
Associative Neural Network

IGOR V. TETKO$

Institute for Bioinformatics, MIPS, GSF, Ingolstädter Landstraße 1, D-85764 Neuherberg,

Germany and Biomedical Department, Institute of Bioorganic and Petroleum Chemistry,
Ukrainian Academy of Sciences, Murmanskaya 1, Kiev-660, 253660, Ukraine.
e-mail: itetko@vcclab.org

Abstract. An associative neural network (ASNN) is a combination of an ensemble of the feed-
forward neural networks and the K-nearest neighbor technique. The introduced network uses

correlation between ensemble responses as a measure of distance among the analyzed cases for
the nearest neighbor technique and provides an improved prediction by the bias correction of
the neural network ensemble both for function approximation and classification. Actually, the

proposed method corrects a bias of a global model for a considered data case by analyzing the
biases of its nearest neighbors determined in the space of calculated models. An associative
neural network has a memory that can coincide with the training set. If new data become

available the network can provide a reasonable approximation of such data without a need
to retrain the neural network ensemble. Applications of ASNN for prediction of lipophilicity
of chemical compounds and classification of UCI letter and satellite data set are presented.
The developed algorithm is available on-line at http://www.virtuallaboratory.org/lab/asnn.

Key words. associative memory, bias correction, classification, function approximation,
k-nearest neighbors, memory-based methods, memoryless, prototype selection

1. Introduction

The traditional multi-layer neural network (MLP) is a memoryless approach. This

means that after training is complete all information about the input patterns is stored

in the neural network weights and input data are no longer needed, i.e. there is no

explicit storage of any presented example in the system. Contrary to that, such meth-

ods as the k-nearest-neighbors (KNN) (e.g., [1]), the Parzen-window regression (e.g.,

[2]), etc. represent the memory-based approaches. These approaches keep in memory

the entire database of examples and their predictions are based on some local approx-

imation of the stored examples. The neural networks can be considered global mod-

els, while the other two approaches are usually considered local models [3].

Consider a problem of multivariate function approximation from examples, i.e.

finding a mapping Rm ¼> Rn from a given set of sampling points. For simplicity,

let us assume that n ¼ 1. A global model provides a good approximation of the glo-

bal metric of the input data space Rm. However, if the analyzed function, f, is too

$Address for correspondence: Dr. Igor Tetko, Institute for Bioinformatics, GSF - Forschungszentrum

für Umwelt und Gesundheit, GmbH Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.

Neural Processing Letters 16: 187–199, 2002. 187
2002 Kluwer Academic Publishers. Printed in the Netherlands.

complicated, there is no guarantee that all details of f, i.e. its fine structure, will be

represented. Thus, the global model can be inadequate because it does not describe

equally well the entire state space with poor performance of the method being mainly

due to a high bias of the global model in some particular regions of space. The same

problem of bias is also pertinent if neural networks are used for classification. The

MLP variance can also contribute to poor performance of this method [4]. However,

the variance can be decreased by analyzing a large number of networks, i.e. using

artificial neural network ensemble, and taking, for example, a simple average of

all networks as the final model. The problem of bias of MLP cannot be so easily

addressed simply by using larger neural networks since such networks can fall in a

local minimum and thus can still have a considerable bias. Thus, one of the motiva-

tion for this article is to provide a method that can estimate and correct bias of

neural networks for both regression and classification.

Sometimes in practical applications a user can be interested in analyzing new data

that will require extrapolation, or data that have some changes in their basic functional

properties compared to the training set. In both such cases we assume that the user

have some new data (‘fresh’ data) covering domains of his interest and such data

can be used to improve the existing model. One possibility to improve prediction abil-

ity of neural networks for the user’s data is to retrainMLPs including the fresh data or

to develop a model using exclusively the fresh data. Unfortunately, development of

neural networks is a time-consuming task and in some cases such calculations could

not be performed due to practical limitations of time, resources or privacy issues. It

is also possible that the amount of the fresh data could be very small and insufficient

to completely develop a new model. Thus, it will be important to have a method that

can improve performance of MLP for the prediction of data that are similar to the

user’s data, without a need to completely retrain the neural networks. It will be shown

that the proposed method provides a powerful solution to these problems.

