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Abstract— We investigate the use of genetic algorithms to play
real-time computer strategy games and focus on solving the
complex spatial reasoning problems found within these games.
To overcome the knowledge acquisition bottleneck found in using
traditional expert systems, scripts, and decision trees as done in
most game AI, we use genetic algorithms to evolve game players.
The spatial decision makers in these game players use influence
maps as a basic building block, from which they construct and
evolve influence map trees containing complex game playing
strategies. With co-evolution we attain ”arms race” like progress,
leading to the evolution of robust players superior to their hand-
coded counterparts.

I. INTRODUCTION

Gaming and entertainment drive research in graphics, mod-
eling and many other computer fields. Although AI research
has in the past been interested in games like checkers and
chess [1], [2], [3], [4], [5], popular computer games like
Starcraft and Counter-Strike are very different and have not
received much attention from researchers. These games are
situated in a virtual world, involve both long-term and reactive
planning, and provide an immersive, fun experience. At the
same time, we can pose many training, planning, and scientific
problems as games where player decisions determine the final
solution.

Developers of computer players (game AI) for these games
tend to utilize finite state machines, rule-based systems, or
other such knowledge intensive approaches. These approaches
work well - at least until a human player learns their habits
and weaknesses - but require significant player and developer
resources to create and tune to play competently. Development
of game AI therefore suffers from the knowledge acquisition
bottleneck well known to AI researchers.

By using evolutionary techniques to create game players
we aim to overcome these bottlenecks and produce players
which can learn and adapt. The games we are interested in
are Real Time Strategy (RTS) games. These are games such
as Starcraft, Dawn of War, Supreme Ruler (Figure 1), or Age
of Empires [6], [7], [8], [9]. Players are given cities, armies,
buildings, and abstract resources - money, gold, saltpeter. They
play by both allocating these resources, to produce more units
and buildings, and by assigning objectives and commands to
their units. Units carry out player orders automatically, and the
game is usually resolved with the destruction of other player’s
assets.

Fig. 1. Supreme Ruler 2010

Games are fundamentally about making decisions and ex-
ercising skills.

”A good game is a series of interesting decisions.
The decisions must be both frequent and meaning-
ful.” - Sid Meier

RTS games concentrate player involvement primarily around
making decisions, in contrast to some genres such as racing
games which require a high degree of skill. While varying
greatly in content and play, RTS games share common foun-
dational decisions. Most of these decisions can be categorized
as either resource allocation problems: how much money to
invest on improving my economy, which troops to field, or
what technological enhancements to research; or as spatial
reasoning problems: which parts of the world should I try
to control, how should I assault this defensive installation, or
how do I outmaneuver my opponent in this battle.

Our overall goal is to evolve systems to play RTS games,
making both resource allocation and spatial reasoning deci-
sions. Previous work has used genetic algorithms to make
allocation decisions within RTS games [10]. For this re-
search we explore the possibilities of evolving spatial decision



makers, a key component of RTS game AI. These spatial
decision making systems would be responsible for looking at
the game world and deciding to build a base here, to put a
wall up there, to send a feigning attack over there, and then
to lay siege to that city. RTS games have, by design, a non-
linear search space of potential strategies, with players making
interesting and complex decisions which often have difficult
to predict consequences later in the game. Using genetic
algorithms we aim to explore this unknown and non-linear
search space. We represent spatial decision making strategies
within the individuals of a genetic algorithms population. The
game theoretic meaning for strategy is used here - a system
which can choose an action in response to any situation [11].
Then we develop a fitness function which evaluates these
decision makers based upon their in-game performance - many
games already tabulate a players performance automatically. A
genetic algorithm then evolves increasingly effective players
against whatever opponents are available. Due to the number
of games and evaluations required to reach competent players
we first use hand-coded automated opponents for this phase of
the research. Co-evolution is the natural extension of playing
against hand-coded opponents, whereby we evolve players
against each other, with the goal of increasing game playing
competence and strategic complexity.

In this paper we develop a spatial decision making system
within the context of a 3D computer RTS game. We describe
the game within which we test the system, evolving players
first against static hand-coded opponents and later against
another population of co-evolving players. Results present
analysis of the genetic algorithms performance, including
the behaviors produced by the system. Finally we discuss
directions for the continuation of this research, and future
work.

II. REPRESENTATION

Each individual in the population represents a game-playing
strategy. We use influence maps to represent spatial features.
Influence maps evolved out of work done at spatial reasoning
within the game of Go [12] and have been used sporadically
since then in games such as Age of Empires [9].

