to evaluate the ANNs.

6.1 Simulation Data

The data used for the simulations described in this report consists of records
of every trade that occured in 10 separate stocks traded on the Oslo Stock
Exchange (OSE) from January 1st 1999 to January 1st 2009. The data was
procured from the OSE upon request. They agreed to release the data for
a small fee (to cover the work expenses they incurred when extracting and
transferring the data). We also had to sign a contract stating that we would
not release the data publicly. The stocks for which data was procured are
summarized in table 6.1.

The data received was separated into several text files, one for each
year. Each row in the text file contained information about one trade (the
ticker symbol of the stock, the exact date and time the trade took place,
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Company Ticker Trades 1999-2009

DnB NOR DNBNOR 1,787,879
Frontline FRO 1,500,879
Golden Ocean GOGL 1,087,206
Jinhui JIN 524,701
Norwegian NAS 81,220
Norsk Hydro NHY 2,965,536
Orkla ORK 1,776,054
Storebrand STB 1,017,696
Yara YAR 2,079,704

Table 6.1: Overview of the 10 stocks which are used in the simulations.

the price of the trade and the number of stocks that was traded). The data
was translated to the binary format described in section 5.4.3 so that it
could be utilized by the Krang system.

6.2 Test Plan

While the Krang system has the capability to use the same ANN for several
simultaneous predictions over different time horizons, it was decided that
the empirical evaluations should focus on ANNs that only make a single
prediction (i.e. output layer node). This is because finding an optimal
network for a single output node is easier than for several, and this approach
therefore seems the most likely to succeed.

The empirical testing will be performed on 4 different ANNs, each with
a different configuration of agents for the input layer, different hidden layer
structures, and most importantly different time frames for price predictions
in the output layer node. The different prediction time frames that will be
tested are: 1 week, 2 days, 2 hours, and 30 minutes.
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6.2.1 Network Design Phase

For each network, a preliminary design phase will be carried out in which
the input- and hidden layer configurations are tweaked to give the best
possible network performance on the stock data from January 1st 1999 to
January 1st 2003. The data for this period has been reserved specifically
for this purpose, so that we can test the resulting network arhcitectures on
the rest of the data, for which they haven’t been specifically tweaked. This
allows us to evaluate the performance of the networks with good scientific
rigour.

The most optimal ANNs configurations that are obtained from this
process are stored so they can be used in the empirical testing phase. Note
that the trained connection weights of the networks are reset to random
values after this process, so it’s only the configuration of the input layer
agents and number of nodes in the hidden layer(s) that are stored at this
point.

6.2.2 Empirical Test Phase

In order to evaluate the performance of each ANN, training and testing on
the data from 2003-2009 will be performed as follows:

� Initially, the connection weights in the ANN are randomized to small
positive values in the range 〈0.005, 0.020〉.

� The network is then trained on the data from 01/01/2003→ 01/01/2005,
and this is repeated until no improvement is seen in the mean squared
error over the same data.

� The network is subsequently tested on the data from 2005, and the
evaluation results are recorded.

� The network is then retrained on the data from 01/01/2004→ 01/01/2006,
and tested on the data from 2006.

� This process of retraining and testing is repeated in one year incre-
ments until the network has been tested on the 2009 data.
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This process is carried out twice for each network, using data from two
of the available stocks (picked arbitrarily).

The reason why training and testing is to be carried out in a cyclical
fashion of one year increments, and not just in a single iteration, is to
compensate for Walczak’s Time Series Recency Effect (see section 4.3.1).

6.3 Performance Evaluation

In order to assess the predictive performance of the predictions generated
by the ANNs, we need to have some accumulative measure of how well the
individual predicitions tend to match the actual development of the stock
price. There are two main types of evaluations that can be used for this
purpose. One is to use the ANN price predictions to somehow simulate
trading in the stock and then record the profit or loss that is obtained.
The other way is to record the predictions and compare them to the actual
evolution of the price curve using statistical analysis.