The outline of the Letter is as follows. In first, I will briefly describe traditional

methods, such as KNN and ensemble of neural networks, and then introduce a

new method that is a combination of both these approaches. Two first examples, sine

function interpolation and classification of UCI data sets, will be used to show an

importance of bias correction for the improvement of neural network performance

in regression and classification studies. The three further examples, sine, Gauss func-

tion and identity function extrapolation will be used to demonstrate properties of

new method for prediction of data that have some features changed compared to

the training set. The last example will demonstrate an industrial application of lipo-

philicity prediction, that is an important physico-chemical parameter of molecules.

2. Methods

Let us consider a training set consisting of N input-output pairs fðx1; y1Þ;

ðx2; y2Þ; . . . ; ððxN; yNÞg; where xi is a vector of input parameters. Our purpose is to

predict y-value of a new data case x.

188 IGOR V. TETKO

2.1. DESCRIPTION OF THE KNN METHOD

KNN method was used as

zðxÞ ¼
1

k

X
jENkðxÞ

yðxjÞ ð1Þ

where zðxÞ is a predicted value for case x;NkðxÞ is the collection of the k nearest

neighbors of x among the input vectors in the training set fxig
N
i¼1 using the Euclidian

metric dðx; xiÞ ¼ kx� xik.

2.2. DESCRIPTION OF NEURAL NETWORK

In the current study ensemble of M ¼ 100 neural networks, if not mentioned other-

wise, was trained according to Levenberg-Marquardt algorithm [5]. Each neural net-

work had the same number of hidden neurons in one input hidden layer. The input

and output values were normalized to (0.1,0.9) interval and the sigmoid activation

function was used for all neurons. Half of the data cases were selected by chance

and were used as a training set for each neural network [6]. The remaining cases were

used as a validation set in the early stopping method [7]. Thus, each neural network

had its own training and validation sets. Following ensemble learning a simple aver-

age of all networks was used to predict the test patterns.

2.3. DESCRIPTION OF THE ASSOCIATIVE NEURAL NETWORK

Consider an ensemble of M neural networks

½ANNE	M ¼

ANN1

..

.

ANNj

..

.

ANNM

2
6666664

3
7777775

ð2Þ

The prediction of a case xi; i ¼ 1; . . . ;N can be represented by a vector of output

values zi ¼ fzijg
M
j¼1 where j ¼ 1; . . . ;M is the index of the network within the

ensemble.

½xi	
 ½ANNE	M ¼ ½zi	 ¼

zi1
..
.

zij

..

.

ziM

2
6666664

3
7777775

ð3Þ

As it was already mentioned, a simple average �zi ¼
1
M

P

j¼1;M

zij was used in this study to

predict the test cases with MLPs.

ASSOCIATIVE NEURAL NETWORK 189

In our previous studies [8] we proposed to use the square of linear Person’s corre-

lation coefficient [9] between the vectors of predicted values zi and zj as a measure of

similarity (proximity) of analyzed cases in the space of models. Other similarity mea-

sures, e.g. Spearman or Kendall’s non-parametric rank correlation could also be

used [17]. The current study was done with the Spearman non-parametric coefficient,

rij. For negative values of this coefficient rij < 0 a zero correlation rij ¼ 0 was used.

In some regions of data space the ensemble predictions �zi could have significant

bias. Such biases can be easily seen for neural network predictions at Figure 1A.

For example, all cases with x1 þ x2 ¼ p=2 have their predicted y-values that are

below the target value of the sine function y ¼ 1. In order to improve neural network

performance in such regions of space the ensemble predictions �zi were corrected

according to formula

�z0i ¼ �zi þ 1
k

X
j2NkðxÞ

ðyj � �zjÞ ð4Þ

where yi are the experimental values, NkðxÞ is the collection of the k nearest neigh-

bors of x among the input vectors in the training set fxig
N
i¼1 determined using Spear-

man non-parametric rank correlation coefficient rij, as described above. Since the

variance of ensemble prediction �zi can be made small by increasing a number of

neural networks in the ensemble, the difference ðyi � �ziÞ mainly corresponded to

the bias of the neural network ensemble for the case xi. Thus this formula explicitly

corrected the bias of the analyzed case according to the observed biases calculated

for the neighboring cases.

I refer to the proposed method as associative neural network (ASNN), since the

final prediction of new data is done according to the cases, i.e. prototypes of the ana-

Figure 1. A) Sine function y ¼ sinðx ¼ x1 þ x2Þ interpolation by neural networks with one (gray line) and

two hidden neurons (black line) trained using 100 cases (circles). B) ASNN results calculated with one hid-

den neuron (gray line) for the same example.