A. Influence Maps

An influence map (IM) is a grid placed over the world,
which has values assigned to each square based on some
function which represents a spatial feature or concept. The IM
function could be a summation of the natural resources present
in that square, the distance to the closest enemy, or the number
of friendly units in the vicinity. Figure 2 is a visualization of
an influence map, on the left you have the game world which
has two triangle units in it. On the right is an influence map,
where the IM function is based upon distance to triangles.
The highest valued points are those which are the closest to
triangles, which are brighter in the visualization.

Several IM’s are created and then combined to form the
spatial decision making system. For example create two in-
fluence maps, the first using an IM function which produces

Fig. 2. Influence Map - Left − > Game World, Right − > Influence Map
representing proximity to the Triangles

high values near vulnerable enemies, the second IM function
producing high negative values near powerful enemies. Then
combine those two influence maps via a weighted sum. High
valued points in the IM resulting from the summation, are
good places to attack - places where you can strike vulnerable
enemies while avoiding powerful ones. The final step is to
analyze the resultant IM and translate it into orders which
can be assigned to units. In this example we take the highest
valued point, and tell our troops to attack there.

The set of IM functions and their parameters be applied to
produce answers for any situation, so they can encapsulate a
decision making strategy. Each IM conveys simple concepts:
near, away, hide, attack; which combine together to form
complicated behavior - hide near neutral units until your
enemy is nearby then attack. In our work we encode the
IM functions and their parameters within the individuals of a
genetic algorithm, which we then evolve with standard genetic
operators. Previous work [13] evolved a neural network which
took every square from every IM as an input, and produced the
squares of the final IM as output. Our system has the flexibility
to evolve both the influence maps and their final combination,
and since the combination operators are simple arithmetic
operators the system is more transparent and therefor easier
to analyze.

B. Influence Map Combinations

To allow for more generalization we combine IM’s within
a tree structure instead of the traditional list [12]. Each tree
represents a complete decision making strategy, and is encoded
within the individuals of a genetic algorithm. Leaf nodes
in the tree are regular IM’s, they use functions to generate
their values based on the game-state as before. Branch nodes
perform operations upon their children’s values in order to
create their own values. The kinds of processing performed by
the branch node include standard arithmetic operators, such as
a weighted sum, or multiplication, as well as more complex
processing such as smoothing or normalization functions.

Influence map trees are a generalization of the traditional
method of using a weighted sum on a list of influence
maps [12]. They also allow for the variety of specialized pro-
cessing done on influence maps in many commercial games.



For example, Age of Empires uses multi-pass smoothing on
influence maps to determine where to construct buildings.
IMTrees were designed to contain all the important informa-
tion about influence maps within one structure. The IMTree
structure can then be encoded as an individual in a population,
including 1) the structure of the tree, 2) which IM functions
to apply at each node, 3) which parameters to use in those
functions, and 4) any processing to be done. With crossover
and mutation operators we can then evolve towards more
effective spatial decision making strategies. This is in many
ways similar to genetic programming, but taken in the context
of spatial reasoning. Next, we explore the effectiveness of this
system in the context of a naval combat game - Lagoon.

III. THE GAME - LAGOON

We developed Lagoon, a Real-Time 3D naval combat sim-
ulation game. Figure 3 shows a screen-shot from the bridge of
one destroyer which is about to collide with another destroyer.
The world is accurately modeled, and the game can be played
from either the helm of a single boat or as a real-time strategy
game with players commanding fleets of boats. The complex-
ities of the physics model are particularly demanding on the
players, as the largest boats take several minutes to come to
a complete stop. To deal with these and other complexities,
Lagoon has a hierarchical AI system which distributes the
work. At the top level sits the strategic planning system being
developed by our group, this system allocates resources and
assigns objectives to the various groups of boats. Behavior
networks then carry out those orders for each individual
boat, following proper naval procedure within the complexities
and constraints of the physics model. They then relay their
desired speeds and headings to a helmsman controller, which
manipulates the various actuators and effectors on the boats -
rudders and rpm settings to the engines.