6.3.1 Simulated Trading

Larsen[12], who had a conceptually similar system to Krang, used the bi-
nary buy/sell signals generated by his system to simulate a trading position
in which he bought and sold the stock continuously according to the signals.
To evaluate performance, he then recorded the accumulated yield that was
achieved from the beginning of the simulation to the end.

A problem with this approach is that there are nearly countless con-
cievable strategies that could be used to trade based on the signals. For
example, should we allow for short positions? Should the available capi-
tal always be invested fully in the stock, or should the size of the position
change gradually? Should we allow for leverage (i.e. borrowing money so
we get position sizes over 100%)? Should there be some type of stop-loss
mechanism with each trade?

Another issue that should be considered is that poor predictions early
on in such a simulation tend to adversely affect the yield, even if the per-
formance was better for the majority of the simulation. To take an extreme
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example; if the position loses 60% in the first month of the simulation, but
then rises 100% the following year, it will still be counted as a poor per-
formance (20% loss) even though the individual predictions may have been
correct for the majority of the time.

6.3.2 Statistical Analysis

Most other researchers that have tried to apply ANNs for financial time se-
ries forecasting seem to have opted for the second type of performance eval-
uation; statistical analysis. This is evidenced by Huang et.al.’s review[9], in
which all the cited research used at least one statistical measure, with only
one out of the 11 papers reviewed having performed any form of trading
simulation (it also used statistics).

Because of the problems already mentioned with simulated trading,
and the fact that statistical analysis seems like standard way to evaluate
performance, it was decided that the Krang simulations should also use
statistical analysis as its primary way to measure performance.

During a simulation, Krang records the predictions of the ANN at 1-
minute intervals along the financial time series. With every prediction, it
also records what the correct prediction would be at that point by peeking
ahead in the simulation data. When the simulation is over, it then has two
sets of data points that form the basis of the analysis: the actual time series
values X and the predicted values Y . Three separate statistical coefficients
are calculated based on this data: the average error, the hit rate, and the
Pearson correlation.

Average Error

The average error is calculated by taking the average of the absolute error
in each prediction yi ∈ Y . Given that the number of recorded predictions
is |Y | = |X| = N , this value is calculated using the formula:

err =
1

N

N∑
i=1

|yi − xi| (6.1)
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The average error is interesting because it gives a very direct measure of
what scale of error we should expect for any given prediction. We could’ve
instead used the (more common) standard deviation, which is based on
a similar principle, but the average error is somewhat easier to interpret
directly.

The Hit Rate

The hit rate measures the tendency for a prediction yi and the correspond-
ing time series value xi to have the same sign (+ or -). To formulate this
mathematically, we must first define the binary hit function as follows:

hit(x, y) =

{
1 , x and y same sign
0 , x and y opposite sign

Using this function, we can write out the formula for the hit rate as
follows:

r =
1

N

N∑
i=1

hit(xi, yi) (6.2)

Put in other words, the hit rate is simply the fraction of the predictions
that have the correct sign.

If the predictions were truly random, or there was no real correlation to
the curve, we would expect the hit ratio to hover around the 50% level. So
in the empirical results, we should hope to see hit rates significantly and
consistently above that level in order to confirm predictive performance.

Pearson Correlation

The Pearson correlation factor is a standard statistical measure of how
well two separate data series’ tend to correlate; in the context of these
simulations, we can think of it as the tendency for the predicted time series
to move in the same direction as the actual time series (and at the same
rate). This is probably the most important of the three measures because
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Figure 6.1: Scatter plots for two data series and the corresponding Pearson
correlations

it gives a very direct and unbiased measure of whether there is a definite
relationship between the predicted and actual values or not.

The correlation factor for X and Y , ρX,Y , is directly related to their
covariance:

cov(X,Y ) =
1

N

N∑
i=1

(µX − x)(µY − y)

ρX,Y =
cov(X,Y )

σXσY
(6.3)

(Using standard statistical notation, µ here denotes expected value and
σ is standard deviation.)