190 IGOR V. TETKO

lyzed example or associations, found in the ‘memory’ of the neural network. In the

considered example memory of ASNN is equal to the input training set. However,

there is no requirement that the memory should always coincide with the training

set. For example, if some new data become available to the user these data could

be used as the memory of neural networks. This provides a possibility to improve

neural network results for function extrapolation without a need to retrain their

weights.

3. Data Sets

An example of the sine function

y ¼ sinðxÞ ð5Þ

with dimension of vector x equal to 1 and 2 (such as x ¼ x1 þ x2) was used to

demonstrate bias correction and extrapolation of neural networks for the function

approximation. The training and test sets included N ¼ 100 and 1000 cases, respec-

tively, and the input values were uniformly distributed over the interval (0,p).
An extrapolation example for classification problem was developed according to

Marcus [10]. In this experiment strings of six binary digits were presented to an

auto-associate MLP trained to perform identity function. The networks had 5 hid-

den neurons and were trained on the 32 binary strings representing even numbers

in the range 0 . . . 64 [i.e., 0 0 0 0 0 0 . . . 1 1 1 1 1 0]. The test set (extrapolation) con-

sisted of 32 odd numbers in the range 1 . . . 63 [i.e., 0 0 0 0 0 1. . . 1 1 1 1 1 1]. Marcus

found that the network did not extrapolate the identity function to odd numbers.

Instead, the network would respond incorrectly, for example it would typically

respond to the input [1 1 1 1 1 1] with the output [1 1 1 1 1 0].

The performance of developed method for real data was analyzed using letters and

satellite data sets from the UCI Machine Learning databases [11] and a program to

predict lipophilicity of chemical compounds [12].

4. Results

4.1. SINE FUNCTION INTERPOLATION

This example was used to demonstrate properties of the proposed method for func-

tion approximation. The first analysis was performed using dimension of vector x

equal to 1. The number k ¼ 1 was selected to provide minimum leave-one-out error

(LOO) for the training set using KNN. This method calculated the root mean

squared error, rms=0.019, for the test set. A similar result, rms=0.022, was calcu-

lated by an ensemble of neural networks with 2 hidden neurons. The neural networks

had a larger bias and calculated a lower prediction ability, rms=0.24, when only one

hidden neuron was used. However, for both numbers of hidden neurons neural net-

works clearly underlined a significant bias and poor performance of this method near

maximum, x ¼ p=2, and tails, x ¼ 0 and x ¼ p, of the function.

ASSOCIATIVE NEURAL NETWORK 191

The performance of nearest neighbors was about an order of magnitude lower,

rms=0.16, k ¼ 2, if two-dimension input data were used. Thus, the Euclidian metric

used was not optimal for the KNN method and this method was unable to correctly

determine the nearest neighbors in the space of such variables. On the contrary, the

neural networks with one and two hidden neurons both provided results that were

very similar to the analysis using one-dimensional example, with rms=0.26 and

rms=0.025, respectively (Figure 1(A)). Thus, both types of networks correctly

learned the internal metric of the example, i.e. x ¼ x1 þ x2.

A use of ASNN given by (4) provided an improvement of the results of neural net-

works, and rms=0.025 and rms=0.008 were calculated following analysis of net-

works with one and two hidden neurons respectively (Figure 1(B)). The proposed

method improved performance of traditional neural networks in the regions were

they had significant bias. An increase of the number of hidden neurons further

improved performance of both methods. For example, with 5 hidden neurons

rms=0.012 and rms=0.005 were calculated by MLPs and ASNN, respectively.

Notice that a straightforward use of the nearest neighbor method in the space of

neural network models, i.e. if we discard �zi and �zj terms in (4), could not improve

neural network results beyond those calculated by the KNN in the original Euclidian

space, i.e. rms=0.033.

This example demonstrated that the MLPs provided a basic mapping of the input

space (i.e., they learned the physical metric of this space x ¼ x1 þ x2) while the use of

(4) provided a detailed adjustment of neural networks responses by a correction of

their biases. The prediction ability of the ASNN was improved in comparison to

both nearest neighbors and traditional neural networks.

