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Abstract—Many truthful spectrum auction schemes have been
recently proposed to to ensure that the dominant strategy for bid-
ders is to bid truthfully and thus protect the auctioneer’s benefits.
However, most of them assume the auctioneer is trustful and do
not protect bidders’ interests. An auctioneer can manipulate the
winner’s charging price if it knows bidders’ bids. Thus, it is
critical to protect bids from the auctioneer. Towards this end, we
develop a Privacy-Preserving Economic-Robust spectrum auction
scheme, namely PPER. Not only does it well protect users’ bid
privacy, but also guarantees economic-robustness which is an-
other important auction property. Besides, only transmitters but
not receivers are considered in most previous spectrum auctions,
resulting in many unexpected collisions during transmissions. In
this work, we consider interference constraints from transmis-
sions instead of transmitters in spectrum allocation. Extensive
privacy analysis and simulation results show the effectiveness
and efficiency of our scheme.

I. INTRODUCTION

The recent exploding growth and popularity of wireless

devices and services have exacerbated the spectrum scarcity

in wireless networks. Recent studies show that the spectrum

scarcity is largely attributed to inefficient spectrum utilization

due to the current static spectrum policies, by which spectrums

are exclusively used by their licensed holders, and cannot be

accessed by other users even if they are not in use. To enhance

spectrum utilization, dynamic real-time secondary spectrum

auction markets are proposed lately [1], [2], where secondary

users (SUs) can compete with each other for the idle spectrums

from primary spectrum providers (PSPs), while PSPs receive

financial rewards by leasing their idle spectrums.

Many truthful spectrum auction schemes have been pro-

posed to facilitate spectrum allocation in wireless networks

[1]–[9]. Although these schemes ensure that the dominant

strategy for each bidder is to bid truthfully, and thus protect the

auctioneer’s revenue, the bidders’ benefits are not guaranteed.

For example, a misbehaving auctioneer in VCG auction can

employ shill bidders to manipulate the charging price to the

winners so as to increase its revenue, if it knows bids [10].

In order to prevent the auctioneer from impairing bidders’

benefits by taking advantage of their bid information, it

is necessary to protect bid privacy from the auctioneer in

spectrum auctions. Besides, in addition to truthfulness (also

called incentive compatibility (IC) or strategy-proof), individ-

ual rationality (IR) and budget balance (BB) are two other

important properties of economic-robustness. An auction is

proved to be vulnerable to market manipulation and produces

poor outcomes if it is not economic-robust [11]. However, it

is non-trivial to achieve bid privacy and economic-robustness

in spectrum auction simultaneously, as bid information is fun-

damental in spectrum allocation and pricing, which determine

whether an auction is economic-robust. Only a couple of works

have attempted to address privacy issues in spectrum auctions.

Pan et al. [10] propose a privacy-preserving spectrum auction

scheme THEMIS by employing Paillier encryption. However,

THEMIS fails to protect winners’ bids at the end of an auction.

A scheme SPRING [12] is developed based on k-anonymity

technique, which allows the auctioneer to correctly guess a bid

with a probability of 1/k. Huang et al. [13] propose a privacy-

preserving truthful spectrum auction scheme to achieve good

social welfare based on homomorphic encryption. Notice that

all these works [10], [12], [13] assume a trusted third-party to

assist in auctions.

We also notice that there have been some works studying

privacy-preserving auctions such as [14]–[16]. However, these

schemes still reveal the full or part of bids at the end of an

auction for pricing purpose. Due to dynamics of secondary

spectrum markets, spectrum allocation is not fixed by an

one-time auction. The auctioneer can still utilize the bids

revealed in previous auctions to manipulate outcomes of the

subsequential auctions. Therefore, to protect bid privacy is

more challenging than that in traditional auctions. Besides, the

spectrum reusability in wireless networks further differentiates

spectrum auctions from traditional auctions. Although the

existing works [1]–[8] have extensively discussed this issue in

spectrum auctions, besides their lack of bid privacy protection,

they do not take receivers into consideration in spectrum

allocation. Consequently, many winning SUs may not be

able to successfully deliver their traffics due to unexpected

interferences at receivers caused by other winning SUs.

In this paper, we consider an auction market where a PSP,

who acts as an auctioneer, leases its unused licensed spectrums

to a group of SUs. If two SUs, including a secondary trans-

mitter (ST) and its corresponding secondary receiver (SR),

have data to transmit between them, they form a secondary

transmission pair and compete in the market. To address the

concerns raised above, we then develop a Privacy-Preserving

Economic-Robust scheme (PPER) for spectrum auction in

wireless networks.
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We first propose a basic spectrum auction framework, which

consists of two procedures: spectrum allocation and pricing.

