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Abstract

Mining association rules and mining sequential patterns both are to discover customer purchasing behaviors from a transaction database,

such that the quality of business decision can be improved. However, the size of the transaction database can be very large. It is very time

consuming to find all the association rules and sequential patterns from a large database, and users may be only interested in some

information.

Moreover, the criteria of the discovered association rules and sequential patterns for the user requirements may not be the same. Many

uninteresting information for the user requirements can be generated when traditional mining methods are applied. Hence, a data mining

language needs to be provided such that users can query only interesting knowledge to them from a large database of customer transactions.

In this paper, a data mining language is presented. From the data mining language, users can specify the interested items and the criteria of the

association rules or sequential patterns to be discovered. Also, the efficient data mining techniques are proposed to extract the association

rules and the sequential patterns according to the user requirements.
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1. Introduction

An association rule (Han and Pei, 2000) describes the

association among items in which when some items are

purchased in a transaction, others are purchased too. An

association rule has the form X0Y, in which X and Y are

two sets of items. In this paper, we refer to X as an

antecedent and Y as a consequent of this rule. The length of

an itemset i is the number of items in the itemset i, and an

itemset of length k is called a k-itemset. A transaction t

supports an itemset i if i is contained in t. The support for an

itemset i is defined as the ratio of the number of transactions

that supports the itemset i to the total number of

transactions. If the support for an itemset i satisfies the

user-specified minimum support threshold, then i is called

frequent itemset, and a frequent itemset of length k a

frequent k-itemset. The confidence of a rule X0Y is

defined as the ratio of the support for the itemsets XgY to
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the support for the itemset X. If itemset ZZXgY is a

frequent itemset and the confidence of X0Y is no less than

the user-specified minimum confidence, then the rule X0Y

is an association rule.

Mining sequential patterns (Pie et al., 2001) is to find the

sequential purchasing behavior for most customers from a

large transaction database. A sequence is an ordered list of

the itemsetshs1, s2,., sni, where si is a set of items.

A customer sequence is the list of all the transactions of a

customer, which is ordered by increasing transaction-time.

A customer sequence c supports a sequence s if s is

contained in c. The support for a sequence s is defined as the

ratio of the number of customer sequences that supports s to

the total number of customer sequences. If the support for a

sequence s satisfies the user-specified minimum support

threshold, then s is called frequent sequence. The length of a

sequence s is the number of itemsets in the sequence.

A sequence of length k is called a k-sequence, and a frequent

sequence of length k a frequent k-sequence. A sequential

pattern is a frequent sequence that is not contained in any

other frequent sequence.

In this paper, we present a data mining language, from

which users only need to specify the criteria and the

interested items for discovering the association rules and
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sequential patterns. We also propose efficient data mining

algorithms for the data mining language processing. For the

data mining algorithms, we focus on discovering the

associations among interested items and all the other

items. For our data mining system, a user can make a

query through our query language, and the system answers

to the query according to user specified items and criteria

immediately. If the answers do not satisfy user’s needs, then

user can resubmit his/her query by adjusting the criteria and

item constraints.

Many constraint-based mining methods have been

proposed. Hipp and Guntzer (2002) presented that data

mining process should be an initial unconstrained and costly

mining run. The mining queries are answered from the

initial mining result such that response time can be

minimized. However, the discovered association rules

may become invalid or inappropriate since the transactions

are increasing any time. It is very costly to re-run the

unconstrained mining algorithm to obtain the up-to-date

initial mining result. Ng, Lakshmanan, Han, and Mah

(1999) considered aggregate constraints and item con-

straints for mining association rules. For item constraints,

the items in the discovered frequent itemset must exactly be

contained in the specified items. Pei and Han (2000, 2002)

developed pattern-growth methods for constrained frequent

pattern mining and sequential pattern mining. An

item constraint specifies what is the particular individual

or group of items that should or should not be presented in

the pattern, that is, the items in the discovered patterns have

to be contained in the specified itemset. In (Pei et al., 2002),

they discussed about mining sequential patterns with regular

expression, the items in the discovered patterns must

appear in the sequence defined in the regular expression.