The Pearson correlation coefficient will always lie in the interval 〈−1,+1〉.
Figure 6.1 shows how the various ranges can be interpreted. In general, a
highly negative value means there is some inverse relationship between the
two series (i.e. they move in separate directions). A highly positive value
means that there is a linear relationship. A value close to zero means that
there is no relationship, and that the two series are uncorrelated. As such,
we should see values of ρ signficantly higher than zero from the Krang
simulations if our ANNs work as we would hope.

Filtered Statistics

It would be interesting to see if the predictions of the ANNs are more
reliable when they are significantly higher or lower than average. In other
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Figure 6.2: Example of predictions from a 2-hour ANN

words, we would like to find out if there is more reason to put trust in a
prediction of, say, 4% rise than a prediction of 1% rise.

To do this, we generate a separate set of predictions Y ′ ⊂ Y by first
calculating the average absolute value of all predictions y ∈ Y and only
picking out those predictions with greater absolute value than the average
into Y ′. The actual time series values for the predictions in Y ′ are selected
into X ′ ⊂ X.

We then substitute Y → Y ′ and X → X ′ and recalculate the average
error err, the hit rate r and the Pearson correlation coefficient ρ as before.

If the hypothesis is correct, and there is a genuinely higher predictive
performance for higher absolute predictions, we should expect to see this
reflected in these variables (especially the hit rate and correlation). We
might still expect a higher average absolute error though, simply because
the predictions are known to be higher on average.

Example Calculation

To further illustrate how the statistics generated by Krang work, let us
consider a simple example of how they are calculated.

Consider an ANN trained to make 2-hour predictions, being tested on
the intraday chart in figure 6.2. The Krang simulation samples new fore-
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Time Predicted 2-hour change Actual 2-hour change

10:00 131.45→ 131.65(+0.15%) 131.45→ 130.80(−0.49%)
12:00 130.80→ 130.20(−0.46%) 130.80→ 131.05(+0.19%)
14:00 131.05→ 131.25(+0.19%) 131.05→ 131.00(−0.04%)
16:00 131.00→ 130.50(−0.48%) 131.00→ 129.20(−1.37%)

Table 6.2: Sampled predictions from the example ANN

casts every minute, so there would normally be over 500 separate predic-
tions recorded just for this day. To keep the calculations manageable, we
will only sample four predictions in our example.

The sampled predictions are highlighted in red. We see that at 10:00
this ANN predicts the price to go slightly up in the next two hours. At
12:00, the ANN predicts the price to go slightly down in the next two
hours, and so on. The four sampled predictictions and the corresponding
price changes that actually occured, are listed in table 6.2.

We see that in this example, the ANN only had one prediction with
the same sign as the actual change (sampled at 16:00). The hit rate r is
therefore:

r =
1

4

4∑
i=1

hit(yi, xi)

=0.25× [hit(0.15%,−0.49%) + hit(−0.46%, 0.19%)

+ hit(0.19%,−0.04%) + hit(−0.48%,−1.37%)]

=0.25× (0 + 0 + 0 + 1) = 25%

It is also trivial to compute err (the average error) for this example.
Simply taking the average absolute difference between the predicted and
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actual changes, we get:

err =
1

4

4∑
i=1

|yi − xi|

=0.25×
(
|0.15%− (−0.49%)|+ |(−0.46%)− 0.19%|

+ |0.19%− (−0.04%)|+ |(−0.48%)− (−1.37%)|
)

=0.25× (0.64% + 0.65% + 0.23% + 1.85%) = 0.84%

This means that the predictions were wrong by 0.84% on average.
Computing the Pearson correlation is a bit more involved (especially

since we first need to find the mean and the standard deviation of both the
predictions and actual changes). Writing out all the steps in these calcu-
lations seems a little tedious, but based on the two previous examples you
have hopefully understood how the sample predictions and actual changes
are put into the formulas.

Putting the predicted and actual changes of table 6.2 into formula 6.3,
we compute the covariance to be ∼ 0.058 and subsequently the Pearson
correlation around ∼ 0.2 (these calculations were performed in Microsoft
Excel).