Fig. 3. Lagoon

A. The Mission

To test influence map trees we created the mission shown
in Figure 4. Two small cigarette boats - triangles, attempt to
attack an oil platform - pentagon, which is being guarded by a
destroyer - hexagon. The cigarette boats are fast and maneuver-
able, and equipped with rocket propelled grenade launchers.
Their primary advantage over the defending destroyer is that
they can quickly accelerate, decelerate and turn. The destroyer
on the other hand is quite fast, with a higher top speed then
the attacking cigarette boats, but it takes a significant period
of time to change speeds or turn. The six-inch gun on the
destroyer has been disabled for this mission, requiring it to
rely upon machine gun banks mounted on its sides.

This mission was chosen as it was relatively simple, and
it required the players to understand the effectiveness of their
units, with the attacker being able to coordinate a group attack.
We also chose this mission because we could develop hand-
coded players for both sides easily. In many ways this is more
of a tactical than a strategic mission, in that there are few
boats on each side, and no ”complex long term” decisions to
make such as where to place a base. We think of this mission
as an initial test of our ability to evolve effective spatial
decision making strategies. Future work would be tested on
missions involving large numbers of boats and more complex
interactions.

Fig. 4. Mission

B. Influence Map Tree Implementation

Each unit in the game - the two cigarette boats and the
destroyer, have an influence map tree instantiated and assigned
to them. The two attackers have duplicate IMTrees, so we are
evolving a single attacking strategy for all situations. The IM’s
calculate the value of their squares with IM functions based
on which units are near those squares as shown in Figure 5.
Units in the world add various circles of influence to each IM



- increasing the values assigned to all squares around those
units. The IM function must first determine which units it
considers relevant, this is based on a parameter which we
encode in the GA. It can be either the unit the IMTree is
assigned to, other friendly units, neutral units, or enemy units.
The next issue, and GA parameter, is how large of a circle to
use, with the IM either using the weapons radius of the unit
it is assigned too, the weapons radius of the unit the circle
is around, or a large fixed radius. Next, the IM determines
how much to increment values within the circle. Each unit
has an abstract power or strength rating associated with it,
which gives a general idea how powerful that unit is in combat.
The IM can either use this strength rating, or it can use the
value of that unit. The next issue is how to distribute values
within the circle. In Figure 5 we increased the value of each
square within a circle by one, regardless of its distance to the
unit the circle is centered around. The IM function can also
distribute values with a bias towards the center, so points near
the center get the maximum value and as you move towards
the perimeter you get less and less points. There is an also an
inverse distribution, giving maximum points at the perimeter
and zero points in the center. All of these options to the IM
function are parameterized, and encoded within individuals
in the genetic algorithm. To allow fine tuning of each IM,
two coefficient parameters are also encoded. The first directly
scales the radius of the circle used for each unit - this is bound
within (0,4]. The second directly scales the values given to
squares within the circle - bound within [-10,10].

Fig. 5. Influence Map Implementation

Branch nodes in the IMTree can be any of the four basic
operators - addition, subtraction, multiplication, and division.
There is also an ”OR” branch node which takes the largest
values from its children at each point. The OR node generally
functions as the root of the tree, choosing between the various
courses of actions contained within its children. With these

nodes we then constructed players for both sides, tuning and
testing them over a few games.

Our hand-coded attackers work by using an OR node on two
child subtrees. The first subtree represents an attack behavior
which takes the weighted sum of three nodes. The first node
has high values near vulnerable enemies, the second has
large negative values near powerful enemies, and the third
has negative values near other friendly units, to keep them
from bunching up. The second subtree represents a run away
behavior, which the cigarette boats should use if the destroyer
gets too close, it works by multiplying an IM with high values
away from the destroyer, and an IM with high values near
the assigned unit. The defender counters this with a similar
tree, once again using an OR node on two subtrees. The first
behavior puts the destroyer in-between any attackers and the
oil platform, it works by multiplying high values near valuable
friendly units with high values near powerful enemies. The
second behavior keeps the destroyer near the oil platform in
the direction facing the attackers if it has nothing else to do,
it is a multiplication of high values in close proximity to the
oil platform, with high values in a very large are around the
attacker. Both of these IM trees worked reasonably well, with
the attackers trying to out-maneuver the defender while the
defender diligently defends the oil platform.

We found that our hand-coded attackers were easily defeated
by our hand-coded defender. The defender was effective, stay-
ing near the oil platform until the cigarette boats approached.
The destroyer would then put itself between the cigarette boats
and the oil platform, blocking them from getting too close.
If they continued to approach it would fire upon them and
destroy them. The cigarette boats would try to out-maneuver
the destroyer, taking advantage of their maneuverability to get
to the far side of the oil platform where they thought they could
attack with impunity. They had a hard time getting from one
side of the destroyer to the other however, often entering its
field of fire and being destroyed. To improve upon this we
turned to evolutionary techniques, allowing the GA to evolve
IMTrees for controlling units in our game.