All the above approaches cannot discover the associations

among certain items and all the other items. Hence, the

item constraints in the above approaches are different from

our work.

Meo, Psaila and Ceri (1996) proposed a SQL-like

operator for extracting association rules. However, SQL-

like operator cannot completely express the associations

among certain items and all the other items. Furthermore,

the SQL-like operator performs set-oriented operations (i.e.

join operations), which are very inefficient operations. Yen

and Chen (1997) proposed a data mining language for

mining interesting association rules. They presented a user-

friendly mining language and users can specify the

interested items and the criteria of the rules to be discovered.

This approach constructs an association graph and generates

all the frequent itemsets by traveling the association graph.

However, it needs to take a lot of memory space to record

the related information. In this paper, we successfully

integrate two kinds of patterns and use the similar style of

the data mining language proposed in (Yen and Chen,

1997). Besides, we also propose efficient data mining

algorithms to find all the associations among certain items

and all the other items.
2. Data mining language and database transformation

The data mining language is defined as follows. Users

can query association rules or sequential patterns by

specifying the related parameters in the data mining

language.

Mining hData Mining Technologyi

From hCSDi

With h(D1),(D2), .,(Dm)i

Support hs%i

Confidence hc%i

In the Mining clause, hData Mining Technologyi can be

hassociation rulesi or hsequential patternsi. The former is

to discover association rules and the later is to discover

sequential patterns.

In the From clause, hCSDi is used to specify the database

name to which users query the association rules or

sequential patterns.

In the With clause, if the hData Mining Technologyi is

hsequential patternsi, h(D1),(D2), .,(Dm)i are user-

specified itemsets which ordered by increasing purchas-

ing time, and (Di) can be the notation ‘*’ which

represents any sequences. If the hData Mining Tech-

nologyi is hassociation rulesi, then m is equal to 2, and D1

and D2 are the itemsets in the antecedent and consequent,

respectively, of the discovered rules. Besides, (Di) and

the items in Di can be the notation ‘*’ which represents

any items.

Support clause is followed by the user-specified

minimum support s%.

Confidence clause is followed by the user-specified

minimum confidence c% if the hData Mining Tech-

nologyi is hassociation rulesi. If the hData Mining

Technologyi is hsequential patternsi, this clause is

ignored.

In order to find the interesting association rules and

sequential patterns efficiently, we need to transform the

original transaction data into another type. Each item in

each customer sequence is transformed into a bit string. The

length of a bit string is the number of the transactions in the

customer sequence. If the ith transaction of the customer

sequence contains an item, then the ith bit in the bit string

for this item is set to 1. Otherwise, the ith bit is set to 0. For

example, in Table 1, the bit string for item A in CID 1 is 011.

Hence, we can transform the customer sequence database

(Table 1) into the bit-string database (Table 2).

From the bit-string database, we can easily compute the

number of the transactions in a customer sequence, which

contain an itemset. For example, in Table 1, if we want to

know how many transactions in CID 1 support the itemset

(A,C,E). We can perform logical AND operations on the bit

strings for items A, C and E in CID 1. The number of 1’s in

the resultant bit string is the number of the transactions

which contain the itemset (A,C,E) in CID 1.



Table 1

Customer sequence database (CSD)

CID Customer sequence

1 h(C)(A,C)(A,C,E)i

2 h(A,E)(A)(A,C,E)(C,E)i

3 h(C)(E)(E)(C,E)i

4 h(B,D)(A,E)(B,C)(A,E)(A,B,E)(F)i

5 h(D)(D,E,F)(C,E,F)(A,D)(B,D)(D,F)i
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Suppose a customer sequence contains the two sequences

S1 and S2. We present an operation called sequential bit-

string operation to check if the sequence S1S2 is also

contained in this customer sequence. The process of the

sequential bit-string operation is described as follows: Let

the bit string for sequence S1 in customer sequence c is B1,

and for sequence S2 is B2. Bit string B1 is scanned from left

to right until a bit value 1 is visited. We set this bit and all

bits on the left hand side of this bit to 0 and set all bits on the

right hand side of this bit to 1, and assign the resultant bit

string to a template Tb. Then, the bit string for sequence

S1S2 in c can be obtained by performing logical AND

operation on bit strings Tb and B2. If the number of 1’s in the

bit string for sequence S1S2 is not zero, then S1S2 is

contained in customer sequence c. Otherwise, the customer

sequence c does not contain S1S2.

