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GenSoFNN: A Generic Self-Organizing Fuzzy
Neural Network

W. L. Tung and C. QuekMember, IEEE

Abstract—Existing neural fuzzy (neuro-fuzzy networks pro- Existing neural fuzzy systems proposed in the literature can
posed in the literature can be broadly classified into two groups. pe broadly classified into two groups. The first group is essen-

The first group is essentially fuzzy systems with self-tuning .. . P .
capabilities and requires an initial rule base to be specified prior tially fuzzy systems with self-tuning capabilities and requires

to training. The second group of neural fuzzy networks, on the @n initial rule base to be specified prior to training [3], [13]. The
other hand, is able to automatically formulate the fuzzy rules second group of neural fuzzy networks, on the other hand, is
from the numerical training data. No initial rule base needs to be aple to automatically formulate the fuzzy rules from the numer-
specified prior to training. A cluster analysis is first performed ical training data [18], [22], [23]. No initial rule base needs to

on the training data and the fuzzy rules are subsequently derived i . s .
through the proper connections of these computed clusters. be specified prior to training. The main advantage that the latter

However, most existing neural fuzzy systems (whether they belong group of neural fuzzy systems has over the former is that they are
to the first or second group) encountered one or more of the not subjected to the Achilles’ heel of traditional fuzzy systems.
following major problems. They are 1) inconsistentrule-base; g is pecause the first group of neural fuzzy systems may have
2) heuristically defined node operations; 3) susceptibility to .. - L S . .
noisy training data and the stability—plasticitydilemma: and 4) difficulty in obtaining the initial rule base. Thatis, it may be dif-
needs for prior knowledge such as the number of clusters to be ficult to verbalize the knowledge of human experts or formalize
computed. Hence, a novel neural fuzzy system that is immune to them intoIF-THEN fuzzy rules if the system is complex. How-
the above-mentioned deficiencies is proposed in this paper. This ever, most existing neural fuzzy systems (whether they belong

new neural fuzzy system is named the generic self-organizingt the first d tered fthe fol
fuzzy neural network (GenSoFNN). The GenSoFNN network has o the first or second group) encountered one or more of the fol-

strong noise tolerance capability by employing a new clustering lowing major problems. They are 1) inconsistent rule-base; 2)
technique known as discrete incremental clustering (DIC). The heuristically defined node operations; 3) susceptibility to noisy

fuzzy rule base of the GenSoFNN network is consistent and training data and thetability—plasticitydilemma [17]; and 4)

compact as GenSoFNN has built-in mechanisms to identify and -
prune redundant and/or obsolete rules. Extensive simulations needs foprior knowledge such as the number of clusters to be

were conducted using the proposed GenSoFNN network and its Computed.
performance is encouraging when benchmarked against other A consistent rule base [21] is especially important for the

neural and neural fuzzy systems. knowledge interpretation of a neural fuzzy system. The fuzzy
Index Terms—Backpropagation (BP), compact and consistent rules extracted from the neural fuzzy network will be meaning-
rule-base, compositional rule inference (CRI), generic self-orga- |a55 ang/or obscure if a fuzzy label can be represented by more
nizing fuzzy neural network (GenSoFNN), laser data, learning .
vector quantization (LVQ), noise tolerance, one-pass learning, than one fuzzy set and these fuzzy sets are allowed to evolve dif-
rule pruning, traffic modeling and prediction, 2-spiral. ferently during the training phase. In addition, the operations of
the neural fuzzy network needs to be clearly defined and mapped
to formal fuzzy inference schemes such as the compositional
rule of inference (CRI) [35], approximate analogous reasoning
EURAL fuzzy networks are the realizations of the funcschema (AARS) [32], or the truth value restriction (TVR) [19].
tionality of fuzzy systems using neural networks [21]. Théf not, the inference steps of the neural fuzzy network become
main advantage of a neural fuzzy network is its ability to modégically heuristic and mathematically unclear.
a problem domain using a linguistic model instead of complex The choice of clustering techniques in neural fuzzy networks
mathematical models. The linguistic model is essentially afuziy also an important consideration. The established pseudo
rule base consisting of a set B£THEN fuzzy rules that are outer-product based fuzzy neural network (POPFNN) family
highly intuitive and easily comprehended by the human users dfinetworks [22], [23] has weak resistance to noisy/spurious
addition, the black-box nature of the neural-network paradigiraining data. This is due to the usepsrtition-basedtlustering
is resolved, as the connectionist structure of a neural fuzzy ngiehniques [7] such as fuzzy-means (FCM) [4], linear vector
work essentially defines the-THEN fuzzy rules. Moreover, a quantization (LVQ) [15] and LVQ-inspired techniques such
neural fuzzy network can self-adjust the parameter of the fuzag modified LVQ, fuzzy Kohonen partitioning (FKP) and

I. INTRODUCTION

rules using neural-network-based learning algorithms. pseudo FKP [1] to perform the cluster analysis. Such clustering
techniques requirgrior knowledge such as the number of
Manuscript received May 9, 2001; revised October 26, 2001. clustersC' present in a data set and are not sufficiently flexible
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Fig. 1. Structure of GenSoFNN.
the flexibility to incorporate new clusters of data after the Il. GenSoFNN
training has completed. This is known as gability—plasticity

