Math 181 - Review sheet
The first exam will be given on Friday, 22 Feb in class. Exam I will cover $\S \S 2.1,2.2,2.3,2.5,2.6,2.7,2.8$. Please bring your student ID to the exam.
(1) Find the average rate of change of the function $f(x)=x^{2}+2 x+3$ over the interval $[-1,4]$.
(2) Determine the limit: $\lim _{x \rightarrow 1} \frac{3 x-3}{x^{2}-4 x+3}$
(3) Find the limit: $\lim _{x \rightarrow \infty} \frac{4 x^{2}-7 x+11}{6-2 x^{2}}$
(4) Find the limits: $\lim _{x \rightarrow 2^{-}} \frac{x-1}{x^{2}-2 x-3} \quad \lim _{x \rightarrow-1^{+}} \frac{x+1}{x^{2}-2 x-3}$
(5) For what value of a is the given function continuous at $x=1$?

$$
f(x)= \begin{cases}x+2, & x \leq 1 \\ a x, & x>1\end{cases}
$$

(6) Let $f(x)$ be given as follows:

$$
f(x)=\left\{\begin{array}{lr}
2 x, & x \leq-1, \\
x^{2}, & -1<x \leq 1, \\
3-2 x, & x>1 .
\end{array}\right.
$$

Find $\lim _{x \rightarrow-1^{-}} f(x), \lim _{x \rightarrow-1^{+}} f(x), \lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$. Determine $\lim _{x \rightarrow-1} f(x), \lim _{x \rightarrow 1} f(x)$, if they exist. Where is f continuous?
(7) Let $f(x)=\frac{2 x+3}{x-1}$. Find the limits of f at ∞ and $-\infty$. Determine all horizontal and vertical asymptotes of the graph $y=f(x)$ and sketch the function.
(8) Let $f(x)=x^{2}+3 x$. Find the slope of the secant joining the points $P(-2, f(-2))$ and $Q(-2+h, f(-2+h))$. Find the slope of the curve $y=x^{2}+3 x$ at P and then find an equation for the tangent line at P. Find $f^{\prime}(-2)$. Sketch the curve and the tangent line.
(9) With f as in the given sketch, find both one-sided limits at $a=1,2,3$. In each case determine $\lim _{x \rightarrow a} f(x)$, if it exists. Is f is continuous at $x=1,2$ or 3 ?

Does f have any jump discontinuities? If so, where?

Does f have any removable discontinuities? If so, where?
(10) Let $f(x)=x^{3}-2 x+3$. Use the definition of the derivative to find $f^{\prime}(a)$. Find an equation for the tangent to the graph $y=f(x)$ at $(2,7)$. Find two points on the curve at which the tangent line has slope 1.
(11) Let $f(x)=\sqrt{x}$. Use the definition of the derivative to find $f^{\prime}(9)$.
(12) Find the limits of both f and g at ∞ where $f(x)=\frac{x}{9 x^{2}+2 x+3}$ and $g(x)=\frac{x}{\sqrt{9 x^{2}+2 x+3}}$.
(13) Define $h(2)$ in a way that extends $h(x)=\frac{x-2}{\sqrt{x^{2}+5}-3}$ to be continuous at $x=2$.
(14) Determine the limit: $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-3}{x^{2}-4 x+3}$.
(15) Sketch the graph of the derivative of $y=f(x)$.

(16) Sketch the graph of the derivative of $y=f(x)$.