4.2. CLASSIFICATION OF UCI DATA SETS

The classification tasks are traditionally used to compare different neural network

training algorithms. Two such data sets, ‘letters’ and ‘satellite’, from the UCI

Machine Learning databases [11] were used in the current study. The letters data

set contains 16000 training and 4000 test patterns, 16 input features and 26 classes

(A-Z) of machine-printed characters from 20 different fonts. The best result, 1.5%

errors, for the test set was calculated by Schwenk and Bengio [9] (Table I). The

authors achieved this result after careful study of different strategies of AdaBoost

Table I. Test error rates on the UCI data sets

Data set CART boosted1 C4.5 boosted2 MLP boosted3 ASNN

letter 3.4% 3.3% 1.5% 1.8%

sattelite 8.8% 8.9% 8.1% 7.8%

1results from [26];
2results from [27];
3results from [9].

192 IGOR V. TETKO

algorithm used to improve performance of neural networks. They applied quite large

neural network with two hidden layers, 16-70-50-26.

The cascade-correlation architecture [14] neural networks (100 networks in ensem-

ble) with a maximum number of 50 hidden units (i.e., 16� 50� 26 architecture) were

used in the current study. The training was performed with efficient partition algo-

rithm as described elsewhere [13] and 4.1% mistakes were calculated for the test set.

The use of the ASNN improved this result and only 1.8% mistakes were calculated

for the test set. This result is better than the first result, 2.0% of errors for the test set,

published for this data with the early version of the AdaBoost study by Schwenk and

Bengio [15].

The UCI ‘satellite’ dataset has 4435 examples for training and 2000 for testing.

The problem is to recognize 6 different classes of objects using satellite image data.

Schwenk and Bengio results [9] were calculated with 36-30-15-6 MLPs compared to

36� 50� 6 cascade-correlation architecture neural networks used in the current

study. The efficient partition algorithm calculated 8.2% errors for the test set. The

ASNN algorithm further improved this result to 7.8% test set errors, that is the best

published result for this set.

Thus, ASNN method improved performance of MLPs for the real-world applica-

tions and calculated results comparable with the best published results for the well-

known classification problems. Notice, that in the present study the calculated results

were obtained using much simpler architecture of neural networks. The performance

of the proposed method critically depends on the quality of neural network models.

Thus it is possible that the ASNN applied to the ensemble of neural networks trained

using AdaBoost algorithm would provide lower error rates for both UCI datasets.

4.3. SINE FUNCTION EXTRAPOLATION

An extrapolation problem was designed using two-dimensional sine function

(Figure 2). The neural networks with two hidden neurons were trained using 50 data

cases with x ¼ x1 þ x2 < p=2. The remaining 50 cases were not available for the

model development. Both MLPs and ASNN provided a flat response, y ¼ 1, for

all values x ¼ x1 þ x2 > p=2 and a prediction of the extrapolated data was poor

(rms=0.54). However, if missed data were used as the memory of the proposed

method, the network provided a satisfactory prediction of the function for

x ¼ x1 þ x2 > p=2 values, rms=0.034, without a need to retrain the neural network

weights. Notice that this error coincided with the nearest-neighbor result calculated

for this data in the one-dimensional space of x-values.

4.4 IDENTITY FUNCTION EXAMPLE

The neural networks trained using even numbers were unable to extrapolate odd

numbers for the identity function example, thus replicating the results of Marcus

[10]. In order to provide fresh information about the data to be extrapolated, the first

ASSOCIATIVE NEURAL NETWORK 193

number, 1, from the odd set [0 0 0 0 0 1] was used as the memory of ASNN. This

dramatically changed prediction ability of networks for the test sets and all odd

numbers were correctly mapped. This result was the same when any other odd num-

ber or a combination of such numbers were used as the memory.

4.5. GAUSS FUNCTION EXTRAPOLATION

In this example we considered a problem of prediction of a function that was chan-

ged (e.g. due to some non-stationarity in time) compared to the one used to develop

neural network model. The neural networks with two hidden neurons were trained

using two-dimensional sine function example (5) and then were used to predict

1000 data cases generated using

y ¼ expð�ðx1 þ x2 � p=2Þ2Þ ð6Þ

The neural networks provided large prediction error for such data, rms=0.12. On

the contrary, if 100 samples generated by (6), i.e. ‘user’s data’, were added to the

ASNN memory, this method predicted the test cases with rms=0.03. Thus, without

a need to retrain neural network weights it was possible to significantly improve per-

formance of neural networks for a prediction of a function that was different from

the one used to develop the neural networks model.