For example, consider Table 1. We want to check if

sequence h(A)(C)i is contained in customer sequence in CID

1. From Table 2, we can see that the bit string for items A and

C in CID 1 are BAZ011 and BCZ111, respectively, and the

template bit string TbZ001. By performing logical AND

operation on Tb and BC, we can obtain that the bit string for

sequence h(A)(C)i in customer sequence CID 1 is 001.
3. Mining interesting association rules

In this section, we focus on mining interesting

association rules according to proposed data mining

language. We divide the query into two cases. Case 1:

there are items in the antecedent of the discovered rules

specified. Case 2: there are items in the consequent of the

discovered rules specified, but the item in the antecedent is

not specified, which can be any items. Suppose that the

itemset specified in the antecedent of the discovered rules in

Case 1 is X, and the itemset specified in the consequent of

the discovered rules is Y. We propose an efficient algorithm
Table 2

Bit-string database

CID Transaction items Bit string for each item

1 A, C, E 011,111,001

2 A, C, E 1110,0011,1011

3 C, E 1001,0111

4 A, B, C, D, E, F 010110,101010,001000,100000,

010110,000001

5 A, B, C, D, E, F 000100,000010,001000,110111,

011000,011001
called MIAR (Mining Interesting Association Rules) to find

all the interesting association rules according to the user

requirements, which is described as follows:

Step 1. Scan the bit-string database once to compute the

support for the specified itemset, and then find all the

frequent 1-itemsets.

For the record in CID i in the bit-string database, if each

item in itemset X or XgY (or Y) is contained in this record,

then perform the logical AND operations on the bit strings

for the items in itemset X or XgY (or Y). The number mi of

1’s in the resultant bit string is the number of the

transactions which contain the itemset X or XgY (or Y)

for CID i. If there is an item in itemset X or XgY (or Y) not

contained in CID i, then mi is equal to 0. For each item j, if

item j is contained in the record in CID i, then find the bit

string for item j to count the number Cij of the transactions

which contain item j for CID i. Otherwise, the value Cij is 0.

Suppose there are p customers and q transactions in the

customer sequence database. The number of the transactions

that contain the itemset X or XgY (or Y) is mZ
Pp

iZ1

mi, and

the support for the itemset X (or Y) is m/q. If the support is

no less than the user-specified minimum support, then

compute the support for each item j by the expressionPp

iZ1

Cij

� �
=q.

Step 2. Generate candidate (kC1)-itemsets (k is the

length of itemset X (or XgY) for Case 1, and k is the length

of itemset Y for Cases 2), scan the bit-string database to find

the frequent (kC1)-itemsets, which contain the itemset X

(or XgY) for Case 1, the itemset Y for Case 2, and generate

the (kC1)-itemset database.

The method to generate (kC1)-itemsets is as follows:

For each frequent 1-itemset f, the candidate (kC1)-itemset

Xgf (or XgYgf) for Case 1 and Ygf for Case 2 can be

generated. For the record in CID i in the bit-string database,

if the record contains the itemset X (or XgY) for Case 1

(the itemset Y for Case 2) and a frequent 1-itemset g, then

generate the itemset Xgg (or XgYgg) or Ygg, and

perform logical AND operation on the bit strings for itemset

X (or XgY) or Y and the item g. If the resultant bit string is

not zero, then output the itemset Xgg (or XgYgg) or

Ygg and the resultant bit string to the (kC1)-itemset

database, and accumulate the number of the transactions

which contain the candidate itemset Xgg (or XgYgg) or

Ygg by counting the number of 1’s in the resultant bit

string. After scanning each record in the bit-string database,

the (kC1)-itemset database can be generated and the

support for each candidate (kC1)-itemset can be obtained.