In the spectrum allocation procedure, the auctioneer finds out

the top L bidder groups (BGs) with the highest group bids if

it has L spectrums available. Each BG is a set of STs who

can simultaneously transmit to their SRs on the same spectrum

without interfering each other. For this purpose, the auctioneer

formulates and computes L binary integer programming (BIP)

optimization problems, taking the interference among trans-

mission pairs (instead of among STs) into consideration. In the

pricing procedure, the auctioneer determines the clearing price

for each winning ST. The spectrum allocation and pricing are

designed to ensure the economic-robustness of the spectrum

auction framework.

Noticing that the auctioneer can easily know STs’ bids in

spectrum allocation procedure, we then develop a privacy-

preserving BIP algorithm which protects STs’ bid privacy and

still allows the auctioneer to optimally solve the BIP problems.

There are some existing works discussing privacy protection

in solving linear programming (LP) problems. Some of them

[17]–[19] transform an LP problem by multiplying both con-

straints and the objective function with random matrixes or

random vectors. In these works, the objective function or the

constraint belongs to one party, while in our BIP problem

the coefficients of the objective function, i.e., bids, belong

to different STs, making our case much more complicated.

Another line of research applies partition approaches [20]–

[22]. Such schemes only protect the constraint privacy without

considering the privacy in objective functions. In this study,

we propose to optimally solve the BIP problem under the

Branch and Bound (B&B) [23] framework, by which the

original problem can be divided into multiple LP subproblems.

Then, following the idea of [18] we develop a revised simplex

method based privacy-preserving LP algorithm to solve those

subproblems. Different from [18], in which only two parties

are involved, our algorithm allows multiple parties, including

the auctioneer and all STs, to jointly solve the LP problem with

their private information well protected. More importantly,

the proposed privacy-preserving LP algorithm is not limited

in addressing privacy-preserving spectrum auctions but other

more general problems.

II. PROBLEM FORMULATION

A. System Model

We consider an auction market shown in Fig. 1, where a

PSP, who acts as an auctioneer, leases a set of unused licensed

spectrums L = {1, 2, ..., l, ..., L} to a group of SUs N . If

two SUs, including an ST and its 1-hop SR, have data to

transmit between them, they form a secondary transmission

pair. We assume that there are more transmission pairs than

the available spectrums in the system. Thus, to deliver their

traffics, all the STs N = {1, 2, ...n, ..., N} ⊆ N are asked to

submit their bids and compete for spectrums. The winning STs

pay for the obtained spectrums, on which they can transmit

data to their SRs. In a spectrum auction, a spectrum can

be leased to several transmission pairs if they can transmit

simultaneously without interfering with each other. An ST can

Fig. 1. The architecture of the spectrum auction market.

also obtain multiple spectrums to transmit to its SR like that

in [7], [9], [10].

In order to participate in spectrum auctions, all STs and

SRs submit their location to the PSP1, who can determine the

topology of the entire network. Given the network topology,

the PSP constructs a conflict graph denoted by G(V,E), where

V is the vertex set and E is the edge set. In particular,

each vertex corresponds to a secondary transmission pair

denoted by (i, ri), where i and ri denote an ST and its

receiver, respectively. Two vertices in V are connected with

an undirected edge if the corresponding transmission pairs

interfere with each other on one band, i.e., if the SR in one

transmission pair is within the interference range of the ST

in the other transmission pair given that they are using the

same band, or these two transmission pairs have at least one

node in common (i.e., ri = rj , or ri = j, or i = rj for

i �= j). In this conflict graph, an independent set (IS) is a

set in which each element is a transmission pair, and all the

elements (or transmissions) can be carried out successfully at

the same time. If adding any more transmission pairs into an

IS results in a non-independent one, this IS is defined as a

maximal independent set (MIS).

We denote ST i’s real valuation and bid price for a spectrum

by vi and ci, respectively. In an auction, STs submit their bids

ci’s in a sealed manner, so that no one has access to any

information about others’ bids. After the auctioneer receives

all the bids, it divides the bidders into different bidder groups

(BGs), each of which is a set of STs of all the transmission

pairs in one MIS. We denote the set of all the BGs by G.

The auctioneer considers each BG as a virtual bidder with its

group bid being the sum of all STs’ bids in that group, and

determines the winning BGs denoted by GW . We denote each

winning BG in GW by GW,t (1 ≤ t ≤ |GW |), and the set

of indexes (j’s) of the winning BGs containing ST i by Hi,

respectively. We also denote the clearing price for ST i in a

winning BG containing i, say GW,t (t ∈ Hi), by pti.

B. Objective of Auction Design

The design of auction schemes heavily depends on the

desired properties. In this work, we aim to design an auction

scheme guaranteeing bid privacy and economic-robustness.

