
JOURNAL OF COMPUTER SCIENCE AND AWESOMENESS 1

Early Prediction of Outcome of a Starcraft 2 Game
Replay

David Leblanc, Sushil Louis,

Outline Paper

Some interesting things to say here.
Abstract—The goal of this paper is to predict the outcome of a

Starcraft 2 game based on information in a replay. We explore the
problem of how early in game can the winner be determined and
what are the reasons why a player loses a game. Understanding
these factors may not only improves player performance, but also
help game designers balance the game. Features are extracted
from replays of previously played games, and they are used to
train a system that determines a winner. Each feature represents
a snapshot of game at a specific time and encodes information
about the ammount of units and the player’s actions. Results
show that it is very challenging to predict a winner early on,
but it is possible to find tipping points in a game and determine
which player is ahead in particular segments of a game.

Index Terms—Starcraft, Game, Prediction, AWESOMENESS

I. INTRODUCTION

STARCRAFT 2 is a highly dynamic and non-linear game.
It has over the years attracted large crowds of people at

professional tournaments. Now, some of the best players in the
world have become professional players and make a living
playing it and attending tournaments. The reasons for the
success of this game are mainly because it is so well designed
and balanced, and has a very high skill limit for players.
Players are continually trying to find flaws in their play to
improve their overall play. MORE IN DEPTH EXPLANATION
OF WHAT STARCRAFT IS HERE!!!

If it is possible to determine the winner of a game early on,
then there are many potential applications that may benefit
from this knowledge. Game balance designers are responsible
for assuring that the game remains challenging and highly
dependant on a player’s skill. If the winner of a game could
easily and accurately be determined for any given game, this
could be an indication of imbalance in the system.

Early prediction of a winner also helps players improve their
overall play. By knowing when the outcome of a game was
predicted, the player could then look at that specific time and
determined what at that time influenced the outcome. From
that, a player can then adjust their play to learn from mistakes,
or qualify good play.

A. The problem
The main goal of this paper is ultimately to predict the

winner of a game as early as possible, and understand what

David Leblanc is with the Department of Computer Science and Engineer-
ing at the University of Nevada, Reno. More interesting stuff here. Reno,
Nevada, United States, e-mail: lblancdavid@gmail.com.

Sushil Lousi is with the Department of Computer Science and Engineering
at the University of Nevada, Reno. More interesting stuff here. Reno, Nevada,
United States, e-mail: xxx@xxx.xxx.

causes a player to win or lose a game. Games can vary widely
from one to another, but they generally have tipping points
where one player either takes to lead or falls behind. These
tipping points can give an indication of what a specific player
did right, or did wrong. Tipping points can range from subtle
to obvious. Obvious tipping points are easily identified and
explained by most players. On the other hand, subtle tipping
points can be very difficult by an average player. They often
happen earlier in a game and may play a role in the final
outcome of the game.

A secondary goal is to identify these minor and major
tipping points, and characterize them to understand the factors
that contributed to the outcome of a game. To characterize
a tipping point, a probability measure of outcome must be
calculated for any point in a game. The probability can be
measured by comparing a snapshot of the game to snapshots of
previous games played, and determining the chance of winning
given a certain situation.

B. Previous work

I need to do more research here for now. I don’t think
anyone has done this specific application before. There may
be some similar work out there, but for the moment I couldn’t
find much. INSERT STUFF HERE

C. Approach

Replays of previously played professional tournaments are
used to train a system to learn what produces a given outcome,
and how to measure which player is ahead or behind. In section
II, the overall methodology for answering these questions is
presented. Section II-A describes the data and sources further.
Features can be extracted from the replays, such as unit
counts, buildings, player actions, etc. This information is then
represented as a feature vector of histograms for any time t in
a game. Each feature vector then represents a snapshot of the
game at a specific time. Section II-B explains in detail how
the features are extracted and represented.

Based on the features, the system is trained to determine
the outcome and to evaluate the probability of outcome.
This is discussed in depth in section II-D. Based on the
information learned in the classification process, many feature
representations modifications were made to improve accuracy,
which is explained in section II-E.

Section III presents the results based on the methodology
and the experiments conducted which are described in III-A.

http://lblancdavid@gmail.com
http://xxx@xxx.xxx


JOURNAL OF COMPUTER SCIENCE AND AWESOMENESS 2

Examples of game outcomes are shown in III-B and a discus-
sion of the error is proposed in III-C.

Finally, section IV summerizes the paper and offers solu-
tions for further work.