Step 3. The frequent itemsets are generated for each

iteration. In the (h–k)th iteration (hRkC1), generate

candidate (hC1)-itemsets, scan the h-itemset database to

generate (hC1)-itemset database and find all the frequent

(hC1)-itemsets).

For every two frequent h-itemsets (a1, a2, ., ahK1, b)

and (a1, a2, ., ahK1, c) (bOc), the candidate (hC1)-itemset

(a1, a2, ., ahK1, b, c) can be generated. For the record in
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CID i in the h-itemset database, if the record contains two

frequent h-itemsets (a1, a2, ., ahK1, b) and (a1, a2, ., ahK1,

c) (bOc), then generate the (hC1)-itemset (a1, a2, ., ahK1,

b, c). We can use the same method in Step 2 to generate (hC
1)-itemset database and the frequent (hC1)-itemset can also

be obtained.

Step 4.Generate all the association rules which satisfy

the user requirements

For Case 1, if there is a specified itemset Y in the

consequent in the With clause, then for every two sub-

itemsets X1 and Y1 of the frequent itemset Z, where X4X1,

Y4Y1, X1hY1Zf and X1gY1ZZ, if the confidence of the

rule X1ZOY1 is no less than the user-specified minimum

confidence, then the rule X1ZOY1 is an association rule for

user requirements. If there is no items specified in the

consequent in the With clause, then for every two sub-

itemsets X2 and Y2 of each frequent itemset V, where X4X2,

X2hY2Zf and X2gY2ZV, if the confidence of the rule

X2ZOY2 is no less than the user-specified minimum

confidence, then the rule X2ZOY2 is an association rule

for user requirements.

In Case 2, for every two sub-itemsets X3 and Y3 of each

frequent itemset Z, where Y4Y3, X3hY3Zf and X3gY3Z
Z, if the confidence of the rule X3ZOY3 is no less than the

user-specified minimum confidence, then the rule X3ZOY3

is an association rule for user requirements.

For example, Query 1 means that the user would like to

find all the association rules whose antecedent and

consequent contain items A and C, respectively, from the

customer sequence database CSD (Table 1). The minimum

support and the minimum confidence are set to 5 and 20%,

respectively.

Query 1:

Mining hAssociation Rulesi

From hCSDi

With h(A,*),(C,*)i

support h5%i

confidence h20%i

After performing step 1, we can find all the frequent

1-itemsets and their supports. The set of the frequent

1-itemsets are {A, B, C, D, E, F}. Because (A, C) is a

frequent itemset, we go on Step 2. According to step 2, we

can obtain the candidate 3-itemsets (A, B, C), (A, C, D), (A,

C, E) and (A, C, F). After scanning bit-string database, the

generated 3-itemset database are shown in Table 3, and the

frequent 3-itemset is (A, C, E). Finally, the frequent itemsets

that contain the itemset (A, C) are (A, C) and (A, C, E).

According to step 4, because there is the specified itemset

(A) in the antecedent and itemset (C) in the consequent of
Table 3

3-itemset database for Query 1

CID 3-itemsets Bit string for each 3-itemset

1 (A, C, E) 001

2 (A, C, E) 0010
the discovered rules in Query 1, we can find three

association rules: (A)0(C, E), (A, E)0(C) and (A)0(C).
4. Mining interesting sequential patterns

In this section, we describe the proposed algorithm MISP

(Mining Interesting Sequential Patterns) for finding all the

interesting sequential patterns according to the user

requirements. For example, in Query 2, the user would

like to find all the sequential patterns which contain the

sequence h(E)(A)(B)i from the customer sequence database

(Table 1) and the minimum support threshold is set to 40%.