. The training cycle of the GenSoFNN network (Fig. 1)
dilemma [17]. . consists of three phaseself-organizing, rule formulatiorand
Hence, a_novel neL_”f"" fu_zzy_system that.ls |mmune to gtb%rameter learning These are performed sequentially with a
above-mentioned deficiencies is proposed in this paper. Thgyje pass of the training data. The DIC clustering technique
new neural fuzzy system is named generic self-organizing fuziéydeveloped and incorporated into the GenSoFNN network
neural network (GenSoFNN). The GenSoFNN network aut@s aytomatically compute the input-output clusters from the
matically formulates the fuzzy rules from the numerical trainingmerical training data. The fuzzy rules are subsequently
data as compared against the ANFIS [13] and ARIC [3] modeisrmulated by connecting the appropriate input and output
and maintains a consistent rule base. Each fuzzy label in &]gsters during the rule-mapping phase of the training cycle.
input-output dimensions is uniquely represented by only o@nsequently, the popular backpropagation (BP) [26] learning
cluster (fuzzy set). The GenSoFNN network employs a nesigorithm based on negative gradient descent is employed to
clustering technique known as discrete incremental clusterifighe the parameters of the GenSoFNN network.
(DIC) to enhance its noise tolerance capability. DIC creates sep-
arate clusters for noisy/spurious data that have poor correlatjgn Structure of the GenSoFNN
to the genuine or valid data and does not reqpiier knowl-
edge of the number of clusters present in the training data set
addition, the proposed GenSoFNN network does not require e vector X = [w1,....25....om]7 represents the

predefinition of the number of fuzzy rules, as the rule formule?ﬁputS to the GenSoFNN. Each output no@&/,,, where

tion process is entirely data-driven. GenSoFNN is suitable for € {1,...,n5}, computes a single output denoted fy.

on-line applications as its training cycle takes place in a sing{§e vectoy” —= [Y1.- - Yms- - yns]T denotes the outputs of
pass of the training data. the GenSoFNN network with respect to the input stimuliis
This paper is organized as follows. Section Il describes th@ gddition the vectol) — [di,... dm, ... dns]T represents
general structure of the GenSoFNN and its on-line traininge desired network outputs required during the parameter
cycle. Section I1l presents the GenSoFNN-CRI(S) network théarning phase of the training cycle. The trainable weights of the
is developed by mapping the CRI inference scheme onto tB@nSoFNN network are found in layers 2 and 5 (enclosed in rect-
GenSoFNN structure. In Section 1V, the GenSoFNN-CRI(Snhgular boxes in Fig. 1). Layer 2 links contain the parameters of
network is evaluated using three different simulations and tise input fuzzy sets while layer 5 links contain the parameters of
performances are benchmarked against other neural and netlv@butput fuzzy sets. The weights of the remaining connections
fuzzy systems. Section V concludes this paper. are unity. The trainable weights (parameters) are interpreted as

The GenSoFNN network consists of five layers of nodes.
ach input noddV,,i € {1,...,nl1}, has a single input.
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the corners of the trapezoidal-shaped fuzzy sets computed by ayer 2:

the GenSoFNN network. They are denoted aadr (left and

right support points), and andv (left and right kernel points). Net;; = [P (Ziv,);  Zij = a®(Net, ;). )

The subscripts denote the presynaptic and postsynaptic nodes,

respectively. For clarity in subsequent discussions, the variableg@Yer 3: L

i, 4, k,1,m are used to refer to arbitrary nodes in layers 1, 2, 3, 4The feedforward operation is defined as follows:

and 5, respectively. The output of a node is denoted asd .3

the subscripts specify its origin. Netr, = FO (Za.gys o Zspus > Zintiin)
Each input noddV; may have different number of input Zg, =a® (Netg,) 4)

terms J;. Hence, number of layer 2 nodes ia2,” where

n2 = Z;;ll J;. Layer 3 consists of the rule nodé,, where

k = {1,...,n3}. At layer 4, an output term nod®Ly,, Z; ), =output of fuzzy labelL; ; connected to ruldz;.

may have more than one fuzzy rule attached to it. Each output ' |

node OV, in layer 5 can have different number of outpufrhe backward operation (for the self-organizing phase) is de-

terms L,,,. Hence, number of layer 4 nodes ia4;,” where fined as follows:

n4d = 2"5 L,,. In Fig. 1, the black solid arrows denote

m=1

where

backward
the links that are used during the feedforward operation b?etﬁzk D= 1) (Zapys s Zimyes -+ Zins )
the GenSoFNN network. The dashed, grey arrows denote the,(backward) _ (3) (Net(backward)) )
. . .. Ry — “backward Ry
backward links used during the self-organizing phase of the

training cycle of the GenSoFNN. The GenSoFNN networkhere
adopts the Mamdani’s fuzzy model [21] and tth fuzzy rule
Ry, has the form as defined in (1) Zm.p, = backward-based output of fuzzy laeL; ,,,

that is connected to rulB; (the subscripts are

Ri: IS 1L jy, - andeiis I j), ... and reversed to denote the backward flow of data).

Tn1 IS IL(nl,j)k then Y1 is OL(lyl)k - andym
is OL(lml)k . andyns is OL(l,na'))k (l) Layer 4: . . )

The forward operation is defined as follows:
where Netym = f® (Z},l;"”, 2 Zg;"”)
IL; ;), thejth fuzzy label of theth input that is Zi = a(4)(Netlm,,) (6)

connected td?,; and
OL(,m), thelth fuzzy label of thenth output to

which Ry, is connected. z}ﬁ;"ﬂ = first rule in GenSoFNN wittOL; ,,,

o , as part of its consequent;
Two motivations drive the development of the GenSoFNN net- (m) ) ,
work. The first is to define a systematic way of crafting the Zg, ~ = kthrule in GenSoFNN wittOL
linguistic model required in neural fuzzy systems and avoids as part of its consequent; and
the above-mentioned deficiencies faced by many of the existing Zg;"” = last rule in GenSoFNN wit®L; ,,,
neural fuzzy networks. The second motivation is to create a gen- as part of its consequent.
eralized network architecture whereby different fuzzy inference
schemes such as CRI can be mapped onto such a network vitle backward operation (for the self-organizing phase) is de-
ease. This closely relates to our definition of what a neural fuzfiyied as follows. The order of the subscripts has been reversed
network is. That is, a neural fuzzy network is the integratioto reflect the backward operation
of fuzzy system and neural network, whereby the operations of

where

the hybrid system should be functionally equivalent to a similar Nety, = f2 (Z,(,';’a“kward))
standalone fuzzy system. Hence, the operations and outputs of 4
Z"l:l = al(aa)ckward(Net"l,l) (7)

the various nodes in the GenSoFNN network are defined by the

fuzzy inference scheme adopted by the network. However, %

generic operations of the proposed GenSoFNN can be defined

as follows. The forward-based aggregation and activation func- Zr(r?ackward) = backward output of nod®V,,,.

tions of each layef are denoted ag'”? anda‘®, respectively,

wherel € {1...5}. In addition, the label Net defines the ag- Layer 5:

gregated input to an arbitrary node. The forward operation is defined as follows:
Layer 1: .

