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Goal: 
Design a Connect4 game program which can play against a human. The “AI” should use a 

minimax tree with alpha-beta pruning, and must have an adjustable ply depth. This program should 
ultimately be challenging to beat. The weights used for the static evaluator should be trained instead of 
arbitrarily chosen.

Design: 
The design is the same as the previous assignment. We want to train the weights for the player 

by facing off the previously hand-tuned player against a player with randomized initial weights. As the 
game plays itself, random game states are grabbed and the weights of the player are updated at the end 
of a game. The players keep playing each other until the error of the LMS is small, or until there is little 
to no change in the updated weights, or if the trained player manages to defeat the hand-tuned player.

Strategy: 
There are a few aspects to the strategy for training this player. First, as stated above, random 

board states are grabbed as players are playing, and the trained player is updated at the end of the game. 
Updating at each board state appeared to cause problems. Second, the LMS error which should be 
minimized is given as:

error (b)=V train(b)−V ' (b)

One thing to consider is that a board position b that is good for one player should be bad for the 
other player. This essentially means that the result of evaluating  b for one player will be a positive 
value and for the other negative. So intuitively, the equation would in fact be,

error (b)=V train(b)+V ' (b)

Then the weights should be updated using the following formula:

w i=wi+c⋅f i⋅error (b)

The weights are updated at the end of a game. Once the weights converge on a solution, the 
optimal trained player weights have been found. Finally, an important step in the training is that the  
weights should be normalized. The way the weights are normalized is by bounding the weight vector 
values in range -1 to 1. Essentially, dividing each weight by the maximum absolute weight.

Static Evaluator: 
As in assignment 0, the main features used for the static evaluator to describe the game state are 

as follows:

• Count of groups of two (for both red and black)
• Count of groups of three (red and black)



• A successful group of four (red and black)
• Average distance from the center column of the board (red and black)

The groups of two and three are only counted if it is possible to make a straight line of four 
tokens using that group. In other words, for example, if black tokens are found between, or at the end 
of a line of red tokens, or if the line is on the edge of the board, this group is not accounted for. The 
average distance from center essentially means the closer a token is from the center, the higher it's 
score is. Tokens further from the center column (on the edge of the board) yields a lower score.

The state evaluation is done as follows:
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Where w are the weights,  c the counts for groups of two, three, and four,  d the distance from 
center, and  R/B stands for red/black. In the last assignment, the weights  w were constant, fixed, and 
manually  chosen.  The  values  for  the  weight  have  been  chosen  somewhat  arbitrarily,  based  on 
experience playing the game. The normalized weights used are as follows (assuming the “AI” player is  
blacl):

w1=0.072, w2=−0.09, w3=0.091, w4=−0.273, w5=0.164, w6=−1.0, w7=0.091, w8=−0.091  

As  shown above,  the  fourth  and  sixth  weights  are  heavily “punished”  which  makes  sense 
considering that is the count of triplets and win condition for the opponent, black. The fifth weight (the 
winning case for red) is not as favored, since the goal of these weights is to deny the opponent a 
victory. As mentioned previously, these weights are not the most exact and unique weights, they are 
simply designed for this type of strategy.

Results:
After running the LMS training method on the red player, the weights calculated manages to tie 

the  black  player  with  the  hand-tuned weights.  The resulting  weights  trained for  the  player  are  as 
follows:

w1=−0.414265, w2=0.121151,w3=−0.132171,w4=−0.0326753,
w5=−1,w6=0.239334,w7=−0.259813, w8=−0.0984945

The resulting weights appear to result in a more defensive player. This player will tie the game 
regardless of it plays first or second. This seems reasonable as the way it was trained was to minimize 
the error from the hand-tuned player. This in practice results in weights that will not try to win, but  
essentially block the hand-tuned player from winning. This is arguably an improvement over the hand-
tuned player since it is unable to beat it.  