The Pearson correlation is actually of somewhat limited analytic value
when working with such a low amount of data points. As was already
mentioned, this example has only four sampled values, while a Krang simu-
lation running over a year will generally sample well over 100,000 separate
predictions.
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Results

Each of the four ANNs were first designed individually. This design process
was described in section 6.2.1. The resulting network architectures are
described in some detail for each of the networks below.

After the design phase, the empirical simulations were carried out ac-
cording to the test plan (section 6.2.2). For each test simulation, filtered
and unfiltered values of the average error (err), the hit rate (r) and the
Pearson correlation factor (ρ) where computed and recorded. They are
presented for each of the ANNs below.

7.1 The 30-Minute Prediction ANN

7.1.1 Network Architecture

Finding a good network structure for the 30-minute ANN proved very
tricky. After a lot of experimentation, it was concluded that the num-
ber of inputs should be kept few and simple. Factors like RSI seem to have
little consequence on this short term scale.

There where four agents that were used for the input layer. Three of
these where MATrendAgent’s, using different time frames for classifying the
current trend. The last agent was an SPSupportAgent, with a swing point
threshold of 8%. The single hidden layer of the ANN had only three nodes.
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Unfiltered Filtered
Year ρ err r ρ err r

2005 -0.009173 0.003529 0.5841 -0.04007 0.004654 0.5795
2006*
2007 -0.02801 0.003927 0.478 -0.03144 0.004194 0.4829
2008 -0.01809 0.01077 0.4789 -0.0162 0.01081 0.4601

Table 7.1: Results for the 30-minute ANN with NHY stock data

Unfiltered Filtered
Year ρ err r ρ err r

2005 0.1138 0.003222 0.5873 0.1557 0.003576 0.6589
2006 0.02204 0.01044 0.3325 0.02056 0.01399 0.3282
2007 0.0505 0.003229 0.4584 -0.0325 0.003719 0.4412
2008 -0.01688 0.008003 0.4949 0.02262 0.009915 0.4775

Table 7.2: Results for the 30-minute ANN with DNBNOR stock data

The learning rate was configured relatively high compared to the train-
ing momentum when performing training on this ANN. The values used
were 0.6 for the learning rate and 0.1 for the momentum.

7.1.2 Empirical Results

The simulations of the 30-minute ANN were carried out with the stocks
NHY and DNBNOR. The results are listed in tables 7.1 and 7.2, respec-
tively. Note that no data was generated for NHY in 2006, since the company
underwent structural changes leading to a sudden drop in 90% of the stock
price, making the data useless for testing.
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Unfiltered Filtered
Year ρ err r ρ err r

2005 0.0845 0.003521 0.5243 0.08073 0.00396 0.5238
2006 0.0434 0.00304 0.5084 0.08152 0.003702 0.5323
2007 -0.0215 0.004025 0.4878 -0.03101 0.003229 0.457
2008 0.03989 0.007747 0.4948 -0.01056 0.006032 0.5011

Table 7.3: Results for the 2-hour ANN with DNBNOR stock data

Unfiltered Filtered
Year ρ err r ρ err r

2005 0.07532 0.002316 0.5452 0.0421 0.002091 0.5331
2006 0.03912 0.002044 0.5335 0.01334 0.002267 0.5543
2007 -0.0152 0.003955 0.4993 0.02893 0.004561 0.4876
2008 0.02285 0.003099 0.5359 0.01404 0.003448 0.5044

Table 7.4: Results for the 2-hour ANN with STB stock data

7.2 The 2-Hour Prediction ANN

7.2.1 Network Architecture

For the 2-hour ANN, the same network architecture was used as with the
30-minute, with the addition of one FibonacciAgent in the input layer.
The learning rate was lowered slightly to 0.5 while the momentum was held
at 0.1.

7.2.2 Empirical Results

The simulations of the 30-minute ANN were carried out with the stocks
DNBNOR and STB. The results are listed in tables 7.3 and 7.4, respectively.
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7.3 The 2-Day Prediction ANN

7.3.1 Network Architecture

In the 2-day ANN, a total of 12 agents were employed for the input layer.
They are summarized in the following list:

� Two MATrendAgent’s; one for a longer term trend classification, and
one for the shorter term.