Netovm = f(o) (Zl,nm ceey Zl,nm ceey ZLm,m,)

Netry, = fP(x);  Ziv, = a™™ (Netry, ). (2 ym = a® (Netov,,) 8)
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where Membership I, = @ = T = SLOPE x (max(x,) - min(x,)) Membership 4, =, =T-a
L0 5, = b= T+ SLOPE x (max(x,) - min(x, )) 10 iy Vit [ =b6-T
Z m = output of nodeOL; ,,, in layer 4. '
The backward operation (for the self-organizing phase) is d . .
1 . “ r 5 ' 1:./ (5} !
fined as follows: (a) A newly created cluster 4, ,(x) (b) Cluster g, ;(x,)undergoes training
Netg}l)a‘:kward) = lEZkaard(d"l); . . . a . .
(5) backward Fig. 2. New cluster (fuzzy set) in DIC with respect to ttie input dimension,
ZS;aCkward) = O} ackward (1\161)5”8’C war )) (9) max(x;) = maximum input andmin(z;) = minimum input.

where . . . .
handle noisy/spurious data, as well as preserving the dynamism

d,, = themth desired output for the GenSoFNN network. Of partition-based clustering techniques.
1) DIC: The proposed DIC technique uses raw numerical
The detailed node operations are defined by the fuzzy inferenggues of a training data set with no preprocessing. In the cur-
system adopted by the GenSoFNN network. For instance, whent implementation, DIC computes trapezoidal-shaped fuzzy
the CRI [35] inference scheme utilizing the Mamdani’s implisets and each fuzzy label (fuzzy set) belonging to the same
cation rule [20] is mapped onto the GenSoFNN network as ifiput—output dimension has little or no overlapping of kernel
[31], the generic forward operation of rule noftg as specified with itsimmediate neighbors. This is similar to but does not have

by (4) are defined as the same restrictions agpaeudopartitiorf4] of the data space.
) The DIC technigue maintains a consistent representation of the
Netr, = 7 (Zagr - Zagper -+ Do i) fuzzy sets (fuzzy labels) by performing clustering on a local
={Zaw s 2y Ding b (10) basis. That is, the number of fuzzy sets for each input—output
Zr, = a'® (Netg, ) dimension need not be the same. This is similar to the ART

[10] concept. However, unlike ART, if the fuzzy label (fuzzy
set) for a particular input—output dimension already exists, then
(11) itis not “recreated.” Hence, DIC ensures that a fuzzy label is
uniquely defined by a fuzzy set and this serves as a basis to for-
L i mulate a consistent rule base in the GenSoFNN network. The
B. Self-Organization (Clustering) of GenSoFNN proposed DIC technique has five parameters: a plasticity param-
The proposed GenSoFNN network models a problem deter3, atendency parameter TD, an input threshold IT, an output
main by first performing a cluster analysis of the numericdhreshold OT, and a fuzzy set support parameter SLOPE.
training data and subsequently deriving the fuzzy rule base a) Fuzzy Set Support Parameter SLOPEach new
from the computed clusters. Generally, clustering techniquelsister in DIC begins as a triangular fuzzy set as shown in
may be classified intdierarchicatbased andgartition-based Fig. 2(a). The kernel of a new cluster (fuzzy set) takes the value
techniques. Hierarchical-based clustering techniques includgfdhe data pointI") that triggers its creation and its support is
single link[9] and complete linK2], [14]. The main drawback defined by the parameter SLOPE. As training continues, the
of hierarchical clustering is that the clustering is static, armuster “grows” to include more points, but maintains the same
points committed to a given cluster in the early stages canrahount of buffer regions on both sides of the kernel [Fig. 2(b)].
move to a different cluster. This violates our vision of a dyFhe same applies for the output clusters.
namic neural fuzzy system where the network can self-organize b) Plasticity Parameter3: A cluster “grows” by ex-
and self-adapt with changing environments. Prototype-bageahding its kernel. This expansion is controlled by the plasticity
partition clustering techniques, on the other hand, are dynarp@rametef3. A cluster expands its kernel when it is the best-fit
and the data points can move from one cluster to another undirster (has the highest membership value) to a data point and
varying conditions. However, partition-based clustering teckhis point has not yet appear within its kernel. The plasticity
nigues requirgrior knowledge such as the number of classgsarameter/s determines the amount a cluster (fuzzy set)
C in the training data. Such information may be unknowexpands its kernel to include the new data point. To satisfy the
and is difficult to estimate in some data set such as traffstability—plasticitydilemma [17], the initial value of; for all
flow data [29]. For classification tasks such as tt@rR and newly formed input—output clusters is preset to 0.5. The value
2-spiral problems, computing a predefined number of clustavgits 5 parameter decreases as the cluster expands its kernel.
C may not be good enough to satisfactorily solve the problemEhe first quadrant of a cosine waveform (Fig. 3) is used to
Moreover, partition-based clustering techniques suffer fromodel the change ¢f in a cluster.
the stability—plasticitydilemma [17] where new information The parametef in Fig. 3 is intuitively interpreted as the max-
cannot be learned without running the risk of eroding old (pré&num expansion a cluster (fuzzy set) can have and a parameter
viously learned) but valid knowledge. Hence, such deficienci8TEP controls the increment éffrom 0 to 1.57 rad. Hence,
serve as the main motivations behind the development of ttie amount of expansion a cluster can adopt decreases with the
discrete incremental clustering (DIC) technique. This nemumber of expansions.
clustering technique is not limited by the need to havier c) Tendency Parameter TDThe tendency parameter TD
knowledge of the number of clusters and is able to robustly analogous to a cluster’s willingness to “grow” when it is the