II. PROBLEM DATA AND METHODOLOGY

Replays are gathered from professional tournaments which
have been played in the last two years. Replays were taken
from replay packs from tournaments such as MLG (Major
League Gaming), IEM (Intel Extreme Master’s), Dreamhack,
and other sources I NEED SOME CITATIONS HERE PROB-
ABLY.

A. Data Set

The data set includes over 9000 replays, which are of all
possible matchups. For this paper, we focused out method
mainly on terran versus terran (TvT) matchups. There are two
main reasons why we focused on TvT:

1) Terran build mechanics are the simplest of all races.
When a unit begins construction, it is completed a fixed
ammount of time later. Buildings can only produce units
one at a time.

2) Features are more easily extracted from replays for
terrans.

3) Since it is a mirror matchup, features are the same for
both players and can be directly compared side-by-side.

There is a total of 853 TvT replays in the data set constructed.
Figure 1 shows the game time distribution of TvT games. Most
games fall in the 10 to 20 minute range but games can be as
short as 4 minutes, and as long as 70 minutes.

MORE INTERESTING STUFF TO ADD HERE!!!

B. Feature Extraction

Replay files contain the list of events performed by each
player. The replay file can be exported to a text file using
SC2Gears software (REFERENCE HERE!!). The output text
file format for an event is as follows:

<FrameNumber> <PlayerName> <EventType> <EventDe-
tails>
FrameNumber: The timestamp associated with the event. Can

be converted to seconds.
PlayerName: The name of the player performing the action
EventType: The type of event or action the player performed

(ie: Train, or Build, Research, etc...)
EventDetails: The details associated with that type of actions,

such as the unit type, target location, assignment,
etc...

The FrameNumber is converted to seconds to have a more
meaningful representation of time. The PlayerName deter-
mines which player performed the action, allowing the events
to be seperated for each individual player. The EventType
determines the action taken by the player. For the purpose
of this application, the replay files are parsed and the events
are split into five event category types:

1) Build Event: Player builds a building (ex: Barracks,
Factory, etc...)

2) Train Event: Player trains a new unit (ex: Marine, SCV,
etc...)

3) Research Event: Player researches an upgrade (ex: Stim,
Combat Shield, etc...)

4) Ability Event: Player uses an ability (ex: Cloak, Call
Down MULE, etc...)

5) General Actions: Contains all mouse-click, hotkey, con-
trol groups, camera movements, and other events.

Finally, the EventDetails contains extra specific information
associated with the event, which we ignore for the most part.
The sequences of events parsed and kept seperated for both
players.

Onces all events have been parsed from the replay files,
the events are sorted and organized in a table, called a build
order table (BOT). BOTs are built for each player by inserting
sequencially build, train, and research events, and keeping
track of time to complete the events. When an event is
processed, it is first added to the table, the production count
for that event is incremented. Then the BOT is updated. The
update process goes down the table, looking at production and
time, and calculates wheter enough time has passed from the
time unit was started. If the amount of time is equal or greater
than the required build time for that unit, then the unit count
can be incremented, meaning a unit has completed. After all
events have been registered and processed, the BOT for each
player contain the unit, building count, and research progress
for each unit type, at any point in the game. A FIGURE HERE
MIGHT BE HELPFUL???

Features can then be extracted from the BOTs at any time
t in a game. These features will essentially be a snapshot of
the unit count at that time t. The features also contain the
count of ability events, and general player actions per minute
(APM) measure. APM is the number of actions performed by
the player over time. The APM is split into two main types:
micro and macro. Micro APM counts the abilities and mouse-
click events, while macro events consist of building, training,
and researching events.\

The winner of a game can be identified by determining
which player leaves the game first. A win is encoded with a
1, and a loss is encoded with a 0.

C. Feature Representation

Once all the features have been extracted from the replay,
they are represented as a vector of attributes. Each vector is
a snapshot of the game at time t for a player. The vector has
75 attributes, and an output value which represents whether or
not the player ends up winning the game. The distribution of
the attributes is displayed in table I.

The vectors encode all the available information for a
single player at time t. Since the goal of this application is
to determine the winner of a game, both players must be
representing in the feature vector. The are three methods used
to represent both players in one vector:

1) Ratio between attributes.
2) Difference between attributes.
3) Concatenation of two feature vectors, resulting in a 150

attribute vector.



JOURNAL OF COMPUTER SCIENCE AND AWESOMENESS 3

Fig. 1. Time distribution of TvT games in the data set.