� Two MASupportAgent’s using the 20-day and 10-day moving averages
to check for support/resistance levels.

� Two SPSupportAgent’s, with either 20% or 10% swing point identi-
fication threshold.

� Two TrendLineAgent’s, using either a 20% or 10% swing point iden-
tification threshold to find the points that (potentially) form trend
lines.

� One FibonacciAgent, using a 20% swing point identification thresh-
old.

� One RSILevelAgent, using a 14-day RSI.

� One RSIDivergenceAgent, also using a 14-day RSI.

� One VolumeAgent, with a percentage volume oscillator (PVO) con-
figured with a 5- and 15-day volume moving average.

The hidden layer was configured to hold 8 neurons. The learning rate
was set to 0.3 and the training momentum was set to 0.65.

7.3.2 Empirical Results

The 2-day ANN was tested with DNBNOR and FRO stock data. The
results are given in tables 7.5 and 7.6
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Unfiltered Filtered
Year ρ err r ρ err r

2005 0.1268 0.01732 0.5905 -0.0005475 0.02471 0.5844
2006 0.1276 0.02285 0.5154 -0.1019 0.03676 0.5774
2007 0.1154 0.02081 0.5023 0.06694 0.02732 0.5300
2008 0.0511 0.03834 0.5557 0.07032 0.04205 0.5392

Table 7.5: Results for the 2-day ANN with DNBNOR stock data

Unfiltered Filtered
Year ρ err r ρ err r

2005 0.02923 0.02481 0.5288 -0.04628 0.02437 0.5346
2006 0.04022 0.03581 0.5394 0.08343 0.04770 0.5647
2007 0.09320 0.04526 0.4438 -0.03201 0.05922 0.4479
2008 -0.008395 0.04454 0.5063 0.006213 0.06108 0.5439

Table 7.6: Results for the 2-day ANN with FRO stock data

7.4 The 1-Week Prediction ANN

7.4.1 Network Architecture

The 1-week ANN used a similar input layer architecture as the 2-day, with
the agent parameters adjusted so that the agents took a slightly longer
term view than before. The hidden layer size and the learning and moment
rates where kept the same as for the 2-day.

7.4.2 Empirical Results

The 1-week ANN was tested with DNBNOR and JIN stock data. The
results are given in tables 7.7 and 7.8.
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Unfiltered Filtered
Year ρ err r ρ err r

2005 0.1179 0.01496 0.606 0.3656 0.01712 0.5464
2006 0.1684 0.02102 0.46 0.1337 0.01462 0.5213
2007 0.01635 0.02129 0.4827 0.05191 0.02021 0.4871
2008 -0.01921 0.07115 0.5797 -0.01946 0.07525 0.5692

Table 7.7: Results for the 1-week ANN with DNBNOR stock data

Unfiltered Filtered
Year ρ err r ρ err r

2005 0.03296 0.06152 0.5957 -0.05932 0.06204 0.5928
2006 0.1143 0.05301 0.5954 -0.05294 0.05207 0.6457
2007 0.08528 0.06136 0.5954 -0.0182 0.07047 0.4563
2008 0.04969 0.103 0.3663 -0.1082 0.06875 0.4104

Table 7.8: Results for the 1-week ANN with JIN stock data
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Discussion

On first inspection, we see that the results of the previous chapter are
somewhat of a mixed bag. Let’s consider each of the networks individually
before making any general statements.

8.1 The 1-Week ANN

The first thing we can note is that the 1-week ANN performed significantly
better on both stocks over 2005 and 2006 than it did over 2007 and 2008.
In fact, this can be seen for all the ANNs. The main reason for this might
be that the stock market in general had a major correction in the latter
half of 2007, and underwent a period of extreme volatility which lasted
through 2008. Since the networks were trained with data from a period of
a relatively steady uptrend market (2005-2006), they had not been exposed
to these types of market conditions, and so it would be reasonable to expect
a somewhat lower performance in this period.