= 76{1{111}]1} {Z(l,j)k S Z(i,j)k e Z(nl,j)k} .
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Fig. 3. Modeling of the plasticity parametsr (a) High IT value (/T = 0.85) (b) Low IT value (IT=0.5)

Fig. 5. Effects of IT on clusters for theh input. (The same applies for OT

D and the output clusters.)
T(: =0)
0.50 =1 the membership value of the input (output) data point with re-
t=2) spect to the existing best fit input (output) cluster falls below the
predefined IT (OT), then a new cluster is created based on that
(1=3) data point. In addition, IT (OT) determines the degree of over-
- (t=4) Iapping of aninput (output) cluster with its immediate neighbors
L (t=5  _ No. of kernel 0 (see Fig. 5).
0.00 " expansion Hence, the larger the preset value of IT (OT), the closer are the
computed input (output) clusters. In order to prevent excessive
Fig. 4. Dynamics of the tendency parameter TD. overlapping of the input (output) clusters (whereby the fuzzy la-

bels become obscure or poorly defined), IT (OT) is predefined
best fit cluster to a data point that falls outside its kernel. Tra 0.5. The following algorithm performs clustering of the input
parameter TD complements the use of the plasticity paramesgace. (The same applies to clustering of the output space.) More
3. This is becausg only decreases with the number of times éetails on the DIC technique is reported in [30].
cluster expand its kernel. The parameter TD maintains the refdgorithm DIC

vance of a cluster and prevents it from incorporating too massume datasef = {XW ... X® . XU} wherePis
data points that has low “fitness” or membership values to théhe number of training vectors.
cluster. Otherwise, the kernel of a cluster may become overlyector X ¥ = {ng“), e ,ng“), .. .,xﬁf?} represents theth

large and the semantic meaning of the fuzzy label the clustanput training vector to the GenSoFNN network.
represents may become obscure and poorly defined. The initi&itialize STEP, and8LOPE € (0,0.5].

value of TD of a newly created cluster is preset at 0.5 and thél = 5 = TD = 0.5.

cluster stops expanding its kernel when TD reaches zero. Theor all training vectop € {1... P} do{

rate of decrease depends on the “fitness” or membership valueg-or all input dimensions € {1...n1} do{

of the data points that the cluster incorporates as shown in (12). If there are no fuzzy labels (clusters) in thhk input

With respect to nodéL; ; in Fig. 1 dimension(J; = 0)
g ” Create a new cluster using”
TP = TP + (A= TDIM) x (1 - piy(i)* (12)  Else dof
Find the best-fit clustewinnerfor xgm using (13).
whereA = —0.5 and u; ;(-) = membership function of
the noddL; ;. When TD is less than or equal to zero, the Winner = arg max {Nm (xgp))} (13)
cluster stops “growing” and sets its plasticity parameteo JClldi}

zero. It must be noted here thdt has to be less than zero, : .

. . Wherey; ;() =membership function of fuzzy lab#l; ,.
otherwise TD can never reach or exceed zero. This is because it " Y S IT * Membershio val terth
the value of the termil — 1, ;(;))? is in the range [0, 1) (The _ “if‘,[’;w““er%xild)*f embership value greaterthan
case whernu, ;(x;) = 0 is not valid as the point is then not |n8ud trelf 0 | otV " lustemWi «/
relevant to the expanding cluster). Herkjs defined as-0.5. pdate kernel oVinner™ grows clustenvinne

The dynamics of the parameter TD is illustrated by Fig. 4. Ege ¢ lust .mﬁp)
Hence, the less relevant the data points (with small member- ) Enrde?f Eégew cluster usi

ship values) a cluster tries to incorporate or absorb; the faster its )
TD decreases and vice versa. Thus, the tendency parameter 'Elllb End Foralki € {1...n1}
and the plasticity parametgmworks together to maintain the in- End Forallp € {1...P}
tegrity of the input clusters and the fuzzy labels they represel':rf.]d bic
The same applies for the output clusters.

d) Thresholds (IT and OT)The input (output) threshold, The parameters used in the DIC technique are constants ex-
IT (OT), specifies the minimum “fitness” or membership valueept for two: the STEP and SLOPE parameters. In the cur-
an input (output) data point must have before it is consideredrast implementation, the selection of the parameters STEP and
relevant to any existing input (output) clusters or fuzzy sets. #LOPE is heuristic and varies with different tasks. However,
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there are several guidelines to help in selecting suitable values
for these two parameters. A small STEP value results in “fat”

fuzzy sets with large kernels and vice versa. On the other hand,

a small SLOPE value results in steep slopes (nearly crisp fuzzy o o rs

sets) and the fuzziness of the fuzzy sets (input and output clus-
ters) increases as the value of SLOPE increases.

Are there
any
ules?

C. Rule Formulation of GenSoFNN

The fuzzy rules of the GenSoFNN network are formulated
using arule mappingprocess RuleMAP. Under the GenSoFNN

framework, ‘input space partition of rulé” (ISP}, ) is the col- Y Invoke all
lective term for all the input fuzzy labels (layer 2 nodes) that Create new rule ISPs and OSFs
contribute to the antecedent of rule noflg (refer to Fig. 1). ¢
Similarly, “output space partition of rulé” (OSP,) refers to Find best.f /SP and OSP:
all the output fuzzy labels (layer 4 nodes) that form the conse- BEST,g and BEST,q
guent of rule nodek;. During the rule mapping process, each

rule Ry, k € {1...n3}, activates its ISP and OSP. For the ISPs,

it means a firing of layers 1 and 2 of the GenSoFNN with the

input stimulusX feeding into layer 1. To activate the OSPs,

layers 4 and 5 are fired with the desired outputs (denoted by the meetemammg phase

vector D) feeding backward from the output nodes of layer 5.