For this example one could calculate better result, e.g. rms=0.015 for neural net-

works with two hidden neurons, by developing model from scratch, i.e. using 100

Figure 2. Sine function y ¼ sinðx ¼ x1 þ x2Þ extrapolation. The MLPs (black line) trained with 50 cases

(open circles) such as x ¼ x1 þ x2 < p=2 provided a poor extrapolation of the sine function for

x ¼ x1 þ x2 > p=2 values. The response of ASNN with 50 cases (black rhombs) used as the memory of

this method (without retraining neural network weights) is shown as the gray line.

194 IGOR V. TETKO

samples generated by Gauss function. However, in some cases the amount of avail-

able user’s data could be insufficient to perform such modeling. For example, if only

10 cases generated by (6) were used to develop ASNN model from scratch, the neural

networks calculated a poor result, rms=0.34. This result could not be improved by a

use of a different number (1 to 10) of hidden neurons. However, the approximation

error of the ASNN developed with sine function data decreased in about two times,

rms=0.07, if the same 10 cases were used as the memory of these networks.

In the last three examples some properties of the test set (user’s data) were different

compared to those used in the training set. For example, some data were out of the

range of input variables or target function was modified. However, other underlining

properties (i.e., x ¼ x1 þ x2 or identity mapping of even numbers) were conserved for

both training and test sets. Actual discrepancy between the user’s data and the data

used to develop the model was small. This made possible for ASNN to ‘inherit’ the

knowledge about the conserved properties of the training set examples and to predict

new data using the dissimilarities between experimental and calculated values of the

user’s examples. To this extent ASNN ‘generalized’ the previous experience obtained

with the training sets and used it to provide a better model for the user’s data.

4.6. PREDICTION OF LIPOPHILICITY OF CHEMICAL COMPOUNDS

ALOGPS program (http://www.vcclab.org/lab/alogps) for the calculation of the

logarithm of n-octanol/water partition coefficient, logP, and water solubility of

molecules [16] was recently developed as described elsewhere [12, 17]. It was tested

at BASF AG (Germany) with 6100 in-house compounds with known experimental

logP values and the results of the analysis were reported to us [18]. The results cal-

culated using the ‘as is’ version of the program were quite poor and only 49% of

molecules were predicted with absolute error in the range from 0 to 0.5 log units.

This is in agreement with our previous finding indicating a low predicting power

of logP calculation methods whenever the training and testing set compounds are

coming from the non-homologous series [12]. However, when the BASF in-house

compounds were added to the memory of the ASNN (LIBRARY mode), the results

estimated by the built-in leave-one-out method were improved considerably and

80% of molecules were predicted within the same error range. The chemical com-

pounds usually remain a property of pharmaceutical companies and are not accessi-

ble for analysis and program development due to confidence restrictions. Thus, a use

of ASNN provides an exceptional possibility to develop reliable methods for pre-

diction of properties of such compounds without a need of their disclosure by

companies.

5. Discussion

When predicting a property of an object, a person uses some global knowledge as

well as known properties of other similar objects (local knowledge). The final predic-

ASSOCIATIVE NEURAL NETWORK 195

tion represents some weighted sum of both these contributions, and (4) provides a

simple model of such process. The underlining idea of this equation and of ASNN

is that clustering in space of models is better than the clustering in space of input

variables and that by considering the nearest neighbors in the space of models one

can easily correct the bias of the final model. This equation also proposes

how memoryless and memory-based methods could be combined to improve their

performances.

ASNN has two phases in the learning process. The first phase includes training of

neural network ensemble to correctly represent topology of the space. This is a dif-

ficult task and it has a long training time, e.g. it can correspond to acquisition of

driving experience by a person. The second phase provides bias correction according

to (4). This phase is used to optimize the number of neighbors, k, in order to fit better

the local features of the analyzed data. There are some clear situations in which user

should take into account local properties of the model to achieve an optimal perfor-

mance but in which the retraining of the global model is impossible due to limita-

tions in time and resources or due to a limited number of available samples.