Query 2:

Mining hSequential Patternsi

From hCSDi

With h*,(E),*,(A),*,(B),*i

support h40%i

Suppose the user specifies a sequence which contains m

itemsets D1, D2, .and Dm in the With clause and SZh(D1)

(D2).(Dm)i. We divide the algorithm MISP for this type of

queries into two steps: the first step is to find (mC1)-

frequent sequences which contains sequence S, and the

second step is to find all the q-frequent sequences (qRmC
2) which contains sequence S. In the following, we describe

the two steps:

Step 1. Find all the frequent (mC1)-sequences

Step 1.1. Scan the bit-string database, if all items in S are

contained in a record, then output the items in this record

and the bit string for each item into 1-itemset database. If S

is a frequent sequence, then find all frequent 1-itemsets. The

frequent itemsets are found in each iteration. For the kth

iteration (kR1), the candidate (kC1)-itemsets are gener-

ated, and scan the (kC1)-itemset database to find (kC1)-

frequent itemsets.Finally, we output the frequent k-itemsets

and its bit string in each record into the frequent itemset

database.

Step 1.2. Each frequent itemset (i.e. frequent

1-sequence) is given a unique number, and replace the

frequent itemsets in the frequent itemset database with their

numbers to form a 1-sequence database.

For example, in Table 2, the records which contain the

sequence h(E)(A)(B)i in the With clause in Query 2 are CID

4 and CID 5, Hence, we can generate the frequent itemsets

(A), (B), (C), (D), (E), (F) and (B, D), and the numbers for

the frequent itemsets are 1, 2, 3, 4, 5, 6, and 7, respectively.

The 1-sequence database is shown in Table 4.
1-sequence database for Query 2

CID 1-sequence Bit string for each 1-sequence

4 1, 2, 3, 4, 5, 6, 7 010110, 101010, 001000,

100000, 010110, 000001, 100000

5 1, 2, 3, 4, 5, 6, 7 000100, 000010, 001000,

110111, 010000,010001,000010
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Step 1.3. Generate candidate 2-sequences, and scan

1-sequence database to generate 2-sequence database and

find all the frequent 2-sequences.

The candidate 2-itemsets are generated as follows: For

each frequent 1-sequence f except D1, the itemset D1 is

combined with the frequent 1-sequence to generate a

candidate 2-sequence. If there is a notation ‘*’ appears

before the itemset D1 in the With clause, then the candidate

2-sequence h(f)(D1)i is generated. If the notation ‘*’ appears

after the itemset D1, then the candidate 2-sequence h(D1)(f)i

is generated. If the reverse order of a candidate 2-sequence

is contained in the specified sequence S, then this candidate

2-sequence can be pruned.

For each record in the 1-sequence database, we use the

frequent 1-sequences in the record and apply the above

method to generate candidate 2-sequences. Suppose that the

two frequent 1-sequences X and Y in a record generate

candidate 2-sequence Z. We perform the sequential bit-

string operation on the two bit strings for the two frequent

1-sequences X and Y, and the resultant bit string is the bit

string for the candidate 2-sequence Z. If this bit string is not

zero, then output the candidate 2-sequence Z and its bit

string into 2-sequence database. After scanning 1-sequence

database, the 2-sequence database can be generated and the

candidate 2-sequences can be counted.

For Query 2, after scanning 1-sequence database

(Table 4), the generated 2-sequence database is shown in

Table 5, and the frequent 2-sequences are h(5)(1)i, h(5)(2)i,

h(4)(5)i, h(5)(3)i and h(5)(6)i.

Step 1.4. Generate candidate 3-sequences, and scan

2-sequence database to generate 3-sequence database and

find all the frequent 3-sequences.

The method to generate candidate 3-sequences is

described as follows: For every two frequent 2-sequences

S1Zh(D1)(r)i which is a sub-sequence of S and S2Zh(D1)(t)i

(or S1Zh(D1)(r)i and S2Zh(t)(D1)i), we can generate the

candidate 3-sequences h(D1)(r)(t)i and h(D1)(t)(r)i (or h(t)

(D1)(r)i).