The backward links depicted by the dashed, gray arrows in Fig. 1

are used for the activation of the OSPs. For riflg the ag-

gregated input due to the activation of It§P;, is denoted as

Fisp, (WhereFisp, = Zg, from (4)) and the aggregated input

due to the activation of it®SP,, is denoted ad'osp, [where

Fosp, = ng“k‘vard) from (5)]. Two user-defined parameters,

Thresisp andThresosp, govern the updating of the fuzzy rules

in GenSoFNN. Whgn_afuzzy rule is updated in QenSoFNN, tf&%_ 6. Flowchart of RuleMAP.

labels (fuzzy sets) in its ISP and OSP “grow” to incorporate the

input vectorX and the desired output vectd?r, respectively.

An existing ruleR;, must satisfy (14) to qualify for update tain the integrity and accuracy as well as the compactness of the
rule base, these redundant rules have to be deleted. The deletion

Fisp, > Thresisp and Fogp, > Thresosp. (14) of ppsolete and redundant rules is performed at the end of each

training epoch.

: . 1) Deletion of Redundant and/or Obsolete Rul&sach rule
The flowchart of the rule mapping process RuleMAP with thﬁodeRk is time-stamped with a training epoch numiseduring

embedded self-organizing and parameter learning phases is REreation. The training epoch numbEiis initialized at zero

se_r:_Ledfas Ft!g. g tLinkidentifies th . b prior to the start of the training cycle and increases with the it-
€ TunctiontstLinkidentiies the proper CoNNECUons b4 4iinn of the training data set. Whenever a thjeis updated,

t\llveen ;he 'gpm fude{hlabeI? (I?;er 2 r;ogels), lthe fuzzy rdul- time-stamp reflects the current training epoch number. Rules
(layer no ?S) an € output fuzzy labels (layer - NOUCH time-stamp that is more than a training epoch old are con-
Overlapping input—output labels are annexed and their respg

. . . o i {dered as obsolete/redundant rules and are deleted at the end of
tive rules are combined if necessary to maintain a _c_onS|stent rHl% current training epoch.
base. A new rulé?,.,, and a new input space partitid8P, ..,

are created in tandem to the creation of a new output space parti- .

tion OSP .. This is to prevent the crafting of ambiguous ruleg)' Parameter Learning of GenSoFNN

where an ISP maps to two or more OSPs (that is, the same conthe backpropagation learning equations for the parameter
dition maps to different consequent). This same reason promigarning phase depends on the fuzzy inference scheme adopted
the creation of a nedSP,,.,, when bothBestigp andBestosp by the GenSoFNN network. In Section 11, the GenSoFNN-
are connected to different rules. Details on the rule mappi@RI(S) network is presented. GenSoFNN-CRI(S) is created by
process RuleMAP is described in [30]. The process RuleMARapping the CRI [35] inference scheme together with the Mam-

is responsible for the structural learning of the GenSoFNN netani implication rule [20] onto the generic structure of the Gen-
work. The crafted rule base is consistent but not compact, 88FNN network. Singleton fuzzifiers are implemented in layer
there may be numerous redundant and/or obsolete rules. Reduof the GenSoFNN-CRI(S) network in order to logically map
dant and obsolete rules are the results of the dynamic trainthg operations of the network to the CRI inference scheme.
of the GenSoFNN where the fuzzy sets of the fuzzy rules arence, the “(S)” in the network’s name refers to the singleton
constantly tuned by the backpropagation algorithm. To maifuzzifiers.

Meet
termination
criterion?
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[ll. GenSoFNN-CRI(S) TABLE |
PREDEFINED GenSoFNN-CRI(S) ETWORK PARAMETERS
Section Il described the basic structure and training cycle of

the GenSoFNN network. However, the operation and the outy = LGenSoFNN-CRUS) nefwork parameters o
X i asticity parameter (DIC), £ =0.5 Learning constant (back-propagation), z = 0.005
of the various nodes in the GenSoFNN network have yet  Tendency parameter (DIC). 7D = 0.5 Targot error ..., - 0.00003

be defined. This is resolved by mapping an inference scher "t threshold (Self-organisation phase), 1T =0.5 | Thres,y, = Thresyys= 05

onto the basic GenSoFNN architecture. Subsequently, the g 2P reeld Selforsaniarion phase) OF 20,5 | Maximum number of epoch 0 rin, £pochy, = 50
tions describing the learning operations (of the backpropaga-

tion algorithm) for the parameter learning phase in the training 2-Spirals

cycle of the GenSoFNN network can be derived. These equa- ]
tions are used to tune the fuzzy sets of the term nodes in layers LR
2 and 4. The GenSoFNN-CRI(S) network results from map- o
ping the CRI [35] reasoning scheme (with Mamdani’'s impli- § 05
cation rule [20]) onto the basic GenSoFNN architecture. The
GenSoFNN-CRI(S) network has the same structure as the basic 02 |
GenSoFNN network (Fig. 1). The CRI inference scheme pro- 1
vides a strong fuzzy logic theoretical foundation for the opera- o 02 o4 08 os 1
tions of the GenSoFNN-CRI(S) network. This ensures the op- '

erations of the GenSoFNN-CRI(S) network imitate that of thelg. 7. 2-spiral problem.

human cognitive process. Please refer to [31] for details on how

the mappings are performed. 100

«-w-- Class 0
—w——Class 1

IV. SIMULATION RESULTS AND ANALYSIS

The GenSoFNN-CRI(S) network is evaluated using three dif-
ferent simulations: 1) 2-Spiral classification, 2) traffic predic-
tion; and 3) time series prediction of a set of laser data. The
background of the data sets and the objectives of the simulations

are given in the respective sections. For all the simulations, t'}_:‘s 8. 2-spiral results of GenSoFNN-CRI(S) versus SLOPE HlEP =