TABLE I
FEATURE VECTOR REPRESENTATION AND DISTRIBUTION OF ATTRIBUTES. APM 8 ATTRIBUTES: ABILITIES, ACTIONS, BUILD, TRAIN, RESEARCH,

MICRO, MACRO, AND OVERALL APM.

Unit Histogram Building Histogram Research Histogram APM Total Attributes Outcome
13 unit types 17 building types 37 upgrade types 8 types 75 Win (1), Lose (0)

Because we are dealing with a mirror match-up (TvT), at-
tributes can be compared side-by-side for both players, so
representation options 1, and 2 are acceptable. This would not
be the case for all non-mirror match-ups. All three methods
are tried and experimented with for this application.

The ratio method is best representated as a percentage count
of units. For example, if the first player has 2 marines, and
the second has 1 marine, the first player would then have
66.6% of all marines, and the second 33.3%. For the difference
representation, the resulting value for the first player would be
1, and -1 for the second player.

Once both players have been represented in the feature
vector, there are two main ways to further represent the data.
I SHOULD INCLUDE SOME MORE FIGURES HERE THAT
WOULD BETTER EXPLAIN THE FEATURE REPRESENTA-
TION.

1) Spatial Features: Spatial features are simply the basic
feature vectors described above taken at specific snapshots at
time t of the game.

2) Temporal Features: Temporal Features add information
from past snapshots of the game. A window of time is
taken from time t and k snapshots are extracted from that
window. The mean and variance of each attributes over time
are calculated and added to the feature vector. This essentially
adds two features per attribute, resulting in a feature vector
with a length of 225 (75+75+75). This representation increases
the amount of information encoded about change over time in
the attributes.

D. Feature Evaluation
The features should be evaluated to determine which at-

tributes contribute the most to the outcome of the game.
The outcome associated with each feature vector represents
whether a player wins or loses at the end of the game. There
is no guarantee that the outcome of a given feature vector
accurately represents that feature. A player could be ahead at
one point in the game, but end up losing the game, or vice
versa. Despite this fact, can train a classifier to learn whether
a given snapshot is likely to result in a win or a loss.

1) Classifiers: A multitude of classifiers have been used to
classify feature vectors. The system is trained using WEKA
(REFENCE HERE PLEASE!!!) and the results are shown in
section III.

2) Clustering: Because the outcome associated with a fea-
ture may not be reliable for earlier times in a game, clustering
the data set can give some understanding on the distribution
of features in the space. The outcome can be calculated for
each feature based on frequency of the outcomes within the
clusters. By calculating the frequency, the outcome can then be
measured as a likelyhood of winning or losing a game. This
could be a solution to the problem of innaccurate outcome
representation.

E. Modification and Improvement
COOL STUFF I CAN ADD HERE FOR THE FINAL

REPORT.

III. RESULTS

My results are awesome ADD SOME MORE COLORFUL
COMMENTS AND INFORMATION HERE!!!



JOURNAL OF COMPUTER SCIENCE AND AWESOMENESS 4

A. Experimental Setup

PARAMETERS FOR THE CLASSIFIERS AND CLUSTER-
ING METHODS SHOULD BE DEFINED HERE. FOR THE
MOMENT, I USED DEFAULT PARAMETERS IN WEKA,
AND AM STILL WORKING ON EXPERIMENTING WITH
CLUSTERING METHODS.

Feature snapshots are extracted from all the replays at 30
second increments. A few experiments are done on the data to
determine whether or not it is possible to determine the winner
of a game or not. In the first experiment, features are extracted
and represented as explained in section II, and trained and
tested on various parts of a game. Figure 2 shows various
results of prediction accuracy at different times in replays.
I’M NOT GONNA EXPLAIN THAT FIGURE BECAUSE IT IS
BIAS AND WILL BE REPLACED IN THE FINAL REPORT.

Fig. 2. This graph is absolutely horrible and will not make it to the final
report. But it does show some interesting information about accuracy within
the features themselves. I will most likely generate a different graph which
will be better labeled and actually show true results. Since I already showed
this in class, and it is really bias, and will not be in the final report, I won’t
bother explaining what it means.

In a second experiment, the features extracted from the TvT
data are split into three main groups:

1) Early Game: All snapshots which are in the first third
of the games

2) Mid Game: All snapshots which are in the second third
of the games

3) Late Game: All snapshots which are in the last third of
the games

In table II, the results shown are the accuracy of outcome
prediction by training on certain parts of the game, and testing
on other parts of the game.