We assume that all STs are strategic in the sense that they

may manipulate their bids to obtain favorable outcomes. In

1The location information and other control messages can be transmitted
over a dedicated channel called cognitive pilot channel (CPC) or common
control channel as in IEEE 802.22 [24], [25].
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order to achieve economic-robustness, we propose to achieve

three of the most important economic requirements: Incentive

Compatibility (IC), Individual Rationality (IR), and Budget

Balance (BB), which are defined as follows:

• Incentive Compatibility (IC): The utility function of ST

i (i ∈ N ), is a function of all the bids:

ui(ci, c−i) =

⎧⎨
⎩

∑
j∈Hi

(vi − pti), if i wins

with bid ci,
0, otherwise.

(1)

where c−i denotes the vector of bids from other STs.

Thus, an auction is IC if for any ST i (i ∈ N ) with any

ci �= vi while others’ bids are fixed, we have

ui(ci, c−i) ≤ ui(vi, c−i). (2)

• Individual Rationality (IR): An auction is IR, if bidder

i (i ∈ N ) gets non-negative utility in the auction, i.e.,

ui(ci, c−i) ≥ 0.

• Budget Balanced (BB): To make the auction self-

sustained without any external subsidies, the generated

revenue of the auctioneer, i.e., the PSP, is required to be

non-negative.

As we mentioned earlier, to prevent the auctioneer from

impairing bidders’ benefits by taking advantage of their bids,

one effective approach is to hide these information from the

auctioneer. Besides, due to dynamics of secondary spectrum

markets, spectrum allocation is not fixed by an one-time auc-

tion. The auctioneer can utilize the bids revealed in previous

auctions for the purpose of pricing to infer future bids and

manipulate the subsequential auction outcomes. Therefore, bid

information should be protected in the entire auction, including

item allocation and pricing procedures.

C. Interference Model

In this work, we employ the protocol model [26], [27] to

characterize interference relationships among transmissions.

Specifically, the data transmission between an ST and an SR is

successful only if the received power spectral density at the SR

exceeds a threshold PT . Meanwhile, we assume interference

becomes non-negligible only if it produces a power spectral

density over a threshold of PI (PI ≤ PT ) at the SR. We

denote SU i’s transmission and interference range by Ri
T and

Ri
I , respectively. Ri

T and Ri
I can be derived from PT and PI .

D. Revised Simplex Method

In this paper, we apply the revised simplex method [28] to

develop a privacy-preserving LP algorithm for two purposes.

First, as a variant of George Dantzig’s simplex method [29],

the revised simplex method is a computationally efficient ap-

proach to solve LP problems. The second and more important

reason is that the unique structure of the revised simplex

method can be explored to securely solve LP problems.

The revised simplex method is conducted over the following

augmented form of an LP problem

Maximize: c
�
x

s.t. Ax = b, x ≥ 0

where A ∈ R
m×n, c ∈ R

n×1, b ∈ R
m×1, and x ∈ R

n×1. It

is assumed that the constraint matrix A has full row rank and

the problem is feasible, i.e., there is at least one x ≥ 0 such

that Ax = b. If an LP problem has redundant constraints,

it can be transformed to the above augmented form through

preprocessing.

Following some well-known results in the theory of linear

programming [30], the above LP problem can be rewritten as

Maximize: c
�
BxB + c

�
NxN (3)

s.t. BxB +NxN = b, x ≥ 0

where B ∈ R
m×m is a submatrix of A, formed by A’s m

arbitrary linearly independent columns, and N ∈ R
m×(n−m)

is formed by A’s remaining columns. xB and xN are called

basic variables and non-basic variables, respectively. cB and

cN are their corresponding coefficients. A basic solution to

an LP problem corresponds to assigning null values to non-

basic variables. Besides, the optimal solution of an LP problem

comes from one of its basic solutions. Thus, the general idea

of the revised simplex method is to search among an LP

problem’s basic solutions, by replacing one of current basic

variables with one non-basic variable with the most negative

reduced cost in each iteration, until the reduced costs of all

non-basic variables are non-negative.

Formally, the iteration of the revised simplex method can

be specified as follows:

1) The basic solution to (3) is given by xB = B
−1

b and

xN = 0.

2) For each non-basic variable, calculate

zj − cj = c
�
BB

−1
Nj − cj , (4)

where Nj is the j-th column of N. Let k =
argmin

j

{zj− cj}. If zk− ck ≥ 0, then stop; the current

solution is optimal, with the optimal result of c
�
BxB .

Otherwise, continue to step 3).

3) Calculate ηk = B
−1

Nk and ξ = B
−1

b, and determine

the index of the variable xl ∈ xB leaving the basic

variables as follows:

l = argmin
i

(
ξi
ηik

: ηik > 0

)
. (5)

Update B by replacing Bl with ηk, N by replacing

Nk with Bl, and go to step 1).