—&— Test Set
- - -~ Training Set

% correct
classification

8 & 8 8§

0.05 0055 006 0065 007 0075 008
SLOPE

parameters specified in Table | are used. 0.01.
A. 2-Spiral Classification 417 — -1
, e , = 0.4 < ”) and o, = "= D (19
The 2-spiral classification problem is a complex neural-net- 416 64

work benchmark task developed by Lang [16]. The task involves2n — 1 = Class 0 and 2n = Class 1. (18)
learning to correctly classify the points of two intertwined spi-
rals (denoted here as Class 0 and Class 1 spirals, respectivalipre are two inputs and a single output. During atraining epoch,
The two spirals each make three complete turns in a two-dimehe outermost Class 0 point is presented first followed by the out-
sional (2-D) plane, with 32 points per turn plus an endpoint, termost Class 1 point and the sequence continues, alternating be-
taling 97 points per spiral (Fig. 7). tween the two spirals and moving toward the center of each spiral.
Langet al.[16] reported that this problem cannot be solve#ig. 8 is drawn to show the effect of the parameter SLOPE on the
using a conventional feedforward neural network based on ttassification rate of GenSoFNN-CRI(S) for the 2-spiral task.
BP learning algorithm. Instead, they proposed a special netw@éth the training and test sets are used in the evaluation.
with a 2-5-5-5-1 structure that has 138 trainable weights. In [5], It is seen that the classification rate of the training set is not
the fuzzy ARTMAP system is trained using the standard 2-spiraffected by the change in the parameter SLOPE that varies from
data set consisting of 194 points [16]. Evaluation of the fuzy.05 to 0.075 and maintains at 100%. That is, all the 194 points
ARTMAP is performed using the training set as well as a teate correctly classified. However, the classification rate of the
set that consists of two dense spirals, each with 385 points. fest set decreases rapidly from 100%S&OPE = 0.05 to
the evaluation of the proposed GenSoFNN-CRI(S) network, t8¢.3% atSLOPE = 0.075. It is probably due to the increased
training set is the standard 2-spiral data set consisting of 18#ziness of the clusters (fuzzy sets) that result from a larger
points. The test set consists of two dense spirals with 385 poiSisSOPE. As fuzziness of the clusters increases, more uncer-
each (as in [5]) and is generated using (15) to (18).#0ct tainty and ambiguity arises between the fuzzy sets (due to gen-

{1,...,385} tler slopes). Hence, the test set, which contains a higher density
of points packed into two spirals, gives a poorer classification
27 =1-2"Y and 2"V =7, sina, +0.5 rate with increasing SLOPE as points appearing between the

(15) fuzzy (uncertain) regions of clusters are subjected to high prob-
ability of wrong classification. Table Il shows the best classi-
=mncosan +0.5  fication results for the 2-spiral task using GenSoFNN-CRI(S),
(16) Fuzzy ARTMAP [5] and Lang’s proposed neural structure [16].

xé?n) —1_ xé?nfl) and xé?nfl)
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TABLE 1l Traffic Density of 3 LanCeVs2 along PIE (Site29)
BEST CLASSIFICATION RESULTS IN 2-SPIRAL SIMULATIONS Cvl -« CV3

- -
>

-
-

2
€ s

Al inlecture | oSt ser 770 paints) | TRRTRIRG ok U194 Boina) & 41% g
Lang’s 2-5-5-5-1 structure 92.8% 100% E 3
Fuzzy ARTMAP 100% 100% TE' 1
GenSoFNN-CRI(S) 100% 100% 2‘6 0

P
@
> AN
o

0.68
0.94
0.23

Lang et al. considered the task as completed when each
the 194 points in the two spirals used for training produces i [ —L1 Density L2 Density ——L3 Density |
output within 0.4 of its target output value. On the other hand,

Carpenteet al.used the most stringent criteria to train the fuzzyig- 9. Traffic density of three straight lanes along PIE.
ARTMAP system using the standard 2-spiral data set in order to

obtain 100% classification for the dense spirals [5]. As a resUfapce a high accuracy indéR?) of 0.740 678 [Fig. 10(a)]. The

the fuzzy ARTMAP system creates 194 ART categories for th€ansoFNN-CRI(S) is able to predict the peaks and the troughs
standard 2-spiral data set that contains 194 points. In COMPgfthe traffic density of lane 1 accurately. However, as the time
ison, GenSoFNN-CRI(S) achieves 100% classification for boffveryal () increases, more errors are observed in the subse-
the standard 2-spiral data set as well as the dense spirals Wi n; predicted trends. This is illustrated by Fig. 10(b)—(e). The
only 23 fuzzy sets in each of the two input dimensions. This Ofscreased errors are particularly more obvious at the peaks and
curs when SLOPE is 0.05 and a total of 156 rules are creag%iughs of the predictions far = 30, 45, and60 min. The in-

(@s compared to fuzzy ARTMAP’s 194 categories). Moreovetyaased errors for longer time intervals are expected as more
the output responses of the GenSoFNN-CRI(S) network 10 hfcertainties set in for larger values of The squared errors
194 points in the standard 2-spiral data set are all within 0.01 gf - the predictions also show that more errors are expected

the desired value, as compared to the value of 0.4 specified Qyne peaks than the troughs. This is probably due to the sharp