Looking at the results from the DnB NOR (DNBNOR) simulation in
table 7.7, we see that there was a statistically significant positive bias on
the correlation factors for the first two years. To have a correlation of
nearly 0.4 on pure random luck, with ∼ 100, 000 forecasts recorded, seems
extremely unlikely, particularly since it is significantly higher than zero in
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Figure 8.1: Price chart of the JIN stock, 2005-2008

both those years. The hit-rate is also slightly higher than 50% on average,
but not enough to call it a statistical significance.

Turning to the results from the somewhat less traded JIN stock (table
7.8) we see that performance was consistently lower here. The hit rate of
just 36% in 2008 is indeed an abysmal result, but it can be understood
better if we look at the actual price curve for JIN in that period, shown
in fig. 8.1. Here we see that in late 2007, the stock went into a period of
extreme volatility, going from over 90 NOK to less than 10 NOK in the
following year. From our results, it’s clear that the neural network was
nowhere near prepared for such a scenario. In the more normal market
conditions of 2005 and 2006, we see that the hit rate was good, averaging
around 60%, but the low correlation factors could indicate that this was
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more luck than skill on part of the ANN.
These results, in particular for DnB NOR, seem to indicate that the

1-week ANN does indeed have significant predictive power during normal
market conditions.

8.2 The 2-Day ANN

The 2-day ANN performed relatively poorly in 2007 in particular, and 2008
to a lesser extent, in similar fashion to the 1-week ANN. This is probably
for the same reasons that we just discussed.

In all of the 8 simulations, only one had hit rate less than 50% (FRO in
2007), which can be taken as a positive result. The fact that the unfiltered
correlations are all over 0.1 for the first three years in table 7.5 here is also
positive. Still, the correlation factors should’ve been somewhat higher if
we were to make a definite positive conclusion here. It’s interesting to note
from table 7.5 that the correlation is a lot worse for the filtered values. It’s
hard to come up with a good explanation for why this might be.

The results from the Frontline simulations (table 7.6) are less encour-
aging than the DnB NOR ones (table 7.5). Here the correlations are all
consistently close to zero, indicating that the network was unable to learn
any useful features in the training. As can be seen by comparing figures 8.2
and 8.3, the FRO stock was generally a lot more volatile than the DNBNOR
stock (except for maybe 2008), which may partly help explain this result.

8.3 The 2-Hour ANN

Looking at tables 7.3 and 7.4, we see that although the results tend slightly
to the positive side, there correlations and hit rates are lower than what we
were able to obtain for the weekly and 2-day ANNs. The average error is
also significantly lower, but that is as expected when considering that the
stock price variations in a two-hour time frame will generally be lower than
on the weekly or 2-day time frame.
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Figure 8.2: Price chart of the DNBNOR stock, 2005-2008

One indication that the network may have learned something useful
for the 2005 and 2006 tests is that the performance here was consistently
better than for the following two years, which is the same effect that was
witnessed in the 2-day and weekly networks. If there had been no predictive
power at all, and the predictions were fully uncorrelated to the curve, we
wouldn’t expect the performance to be negatively affected when exposed
to abnormal data.

Still, while the results do tend more to the positive side than the nega-
tive (especially in 2005 and 2006), the statistical significance is regrettably
too small to make a definite statement on whether the network was suc-
cessfuly able to learn anything useful or not.
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Figure 8.3: Price chart of the FRO stock, 2005-2008

8.4 The 30-Minute ANN

The 30-minute ANN had one particularly good test with DNBNOR in 2005
(table 7.2), which sticks out among the rest. This may of course just have
been a lucky fluke, especially considering the abysmal performance of the
test on the subsequent year, which has the worst hit rates witnessed in all
the tests performed on any time frame. And apart from with this one test,
correlations are generally close to zero. This indicates that the network
was, at least for the most part, unable to learn anything useful at all.
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8.5 Overall Performance

Reviewing the results, we see that ANN prediction performance on the
longer time frames (1-week and 2-day) do show promise of being able to
predict prices significantly better than what a random generator would, as
long as market conditions remain normal. The 2-hour network also gave
slightly positive results, but we may have wished to see somewhat higher
correlations if we were to make any definite statements on its usefulness.
The 30-minute network didn’t show much promise of being able to reliably
predict price fluctuations at all.
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Conclusion

9.1 Krang: Does It Work?

Based on the discussion of the previous chapter, it does indeed seem like
at least some of the networks that were developed using Krang managed to
learn enough useful features that they would reliably outperform a random
prediction generator at least some of the time.