Step 1.5. Frequent (hC1)-sequences (3%h%m) are

generated in each iteration. For the (hK2)th iteration,

we use frequent h-sequences to generate candidate (hC1)-

sequence, and scan h-sequence database to generate

(hC1)-sequence database, and find all the frequent

(hC1)-sequences.

The following method is used to generate candidate

(hC1)-sequences: For any two frequent h-sequence S1Z
h(s1)(s2).(shK1)(r)i and S2Zh(s1)(s2).(shK1)(t)i, in which

either h(s1)(s2).(shK1)i is a sub-sequence of S or (r) and (t)

are contained in S, the candidate (hC1)-sequences h(s1)(s2)
Table 5

2-sequence database for Query 2

CID 2-sequence

4 h(3)(5)i,h(4)(5)i,h(7)(5)i,h(5)(1)i,h(5)(2)i,h(5)(3)i,h(5)(6)i

5 h(4)(5)i,h(5)(1)i,h(5)(2)i,h(5)(3)i,h(5)(4)i,h(5)(6)i,h(5)(7)i
.(shK1)(r)(t)i and h(s1)(s2).(shK1)(t)(r)i can be generated.

If a generated candidate (hC1)-sequence contains more

than one itemsets which are not contained in S, then the

candidate (hC1)-sequence can be pruned.

For each record in the h-sequence database, we use the

frequent h-sequences in this record and the above method to

generate candidate (hC1)-sequences. For each generated

candidate (hC1)-sequence, we perform the sequential bit-

string operation on the two bit strings for the two frequent

h-sequences, which generate the candidate (hC1)-

sequence. The resultant bit string is the bit string for the

candidate (hC1)-sequence in this record. If the resultant bit

string is not zero, then output the candidate (hC1)-sequence

and its bit string into (hC1)-sequence database, and count

the support for the candidate (hC1)-sequence. After

scanning the h-sequence database, the (hC1)-sequence

database can be generated and the supports for the candidate

(hC1)-sequences can be computed.

For example, the frequent 3-sequences are h(5)(1)(2)i,

h(4)(5)(1)i, h(4)(5)(2)i, h(5)(3)(1)i, h(5)(3)(2)i, h(5)(1)(6)i and

h(5)(2)(6)i, and the generated candidate 4-sequences are h(4)

(5)(1)(2)i, h(5)(3)(1)(2)i, h(5)(1)(6)(2)i and h(5)(1)(2)(6)i.

After scanning 3-sequence database, the frequent

4-sequences are h(4)(5)(1)(2)i, h(5)(3)(1)(2)i and h(5)(1)(2)

(6)i.

Step 2. The frequent (mCnC1)-sequences (nR1) which

contain the specified sequence S are generated in each

iteration. For the nth iteration, we use the frequent (mCn)-

sequences to generate candidate (mCnC1)-sequences and

scan the (mCn)-sequence database and 1-sequence data-

base to generate (mCnC1)-sequence database in which the

candidate (mCnC1)-sequences are contained in each

record but the bit strings are not, and find the frequent

(mCnC1)-sequences.

The method to generate candidate (mCnC1)-sequences

is as follows: For every two frequent (mCn)-sequences

S1Zh(s1)(s2).(si)(r)(siC1).(smCnK1)i and S2Zh(s1) (s2)

.(sj)(t)(sjC1).(smCnK1)i (i%j), in which (r) is not

contained in S2 and (t) is not contained in S1, a candidate

(mCnC1)-sequence h(s1)(s2).(r).(t).(smCnK1)i can be

generated. For each record in (mCn)-sequence database,

we also use every two frequent (mCn)-sequences in this

record and apply the above method to generate a candidate

(mCnC1)-sequence, and perform the sequential bit-string

operations on the bit strings for the itemsets in the candidate

(mCnC1)-sequence by scanning the 1-sequence database.

If the resultant bit string is not zero, then output the

candidate (mCnC1)-sequence into the (mCnC1)-

sequence database, and count the support for the candidate
Bit string for each 2-sequence

000110, 010110, 010110, 000110, 001010, 001000, 000001

010000, 000100, 000010, 001000, 000111, 000001, 000010
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(mCnC1)-sequence. After scanning (mCn)-sequence

database, the (mCnC1)-sequence database can be gener-

ated and the frequent (mCnC1)-sequences can be found.