Lang. transitions and oscillations in the traffic density characterizing
the peaks. The mean squared errors (MSESs) for the different
B. Traffic Prediction predictions in Fig. 10(a)—(e) at = 5 to 60 min are shown by
This simulation is conducted to evaluate the effectivenessfaf). 10(f). Hence, Fig. 10(f) shows that the accuracy of the pre-
the GenSoFNN-CRI(S) network in universal approximation argtictions decreases as the time intervacreases.
data modeling using a set of traffic flow data. The raw traffic The same set of experiment is repeated using the multilayer
flow data for the simulation was obtained from [29]. The datperceptron (MLP) [17] network with four input nodes, ten
were collected at a site (Site 29) located at exit 15 along th&lden nodes and one output node. The structure of the MLP
east-bound Pan Island Expressway (PIE) in Singapore (see fgpdecided after several experiments. The bipolar sigmoidal
pendix A) using loop detectors embedded beneath the road dunction with an output range of{1, 1] is used as the activation
face. There are a total of five lanes at the site, two exit lan&gction for the hidden and output nodes. The traffic density
and three straight lanes for the main traffic. For this experimetata set has to be normalized to a range of [0, 1] to fit the data
only the traffic flow data for the three straight lanes were compoints into the output range of the bipolar sigmoidal function.
sidered. The traffic data set has four input attributes. The folihe input nodes simply relay the input signals to the hidden
attributes are time and the traffic density of the three lanes. Thedes. The MLP network is trained with the backpropagation
purpose of this simulation is to model the traffic flow trend aalgorithm. During the prediction phase, the network functions
the site using the GenSoFNN-CRI(S) network. The trained Gein-a feedforward mode. The average accuracy of the predictions
SoFNN-CRI(S) network is then used to obtain prediction fdenoted asAvg R?) by GenSoFNN-CRI(S) and the MLP
the traffic density of a particular lane at a timer 7, where across the three cross-validation groups (CV1, CV2 and CV3)
T = 5,15,30, 45 and60 min. Fig. 9 shows a plot of the traffic asr increases from 5 to 60 min for all the three lanes are shown
flow density data for the three straight lanes spanning a periwda plot as Fig. 11.
of six days from 5th to 10th September 1996. Comparing against the results of the GenSoFNN-CRI(S), the
For the simulation, three cross-validation groups of trainingLP achieves better predictions initially (when= 5 and15
and test sets are used. They are CV1, CV2, and CV3. Timns). However, for predictions when = 30 to 60 mins, the
training windows are labeled as such in Fig. 9. The square MLP network experienced a drastic drop in its accuracy. This
the Pearson product-moment correlation val{tienoted ag2?)  drop in the accuracy of the predictions is obvious among all the
[8] is used to compute the accuracy of the predicted trafftbree lanes. In addition, the trained MLP is a black box and the
trends obtained using the GenSoFNN-CRI(S) network. Thiaeguistic rules defining the traffic flow pattern cannot be ex-
predictions made by the GenSoFNN-CRI(S) network-fer 5 tracted from it. Hence, the GenSoFNN-CRI(S) network may not
to 60 minutes for lane 1 traffic density (using CV1 as trainingpe as accurate as the MLP in the initial predictions, but it offers
set) are shown in Fig. 10. The squared errors of each predictmhetter overall performance from= 5 to 60 mins. In addition,
are also included for analysis. an intuitive set of fuzzy rules can be extracted from its trained
When prediction is made at 5-min intervals, the predictestructure to describe the dynamics of the traffic conditions. This
trend follows very closely to the actual traffic density trend;ontrast in prediction accuracy for different time intervals also
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Fig. 10. Prediction of lane 1 density using GenSoFNN-CRI(S) (Training set is CV1).

0.9

s TABLE Il
0ss | BENCHMARKING OF SIMULATION RESULTS OFTRAFFIC PREDICTION
- »
08{ w—-R Neiwork JLane i Vae (%) [ Lane 2 Var(t%) [ Lone 3 Var (%)) Avg Var (%)
b N \\ = Lans 1MLP Falcon-FCM(CL) 2417 9.32 3047 21.32
0.75 1 s . s+ Lane 2-MLP Falcon-MLVQ(CL) 36.41 25.94 30.21 30.85
® el N\ e Lane 3MLP Falcon-FKP(CL) 23.87 2200 35.19 27.05
5 0.7 A AN ~ & - Lane 1-GCRI(S) Falcon-PFKP(CL) 27.81 21.05 28.25 25.70
oes | < AL ~ R ~ a - Lane 2-GCRI(S) Falcon-MART 20.78 15.47 20.58 18.94
- N \3‘ — = —Lane 3-GCRIS) GAMFFRC 24.76 22.48 24.52 23.92
06 | ‘\\\ \ MLP (4-10-1) 33.24 33.10 34.38 33.57
T e GenSoFNN-CRI(S) 19.64 19.58 21.09 20.10
0.55 - R
E
05 .
5 15 30 45 60

rules from numerical data. However, an analysis of the detailed
results in [6] and [25] reveal that the accuracy of the predictions
Fig. 11. Avg R? versus time interval- for GenSoFNN-CRI(S) and MLP is poor as compared to that of the GenSoFNN-CRI(S) networ_k.
(4-10-1). Moreover, the results of the GAMFFRC system cannot be easily
reproduced, as GA is a search paradigm that derives its strength
reveals that the proposed DIC technique has a better noise HS}M randomness. In addition, the numbers of fuzzy rules and
dling capability than the MLP network. The results of the Ger{tZ2Y labels have to be predefined in the GAMFFRC system
SoFNN-CRI(S) network are subsequently benchmarked agaifi@f! the fuzzy rules derived by the GAMFFRC system may not
that of other neural and neural fuzzy systems in Table III. be consistent, as there is no control over the evolution of the
Two indicators are used for the benchmarking of the vario(l&Z2Y labels. Table Il shows that GenSoFNN-CRI(S) has supe-
systems. The firstindictor is “Var” (the changeArg B2 value rior performance to all the networks except Falcon-MART [24].
from+ = 5 min tor = 60 min expressed as a percentage of thléovyever, Falcon-MART uses more than 200 rules fqr the sim-
former) and the second indictor is “Avg Var,” the mean w grulation as compared to the 120-130 fuzzy rules derived by the
values across all three lanes. These two indicators reflect fAENSOFNN-CRI(S) network.
consistency of the predictions made by the benchmarked s%s- ] ) o )
tems over the time interval whenchanges from 5 to 60 min C- Time Series Prediction Using Laser Data
across the three lanes. Table Il shows that the performance oThe third simulation uses a set of laser data [11] from the
the GenSoFNN-CRI(S) network compares favorably against tBanta Fe Institute (hereby denoted as SFI) time series predic-
Falcon-class of networks [25] and the GAMFFRC system [6],teon and analysis competition [34]. The laser data is publicly
GA (Genetic algorithm) [17], [28] based system that is able @vailable at SFI [27]. The original laser data set from the SFI
automatically construct fuzzy membership functions and fuzzpmpetition consists of 1000 observations of the fluctuations in

Time Interval (mins)
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Fig. 13. Continuation of the laser series of length 100 by GenSoFNN-CRI(S).
Fig. 12. Laser data used in the SFI competition.