For example, consider a situation when a small car driver rents a large van. Even

though that the new automobile has some specific features, only a slight adaptation

of local rules, corresponding to local bias correction, is required for him to drive the

van. Another similar example corresponds to the situation when a UK driver (left-

side driving) comes to France (right-side driving), i.e. when he has to discard his left-

side driving experience. The including of the local corrections makes it possible to

adapt the ‘old’ left-side driving experience with new knowledge and to achieve

quickly a good performance in the changed environment. In the next example the

same driver has to cross a river on foot. Again, the basic dynamic of his movement

that involves very complex interaction of muscles in the body remains the same as for

walking on the ground. However, some important changes to this behavior will be

done to move in water. Notice, that a requirement to re-train the ‘walking’ network

in order to optimize driver’s performance for movement in water does not make

sense, since the crossing of rivers is a very seldom event in his live. Therefore, a sim-

ple correction of his movement would be sufficient. On the other hand, if the driver

starts living in France permanently, the local features particular to driving in this

new environment will be eventually incorporated into the global model.

It is quite difficult for these three examples to separate problem of extrapolation of

new data and problem of prediction of function that is changed (in time) compared

to the function used to develop a model. The introduced neural network is able to

cope efficiently with both these problems. It is also important to mentions that using

such king of ‘on-fly’ learning, the ASNN is no more restricted to the range of values

used in the training set.

The ASNN has solid neurophysiological background. The recent theories of brain

coding suggest an importance of temporal coding for information processing in

brain [19, 20]. Analysis of speed of processing in the human visual system and par-

ticular features of this system (e.g., ability to recognize the same signals at different

196 IGOR V. TETKO

brightness of images) suggests an importance of the rank coding for information

processing [21]. To this extent, each network in the proposed method corresponds

to one spiking neuron and the ASNN itself corresponds to an ensemble of spiking

neurons processing some specific task. Thus assumption that the rank of spiking neu-

ron corresponds to its temporal delay (the first firing neuron has the highest rank)

makes the ASNN approach similar to the rank coding model of Thorpe [22]. There-

fore a detection of nearest neighbors by ASNN could be considered as recognition of

associative patterns performed by the brain. The proposed model does not explain

how such patterns are stored in the brain but suggests a mechanism of how these pat-

terns can be used to improve regression or classification with neural networks.

It will also be interesting to see, if other non-linear global approximation meth-

ods, such as learning vector quantization [23], support vector machine [24], polyno-

mial neural networks [25], etc., could be used instead of the feed-forward neural

networks. Another possibility to further develop the idea of ASNN is to investigate

whether other local regression techniques, e.g. multiple linear regression analysis

or even the ASNN itself, could be used instead of the KNN. The initial input

parameters could be also provided in addition to or instead of the correlation

coefficients.

The proposed method does not require more computational resources compared

to the traditional application of ensemble of neural networks. The KNN clustering

is computationally less expensive (orders of magnitude) than the training of the

ensemble. In all reported studies a comparison of ASNN was done with the corre-

sponding predictions of a similar size ensemble of neural networks, e.g., Schwenk

and Bengio [13] also calculated their results using an ensemble of 100 neural net-

works. A more detailed case study of the ASNN parameters, such as a use of differ-

ent similarity measures, number of neural networks in ensemble and strategies to

select the number of nearest neighbors can be found elsewhere [17].

Conclusions

The ASNN improves prediction of traditional neural network by correcting for bias

of this method. This can provide a significant increase in the performance of the

neural networks, as demonstrated using sine function example and UCI benchmark

datasets. If some new data are available and if their properties are changes compared

to the training set, the proposed method provides a fast adaptation of the previously

developed neural networks to such data without a need to retrain their weights.

Acknowledgements

This study was partially supported by Virtual Computational Chemistry Labora-

tory project, INTAS-INFO 00-0363, and SNSF 7-IP-062620 grants. I thank Igor

V. Litvinyuk, Steacie Institute for Molecular Sciences, Canada, and Roman

M. Borisyuk, University of Plymouth, UK, for their helpful suggestions, Hugo

ASSOCIATIVE NEURAL NETWORK 197

Kubinyi (BASF, Germany) for the testing of the ALOGPS program and anonymous

reviewers for their valuable comments.

References

1. Dasarthy, B.: Nearest neighbor (NN) norms, IEEE Computer Society Press, Washington,
DC, 1991.

2. Härdle, W.: Smoothing techniques with implementation in S, Springer-Verlag, New York,

1990.
3. Lawrence, S., Tsoi, A. C. and Back, A. D.: Function approximation with neural net-

works and local methods: bias, variance and smoothness, In: P. Bartlett, A. Burkitt

and R. Williamson (eds), Australian Conference on Neural Networks, Australian National
University, Australian National University, 1996, pp. 16–21.