For the above example, according to step 2, the generated

candidate 5-sequences are h(4)(5)(3)(1)(2)i, h(4)(5)(1)(2)(6)i

and h(5)(3)(1)(2)(6)i. After scanning the 4-sequence data-

base, the frequent 5-sequences are h(4)(5)(3)(1)(2)i, h(4)(5)(1)

(2)(6)i and h(5)(3)(1)(2)(6)i. These frequent 5-sequences can

further generate candidate 6-sequence h(4)(5)(3)(1)(2)(6)i.

Step 3. For each frequent sequence, the code for each

itemset in the frequent sequence is replaced with the itemset

itself. If a frequent sequence is not contained in another

frequent sequences, then this frequent sequence is a

sequential pattern.

For the above example, the frequent sequences which

satisfy the user requirement in Query 2 are h(E)(A)(B)i, h(D)(E)

(A)(B)i, h(E)(C)(A)(B)i, h(E)(A)(B)(F)i, h(D)(E)(C)(A)(B)i,

h(D)(E)(A)(B)(F)i, h(E)(C)(A)(B)(F)i and h(D)(E)(C)(A)(B)

(F)i, and the sequential pattern is h(D)(E)(C)(A)(B)(F)i.
5. Experimental result

In this section, we evaluate the performance of

algorithms MIAR and MISP. For mining interesting

association rules, we use four datasets, IBM-Artificial,

BMS-POS, BMS-WebView-1 and BMS-WebView-2, to

evaluate the performances of MIAR algorithm in

comparison with constrained FP-growth algorithm

(Pei and Han, 2002). The first dataset was generated using

a transaction data generator obtained from IBM Almaden

(http://www.almaden.jbm.com/cs/quest//syndata.html #

assoc Syn Data) and we design the dataset as

T10I4D100K, which is often used in the association rule

research community. The last three datasets are the real-

world data sets used in KDD CUP 2000. BMS-POS dataset

contains several years worth of point-of-sale data from a

large electronics retailer. BMS-WebView-1 and BMS-

WebView-2 datasets contain several months worth of

clickstream data from two e-commerce web sites. Table 6

describes the four datasets in terms of the number of

transactions, the number of distinct items, the maximum

transaction size, and the average transaction size.

We also generate three queries to compare MIAR

algorithm with constrained FP-growth algorithm. For the

three queries, the With clauses in our mining language for
Table 6

Dataset characteristics

Number of

trans-

actions

Distinct

items

Maximum

transaction

size

Average

transaction

size

IBM-artificial 100,000 870 29 10.1

BMS-POS 515,597 1,657 164 6.5

BMS-webview-1 59,602 497 267 2.5

BMS-webview-2 77,512 3,340 161 5.0
Query1, Query2 and Query3 are (itemset, *)(*), (*)(itemset, *)

and (itemset, *)(itmeset, *), respectively, in which we

arbitrarily choose two frequent items in the itemset.

For all the datasets and the different minimum support

thresholds, Fig. 1 shows the relative execution times for

constrained FP-growth and MIAR for a generated query

Query 1. Fig. 2 shows the relative execution times for the

generated three queries in the dataset BMS-POS for

different minimum support thresholds. From Figs. 1 and 2,

we can see that the larger the database size or the larger the

minimum support threshold, the larger the performance gap

between constrained FP-growth and MIAR, and MIAR

outperforms constrained FP-growth. This is because when

the size of the dataset increases or the minimum support

decreases, the number of the frequent itemsets increases.

Hence, constrained FP-growth needs to take a lot of time to

construct more conditional pattern bases and conditional FP

trees to generate the large amount of frequent itemsets.

Furthermore, the initial FP-tree and some conditional FP-

trees cannot fit in main memory.