TABLE IV
a far-infrared (FIR) laser. The task is to use these 1000 pointS  BENCHMARKING OF SIMULATION RESULTS OFLASER SERIES

and try to predict the continuation of the series for the next 100
points (i.e., observations at 1001st—1100th time instants). The

System

plot of the first 1000 observations in the laser data set is shown Delay Coordinate Embedding (DCE) 0.080
as Fig. 12. Network with Internal Delay Lines (IDL) | 0.028

The laser data time series has relatively simple oscillations Feedforward (200-100-1) 0.770
(though gradually increasing) but has global events that are Feedforward (50-20-1) 1.000
hard to predict (the rapid decay of the oscillations). In order to Feedforward (50-350-50-50) 0.380
train the GenSoFNN-CRI(S) network for the prediction task, a GenSoFNN-CRI(S) 0.244

training set is generated using the 1000 points in the laser data
set. This training set consists of five inputs and one output. The
data points in the training set are governed by proposed by Sauer (DCE) and Wan (IDL) [34]. A major factor
contributing to the large NMSE value of 0.244 as compared
w(t) = Fa(t = 1), 2(t = 2),2(t = 3),2(t — 4), 2(t = 5)) against DCEs 0.080 and IDLs 0.028 is the failure by the
(19) GenSoFNN-CRI(S) to closely approximate the characteristic
of the laser series at the point of rapid decay in the oscillations.

\:vhe_retﬁ(t) |stthfeﬂr:e>;_t outpu: tobbe prt—i:[(_ilctéi(%i; 1%’ e ’alj.(t_ This is probably because the DCE and IDL structures are better
‘))}'S. € setotthe five past observations, (e noniinear equipped to capture distinct temporal information, which is
function relating the next observation to the five past observa-

. . . very significant in prediction task with sudden, varying global
tions which the Ge_nSoFNN.—C.:RI(S) tries to model. Hende) events as in the case of the rapid decay in oscillations for the
acts as the output in the training set whillgt — 1), ..., z(t — laser data time series

5)} forms the inputs, antl e {6...1000}. '

The predicted continuation of the time series by GenSoFNN-
CRI(S) for the laser data for the next 100 time instants is given
in Fig. 13. The true continuation to the laser series is shown adn this paper, a novel neural fuzzy architecture named
the darker of the two plots. GenSoFNN is proposed. The CRI fuzzy inference scheme [35]

The predicted continuation of the laser series by the Gemsing Mamdani's implication [20] is subsequently incorpo-
SoFNN-CRI(S) network is accurate except at the point ofited into the general structure of the proposed GenSoFNN
rapid decay of the oscillations. However, the general trend oétwork to create the GenSoFNN-CRI(S) network. In this way,
the decay (as seen by the similar transitions) is still capturdte operations and outputs of the various nodes in the Gen-
by GenSoFNN-CRI(S) and the continuation of the predictiocBoFNN-CRI(S) network are clearly defined and have a strong
thereafter is fairly accurate as shown by Fig. 13. A measurefofzzy logic foundation. This ensures that the functionality of
prediction accuracy is given by the normalized mean-squardg GenSoFNN-CRI(S) network is similar to that of the human

V. CONCLUSION

error (NMSE) [34] cognitive process.
N The key strength of the GenSoFNN-CRI(S) network is that
NMSE — 1 Z(xi ) (20) an intuitive and consistent fuzzy rule base describing the dy-
aiN = namics (behavior) of the problem domain can be extracted from

its trained structure. The GenSoFNN-CRI(S) network maintains

where . . a consistent fuzzy rule base by ensuring that each fuzzy label in
xz; true value of theth point of the series of length; the rule base is represented by only one cluster (fuzzy set). The
Z; predicted value; fuzzy rule base formulated by the GenSoFNN-CRI(S) network

is consistent as well as compact. That is because redundant or
obsolete fuzzy rules are pruned off at the end of each training
epoch. This maintains the integrity of the derived fuzzy rule
A value of NMSE= 1 corresponds to simply predicting the avbase and ensures that the dynamics (behavior) of the problem
erage of the time series. The NMSE value is used as an indicalomain is properly modeled. The GenSoFNN-CRI(S) network
to benchmark against the results reported in [34]. employs a new clustering technique called DIC to compute the
As can be seen from Table IV, the prediction by Gerrapezoidal-shaped fuzzy sets during its self-organization phase.
SoFNN-CRI(S) is more accurate than all the feedforwatdIC is superior to partition-based clustering techniques such as
networks of various structures but inferior to the system&/Q [15] and FCM [4]. It does not requirgrior knowledge of

o2 variance of the true time series during the
prediction intervalV.
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(1]

(2]

(3]

(4]
(5]

(6]
(7]

(8]
(9]
[10]

(11]

(12]

[13]

[14]

.(b)

[15]
(a) Location of Site 29 along PIE (Singapore). (b) Actual site at exit 15.
[16]

Fig. 14.

the number of classes in the data set and has good noise-tolgy7
ance capability.
In addition, the GenSoFNN-CRI(S) network does not require
o - . L C g
an initial rule base to be specified prior to training, which is a
prerequisite for systems like ANFIS [13] and ARIC [3]. This [19]
removes the tedious task of having to translate subconscious
knowledge of a problem domain inte-THEN fuzzy rules. The [20]
GenSoFNN-CRI(S) network has great flexibility to include new
training data and new fuzzy rules even after training terminateg21]
This is a great contrast to the POPFNN [22], [23] class of nethz]
works where the rule base is fixed after training. In the latter,
incorporating new fuzzy rules or new clusters of data usually
mean a retraining for the entire system. [23]
The performance of the GenSoFNN-CRI(S) network is evalu-
ated using three simulations: 1) 2-Spiral classification; 2) traffiqo4;
prediction; and 3) time series prediction using a set of laser data.
The results of the GenSoFNN-CRI(S) network have been e 55
couraging when benchmarked against other neural fuzzy sys-
tems and traditional systems such as the MLP network.
[26]
APPENDIX A

The site location (Site 29) at which traffic flow data for the
X . . - 27]
second experiment s collected is as shown in Fig 14. The arrom{§8]
show the direction of traffic flow.
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