As such, these results add to the list of similar results reported by other
researchers[9] that contradict the Efficient Market Hypothesis.

It should be noted that it has not been investigated how well the gener-
ated price predictions can be used as a basis for actual trading strategies.
The generated predictions are only valuable from an investment standpoint
if they help generate profits which reliably outperform just owning the
stocks in terms of risk/reward (Sharpe) ratio. As such, the actual useful-
ness of the Krang system as an investment tool has not been sufficiently
demonstrated.

And although some of the results were positive to a statisically signifi-
cant degree, a lot of the results were less encouraging. The following sections
review some factors that may help explain the mixed quality of the results,
with some ideas for potential improvements that may help ameliorate these
factors.
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9.1.1 Adverse Market Conditions

While some of the networks did show statistically significant predictive
performance in 2005 and 2006, they were generally unable to handle the
stock market turmoil that occured in 2007 and 2008. This just illustrates
one of the major inherent problems with applying pretty much any type of
supervised machine learning method to financial time series prediction: it
cannot be prepared for that which it has not already seen.

So while there may be recurring patterns and features in the time series
that can be learned reliably by these networks, there is always a possibility
that the market will start to act abnormally. For anyone thinking of deploy-
ing a system similar to Krang for real time live trading, it would therefore
be important to implement proper safety mechanisms in case such market
conditions should occur.

9.1.2 Long Term Vs. Short Term

It was observed that the longer term networks seemed to outperform the
shorter term networks, as network performance became less and less promis-
ing on the shorter time scales.

It may be that more technical analysis methods would need to be im-
plemented (as agents) that are more appropriate for short term analysis,
because the majority of the agents that were implemented in Krang had
to be discarded for the intraday networks. Intuitively, it’s clear that e.g. a
divergence in the 14-day RSI tells very little about what will happen in the
next few minutes on the curve, so it seems that one might need to come up
with methods that are more likely to capture short-term conditions to get
better short-term performance (if it’s possible at all to use an agent-based
ANN for this purpose).

9.1.3 The Problem Of ANN Design

A major challenge in generating the results of this report has been to find
good artificial neural network (ANN) architectures. There are so many
variables that need to be configured, that finding a good set of settings
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for each ANN becomes an overwhelming task in itself. First one needs to
decide what agents to include, then how each agent should be configured,
and then how many hidden layers to have and how many nodes to put in
each of them. One also needs to find good values for the learning rate and
momentum parameters that are used in the backpropagation algorithm. To
exhaustively test for so many variables manually by trial and error is close
to impossible, since each variable adds another dimension to the search
space of possible ANN configurations and so increases it exponentially.

One idea for future improvement in this area might be to use some type
of genetic algorithm, or perhaps a heuristic based on Netwon’s method, to
find good ANN configurations automatically prior to empirical testing.

9.1.4 Reversal Patterns

In the Krang system, only two agents were implemented for recognizing
trend reversal patterns (the DoubleTopAgent and DoubleBottomAgent).
Even though they only tested for the simplest possible patterns (the double
top and double bottom), they were both unable to classify patterns with
sufficient frequency to be of any use to the forecasting ANNs.

This is probably because the problem of doing automatic pattern recog-
nition like this is very challenging to solve by making a conventional heuris-
tic. As such, applying pattern recognition ANNs to identify trend reversal
patterns could be a better way to solve this problem than the heuristic
methods in the Krang system.

Trend reversal patterns are an important part of the technical analysis
discipline, so it seems likely that having better methods for automatically
identifying them in the Krang system could have increased ANN forecasting
performance further than what was observed.
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