IV. EVOLUTION

We evolved our players with a non-generational genetic
algorithm with roulette wheel selection, one point crossover
and bitwise mutation. Crossover took place with 75% prob-
ability, and the bitwise mutation probability was chosen to
give on average two bit mutations per child. At this initial
phase we were not evolving the structure of the tree, purely the
parameters and coefficients for each IM. The GA uses the same
structure as our hand-coded attackers and defenders. More
complicated missions and strategies would likely require a
more complex tree, but we found this structure to be sufficient
for our desired behavior.

A. Encoding

The GA packs all the parameters for each IM in the IMTree
into a bit-string, with fixed point binary integer encoding for



the enumerations and fixed point binary fraction encoding for
the real valued parameters and coefficients.

B. Evaluation and Fitness

To evaluate each individual we play them against an oppo-
nent and examine the results of the match. Fitness is calculated
as fitness = damagedone− damagereceived at the end of
the game, which makes it a zero-sum two player game.

V. RESULTS

We originally expected the attacker to develop an attack-
distract strategy, with one cigarette boat distracting or occu-
pying the destroyer while the other cigarette boat attacks the
oil platform. We expected the defender to loiter around the
oil platform, chasing off any attackers which come nearby.
We found our hand-coded attackers were relatively ineffective
against the defender. So we first evolved the attackers IMTree
against our hand-coded defender. We analyze the behaviors
produced by the resultant IMTree, and comment upon its
effectiveness. Then we evolved the defenders IMTree against
the evolved attacker. We analyze the behaviors it produces,
commenting upon how they have reacted to the attacker. Fi-
nally we evolve the two populations simultaneously, describing
the behavior within the system.

A. Results: Evolving the Attacker

The GA evolved our attackers IMTree against the hand-
coded defender, using a bit-string of length 198 bits. The GA
evaluated 1000 individuals against our hand-coded defender.
We graph the fitness of the best, worst, and average individual
in the population after each evaluation in Figure 6. While
we ran the system multiple times, we will discuss a single
representative run which illustrates the results we consistently
achieved. The 205th attacker found a strategy for which the
defender had no effective response, this strategy is shown in
Figure 7. The attackers make a quick pass on oil platform from
the far side of the destroyer before it can reach an effective
cruising speed, and then sail off into the sunset. The defender
patrols around the oil platform afterward, but the attackers
never attempt a second pass. The attackers weapon does good
damage, but has a very long reload time, so the single pass
attack does significant damage without presenting risk to the
attackers. The destroyer starts at rest and takes a long period
of time to reach its maximum speed. This gives the attackers
enough time to make it to the far side and attack while it is
still accelerating. Once the destroyer has picked up speed it
is difficult for the attackers to avoid being intercepted before
they can get within range of the oil platform. Therefor it makes
sense for the attackers to do what damage can be done easily,
and then run away. To test if this behavior was dependent on
the initial mission layout, we randomized the location of the
attackers and still consistently evolved this behavior.

B. Results: Evolving the Defender

The evolved attackers were effective against the hand-coded
defender, doing damage and fleeing before retaliation could

Fig. 6. Min/Max/Avg of Attackers Evolving Against a Hand-coded Defender

Fig. 7. Behavior Exhibited by Evolved Attacker

be enacted. We next re-ran the genetic algorithm to evolve
the defenders IMTree, to see if it could find a counter to the
attackers strategy. The fitness of individuals in the population
are shown in Figure 8. The defender cannot stop the attackers
from making their initial pass. What it did do was learn to
duplicate the attackers run-away behavior. The defender does
not learn to follow the attackers, only to run off in the same
direction they run off in by duplicating that part of their tree.
In doing so it abandons the oil platform, leaving it totally
vulnerable to any other attacking strategy. However, as the
destroyer has a higher top speed than the cigarette boats,
it eventually chases them down and annihilates them. This
over specialized behavior was effective against the attackers



strategy, but was very ineffective against any other strategy.
If the attackers wait for a short while at the beginning of the
mission, the defender will leave the area and then they are
then free to attack the oil platform at their leisure.

We found both the offensive and defensive strategies to be
fragile, the attackers had no avoidance plan if the defender
came after them, and the defender was only effective if the
attackers ran off in that direction. This was a problem of over
specialization and failed generalization, and to overcome it we
turned to co-evolution.