For MIAR, because the bit-string database is generated,

the support for each candidate can be counted by easily

performing logical AND operations. Although MIAR also

needs to construct itemset databases, the space for storing

the conditional pattern base and FP-tree are larger than the

space for storing the itemset database. In Fig. 2, because

there are more items specified in Query 3 than that of Query

1 and Query 2, there are more frequent itemsets generated

for Query 1 and Query 2 than that of Query 3. Hence,
Fig. 2. Relative execution times for dataset BMS-POS.



Table 7

Dataset characteristics

Number of

customers

Number of

transactions

Distinct

items

Average

number of

transactions

per customer

IBM-artificial 250,000 2,500,435 100,00 10

BMS-POS 515,597 3,367,020 1,657 6.5

BMS-webview-1 59,602 149,639 497 2.5

BMS-webview-2 77,512 358,278 3,340 5.0

Fig. 4. Relative execution times for dataset BMS-POS.

S.-J. Yen, Y.-S. Lee / Expert Systems with Applications 30 (2006) 650–657656
the performance gap is slightly larger for Query 1 and Query

2 than that of Query 3.

For mining interesting sequential patterns, we also use

three real-world data sets BMS-POS, BMS-WebView-1 and

BMS-WebView-2 used in KDD CUP 2000 and generate a

synthetic transaction data set C10-T8-S8-I8, in which C is

the average number of transactions per customer, T is the

average number of items per transaction, S is the average

length of maximal potentially frequent sequences, and I is

the average size of itemsets in maximal potentially frequent

sequences, to evaluate the performance of MISP algorithm

in comparison with PrefixSpan algorithm (Pei et al., 2001).

In the synthetic datasets, the number of customers is set

to 250,000, and the number of items is set to 10,000. The

synthetic datasets we used for our experiments were

generated using standard procedure described in (Agrawal

and Srikant, 1995). Table 7 describes the four datasets in

terms of the number of customers, the number of

transactions, the number of distinct items, and the average

number of transactions per customer.

We also generate three queries Query 1, Query 2 and

Query 3, in which the numbers of the specified items are 5, 3

and 2, respectively. Fig. 3 shows the relative execution

times for PrefixSpan (Pie et al., 2001) and MISP for Query

2. Fig. 4 shows the relative execution times for the

generated three queries in the dataset BMS-POS for

different minimum support thresholds.

The experimental results show that MISP outperforms

PrefixSpan algorithm, and the performance gap increases as

the minimum support threshold decreases because when the
Fig. 3. Relative execution times.
minimum support decreases, the number of the frequent

sequences increases, the number of the projected databases

increases and the size of each projected database also

increases, such that the performance is degraded for

PrefixSpan algorithm. Besides, PrefixSpan algorithm

needs to take extra time to pick the frequent itemsets from

the large amount of frequent itemsets to match the user

queries. However, for MISP, we only focus on the items

specified in user queries, that is, there is no redundant

frequent sequence can be generated. Hence, MISP can

significantly outperform PrefixSpan algorithm.

For the algorithm MISP, because there are more items

specified in Query 1 than that of Query 2 and more items

specified in Query 2 than that of Query 3, there are fewer

candidates, smaller bit-string database and smaller sequence

databases for Query 1 than that of Query 2 and for Query 2

than that of Query 3. Hence, the performance for executing

Query 1 is better than that of Query 2 and the performance

for executing Query 2 is better than that of Query 3.
6. Conclusion

In this paper, we introduce a data mining language. From

the data mining language, users can specify the interested

items or the sequences, and the minimum support and the

minimum confidence threshold to discover association rules

and sequential patterns.

We propose the efficient data mining algorithms MIAR

and MISP to process the user requirements. Our

algorithms can reduce the number of the combinations

of itemsets or sequences in each customer sequence for

counting the supports of the candidates, and reduce the

number of the candidates according to the user’s requests.

In order to improve the efficiency, we generate bit-string

database and itemset (sequence) databases and propose a

sequential bit-string operation for counting the supports

of the candidates by easily performing logical bit

operations. Although the bit-string database and itemset

(sequence) database cost extra memory space, it is more

important to reduce the response time for a data mining

query system.
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