4. Geman, S., Bienenstock, E. and Doursat, R.: Neural networks and the bias/variance
dilemma, Neural Computation 4 (1992), 1–58.

5. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.: Numerical Recipes
in C, Cambridge University Press, New York, 1994.

6. Tetko, I. V., Livingstone, D. J. and Luik, A. I.: Neural network studies. 1. Comparison of

overfitting and overtraining, Journal of Chemical Information & Computer Sciences 35

(1995), 826–833.
7. Bishop, M.: Neural Networks for Pattern Recognition, Oxford University Press, Oxford,

1995.
8. Tetko, I. V. and Villa, A. E. P.: Efficient partition of learning data sets for neural network

training, Neural Networks 10 (1997), 1361–1374.

9. Schwenk, H. and Bengio, Y.: Boosting neural networks, Neural Computation 12 (2000),
1869–1887.

10. Marcus, G. F.: Rethinking eliminates connectionism, Cognitive Psychology 37 (1998),
243–282.

11. Blake, E. K. and Merz, C. UCI repository of machine learning databases, http://www.ic-
s.uci.edu/�mlearn/MLRepository.html, 1998.

12. Tetko, I. V., Tanchuk, V. Y. and Villa, A. E. P.: Prediction of n-octanol/water partition

coefficients from physprop database using artificial neural networks and E-state indices,
J. Chem. Inf. Comput. Sci. 41 (2001), 1407–1421.

13. Tetko, I. V. and Villa, A. E. P.: An efficient partition of training data set improves speed

and accuracy of cascade-correlation algorithm, Neural Processing Letters 6 (1997), 51–59.
14. Fahlman, S. and Lebiere, C.: The cascade-correlation learning architecture, NIPS 2

(1990), 524–532.
15. Schwenk, H. and Bengio, Y. Adaptive boosting of neural networks for character recog-

nition, Université de Montréal, Montréal, 1997, pp. 1–9.
16. Tetko, I. V., Tanchuk, V. Y., Kasheva, T. N. and Villa, A. E.: Internet software for the

calculation of the lipophilicity and aqueous solubility of chemical compounds, Journal of

Chemical Information & Computer Sciences 41 (2001), 246–252.
17. Tetko, I. V. and Tanchuk, V. Y.: Application of associative neural networks for predic-

tion of lipophilicity in ALOGPS 2.1 program, Journal of Chemical Information & Com-

puter Sciences in press (2002).
18. Tetko, I. V.: Neural network studies. 4. Introduction to associative neural networks,

Journal of Chemical Information & Computer Sciences 42 (2002), 717–728.

19. Abeles, M.: Corticotronics: Neural circuits of the cerebral cortex, Cambridge University
Press, New York, 1991.

198 IGOR V. TETKO

20. Villa, A. E. P., Tetko, I. V., Hyland, B. and Najem, A.: Spatiotemporal activity patterns

of rat cortical neurons predict responses in a conditioned task, Proceedings of the
National Academy of Sciences of the Unites States of America 96 (1999), 1106–1111.

21. Thorpe, S., Fize, D. and Marlot, C.: Speed of processing in the human visual system,

Nature 381 (1996), 520–522.
22. Gautrais, J. and Thorpe, S.: Rate coding versus temporal order coding: a theoretical

approach, Biosystems 48 (1998), 57–65.

23. Kohonen, T.: Self-Organizing Maps, Springer, Berlin, 2001.
24. Vapnik, V.: The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
25. Tetko, I. V., Aksenova, T. I., Volkovich, V. V., Kasheva, T. N., Filipov, D. V., Welsh,

W. J., Livingstone, D. J. and Villa, A. E. P.: Polynomial neural network for linear and

non-linear model selection in quantitative-structure activity relationship studies on the
Internet, SAR & QSAR in Environmental Research 11 (2000), 263–280.

26. Breiman, L.: Arcing classifiers, Annals of Statistics 26 (1998), 801–824.

27. Freund, Y. and Schapire, R. E.: Experiments with a new boosting algorithm, In: L. Saitta
(ed.), Machine Learning: Proceedings of the Thirteen National Conference, Morgan
Kaufmann, 1996, pp. 148–156.

ASSOCIATIVE NEURAL NETWORK 199