Fig. 8. Min/Max/Avg Fitness of a Defender Evolving against the Evolved
Attacker

Fig. 9. Behavior Exhibited by Evolved Defender

C. Co-Evolution

Co-evolution occurs when the evaluation of an individ-
ual is dependent upon other individuals. We implemented
co-evolution with a traditional two population model, with
one population containing attacking strategies, and the other
containing defending strategies. We evaluated individuals by
playing them against un-evaluated individuals in the other
population, with fitness calculated as before. The goal being
an ”arms race” whereby each side is constantly innovating new
strategies in order to better their opponent.

D. Results: Co-evolving Attackers and Defenders

To implement co-evolution we run two genetic algorithms -
one evolving attackers, and one evolving defenders. We play
unevaluated members from each population against each other,
and calculate fitness as before. Again we allowed each GA
to evaluate 1000 candidate strategies. Figure 10 shows the
minimum, maximum, and average fitness in the two popu-
lations over time. Examination of the individuals produced
at various stages helped elaborate on the dynamics present
within the system. The attackers quickly duplicated their one
pass attack as they had done before. Several evaluations later
the defender learned to chase them down as it had down
before. The attackers then learned to circle around the defender
and attack the oil platform again. The defender then learned
a good generalized behavior, alternating between patrolling
near the oil platform and chasing off the most threatening
attackers. The attackers then settled into a hit and run behavior,
where they try to get to the far side of the destroyer to
attack from as shown in Figure 11. Both attacker and defender
learned generalized behaviors, similar to those we had tried to
develop in our hand-coded behaviors. The co-evolved versions
were generally superior however, with the attackers frequently
out-maneuvering the destroyer, and the destroyer vigorously
defending the oil platform.

Fig. 10. Min/Max/Avg Fitness’s of Attacker / Defender Co-evolving



Fig. 11. Behavior of Co-evolved Units

VI. CONCLUSIONS AND FUTURE WORK

Co-evolved influence map trees were capable of producing
competent behavior inside our RTS game. While our mission
was relatively simple, and the IMTrees were used more as
operational controllers than as strategic planners, the IMTrees
functioned adequately. The behaviors produced were relatively
similar to our hand-coded strategies, but were generally more
robust. They were produced without an excess of evaluations,
and could be evolved within an hour. Both attacker and
defender were of sufficient quality to be used as opponents
for humans playing the game. Our results indicate that co-
evolving IM Trees is a promising technique, with the potential
to evolve strategic players who learn to use complex strategies
to win long-term games.

The final plans produced by co-evolution were effective, but
not as coordinated as we had originally hoped. The desired
behavior was that of a coordinated attack-distract strategy,
which we rarely saw the attackers exhibit. This limitation
is due to our implementation of the IMTrees, primarily in
how they were bound to individual units. Each tree was being
used as an individual unit controller. Both trees are identical,
differing only in the influence maps relative to the assigned
unit, so it is difficult for the attackers to keep from going
to the same point. Also since the tree we provided to the
GA was relatively small, there was no room for complexity
on the level of effective group coordination to emerge. More
recent work appears to overcome this problem by using a
single influence map tree to represent each side. The IMTree
produces a list of objectives and a rough description of which
units would be best for them. An allocation GA then allocates
individual units and groups to these objectives. This has thus
far produced superior results with the attackers effectively
coordinating against the defender, and is the primary direction
for our current research. The other avenue of future work

is that of increasing the complexity present in the mission
and the game. An element of stealth has been added to the
game, where attackers can hide behind neutral boats in order
to approach and hide undetected. Neutral traffic is also being
used, requiring the destroyer to maneuver around, and not
fire upon, neutral boats while trying to defend a moving ally.
Combined with stealth this greatly evens the odds towards the
faster attackers. Evolution of the structure of the tree is also a
major step under development, allowing strategies to evolve
increasing levels of complexity over time, without a steep
initial learning curve. Our implementation of co-evolution
was also very basic, and future work would include a more
complicated system, such as using a hall-of-fame system or
a maintaining a sub-sampled population of opponents to test
against. Fitness sharing, or some other form of speciation
would also be good, particularly to protect and encourage more
complicated strategies to develop. These techniques [14] were
developed for improving the performance of co-evolution,
and would likely lead to faster more consistent improvement.
Pareto co-evolution [15] would also provide similar improve-
ments, helping to develop and maintain different attacking and
defending strategies within the population.
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