TABLE II
RESULTS OF PREDICTION ACCURACY FOR CROSS TESTING AND TRAINING

USING DIFFERENT PERIODS OF A GAME

Training / Test Early Game Mid Game Late Game
Early Game 1 0.587 0.541
Mid Game 0.543 1 0.683
Late Game 0.519 0.621 1

The third experiment split the data into by using 70% of the
games for training, and reserving 30% of the games for testing.

The overall accuracy of predictions of various classifiers (using
WEKA) are presented in table III.

TABLE III
RESULTS OF OVERALL OUTCOME PREDICTION OF DIFFERENT CLASSIFIERS

Classifier Prediction Accuracy
Random Forest 63.4%

Boosted Random Tree 64.5%
Classifier A 80.0%
ClassifierB 90.0%
Classifier C 100.0%
Classifier D 174.3%

The fourth experiment was done using clusters of features.
The clusters describes states of the game and the probabilities
of each outcome are encoded in the clusters. THIS IS WHAT
I AM CURRENTLY WORKING ON. I WOULD LIKE TO
STUDY HOW GAMES PROGRESS OVER TIME AND FIND
TIPPING POINTS. I STILL HAVE SOME WORK TO DO ON
THAT, BUT HERE IS WHERE THE RESULTS OF THOSE
EXPERIMENTS WILL BE REPORTED.

B. Examples

I currently do not explicitly have examples of results I got.
I this section, I intend to have a discussion on what features
got correctly or incorrectly classified.

I would also like to show results of my clustering method.
The clustering method provides a way to get a probability of
winning or losing a game. That probability changes over time.
I would like to have some sort of graph here that shows that
change over time, and shows some of the so-called tipping
points in a game. A cool idea would also be to have a video
of a game being played with a probability displayed over the
player.

C. Error Discussion

Based on the results obtained, it is clear that outcome
prediction of a Starcraft 2 game is a challenging problem.
Because it is unclear how to measure whether or not a player
is ahead at any given snapshot, many of the misclassified
snapshot could be in fact correctly classified. This problem
is somewhat addressed when using clustering method for
predicting probability of outcomes.

MORE DISCUSSION HERE DEPENDING ON MORE
FORMAL RESULTS OF CLASSIFICATION AND CLUSTER-
ING METHODS.

IV. CONCLUSIONS AND FUTURE WORK

Prediction of outcome of a Starcraft 2 game is very chal-
lenging, as it should be. The replay data set used was taken
from professional level tournaments, therefore the quality of
players and strategies are optimized, resulting in closer games
and less flawed overall performance. At that level of play, one
would expect accurate prediction of outcome a difficult task.

The information extracted from the replay data set is in-
complete, lacking units lost and income information. It is also
impossible to flawlessly extract the accurate count of units



JOURNAL OF COMPUTER SCIENCE AND AWESOMENESS 5

and buildings due to many factors which are handled by the
game engin itself. Despite this lack, valuable results have been
extracted from this data, proving that the game is very well
balanced and designed.

Future work for this project would be to improve feature
representation to maximize classification accuracy while min-
imizing overfitting. Also, this paper focused mainly on TvT,
other match-ups could be considered, and similar methods
applied to them with success. The main short-comming of
the method was the data extraction from replays. This short-
comming could be avoided by extracting features from a
live game, in real-time, and possibly extract the missing
information such as units lost, income, and other pertinant
statistical values.

GO MORE IN DEPTH FOR THE FINAL REPORT. ALSO,
ADD IN REFERENCES!!!!!!!!!!

[1]

REFERENCES

[1] Y. Okada, K. Dejima, and T. Ohishi, “Analysis and comparison of PM
synchronous motor and induction motor type magnetic bearings,” IEEE
Trans. Ind. Appl., vol. 31, pp. 1047–1053, Sep./Oct. 1995.

MY FACE HERE!

David Leblanc All about me and the what my
interests are.

Sushil Louis Same again for the co-author, but without photo


	I Introduction
	I-A The problem
	I-B Previous work
	I-C Approach

	II Problem Data and Methodology
	II-A Data Set
	II-B Feature Extraction
	II-C Feature Representation
	II-C1 Spatial Features
	II-C2 Temporal Features

	II-D Feature Evaluation
	II-D1 Classifiers
	II-D2 Clustering

	II-E Modification and Improvement

	III Results
	III-A Experimental Setup
	III-B Examples
	III-C Error Discussion

	IV Conclusions and Future Work
	References
	Biographies
	David Leblanc
	Sushil Louis