Notice that if we obtain ηik ≤ 0 in any iteration step, the

optimal solution of the above LP problem is unbounded;

otherwise B
−1 always exists [30].

III. A BASIC ECONOMIC-ROBUST SPECTRUM AUCTION

FRAMEWORK

In this section, we describe a basic economic-robust spec-

trum auction framework which does not discuss users’ privacy

protection. In general, the auction framework consists of two

procedures: spectrum allocation and pricing. In what follows,

we detail the design of these two procedures, respectively.
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A. Spectrum Allocation

Recall that a BG is a set of STs of all the transmission

pairs in one MIS. In our auction framework, we assume

that each BG only obtains at most one spectrum from the

auction. In order to maximize auction efficiency, i.e., the sum

of valuations from all winning bidders [31], the auctioneer

needs to find out L winning BGs with the highest group

bids in IC spectrum auctions. In particular, these top-L BGs

are determined in a monotonic manner, i.e., the BG with the

highest group bid is found in the first iteration and excluded

from the auction, then the BG with the second highest group

bid in the second iteration, and so on and so forth until the

top L BGs are found.

We denote by xi a variable, which is equal to 1 if ST i
can transmit to ri and equal to 0 otherwise. We first consider

a constraint due to potential interference among transmission

pairs. If ST i is transmitting data to ri, any other STs that will

interfere with ri’s reception should not transmit. To model this

constraint, we denote by O(ri) the set of STs that can interfere

with ri’s reception, i.e., O(ri) = {o|d(o, ri) ≤ Ro
I , o ∈ N},

where Ro
I is the interference range of ST o. Therefore, we

have

xi + xp ≤ 1, ∀p ∈ O(ri). (6)

Note that if another transmission pair (j, rj) has at least one

node in common with (i, ri), i.e., if rj = ri, or j = ri,
or i = rj , these two transmission pairs cannot transmit

simultaneously either. Define d(i, i) = 0 for i ∈ N . Since

we have d(j, ri) ≤ Rj
T ≤ Rj

I and d(i, rj) ≤ Ri
T ≤ Ri

I , these

scenarios are included in (6) for ST i and ST j.

Moreover, recall that we need to find out the t-th highest

group bid in the t-th iteration. In other words, the BG found

in the t-th (2 ≤ t ≤ L) iteration should be different from the

previously found t − 1 BGs. Denoting by GW,t the winning

BG found in the t-th iteration, we have∑
i�∈GW,τ

xi ≥ 1, ∀1 ≤ τ ≤ t− 1. (7)

This constraint means that the newly found BG should contain

at least one different ST from any of the previously found t−1
BGs.

Consequently, the spectrum allocation of finding the BG

with the t-th (1 ≤ t ≤ L) highest group bid in the t-th iteration

can be formulated as

Maximize: Ct =
∑
i∈N

ci · xi

s.t. (6) when t = 1

(6)− (7) when 2 ≤ t ≤ L+ 1

xi ∈ {0, 1}

where xi’s are the optimization variables. The formulated

spectrum allocation problem is a BIP problem, which we call

the t-th original optimization problem (t-OOP). Assume that

there are M constraints in (6). According to the description

above, there are t− 1 constraints in (7) for the t-th iteration.

B. Pricing

In the pricing procedure, we follow the VCG auction pricing

[31]. Recall that Hi represent the set of indices of winning

BGs containing ST i. The clearing price for i is

pi =
∑
t∈Hi

pti =
∑
t∈Hi

(
Ct,−i − (Ct − ci)

)
. (8)

where Ct,−i stands for the t-th highest group bid when ST i is

excluded from the t-th iteration and Ct−ci is the sum of bids

from the t-th highest group bid except ci. Clearly, the clearing

price for winning ST i is irrelevant to its bid. Based on the

proposed spectrum allocation and pricing procedure, we are

able to prove this spectrum auction framework is economic-

robust. We leave its discussion and proof in Section V.

IV. PRIVACY-PRESERVING ECONOMIC-ROBUST

SPECTRUM AUCTION

In this section, we propose a privacy-preserving spectrum

auction scheme based on the economic-robust spectrum auc-

tion framework described in Section III. Our objective is to

protect STs’ bid privacy, i.e., ci’s (i ∈ N ), from other entities,

while allowing the auctioneer to determine spectrum allocation

and pricing correctly. Thus, the problem becomes how the

auctioneer can optimally solve t-OOP without knowing ci’s.

As t-OOP is a BIP problem, we utilize the branch and bound

(B&B) algorithm [23] to decompose it into multiple relaxed

LP problems. Thus, we first propose a privacy-preserving LP

algorithm for such LP problems. Then, the privacy-preserving

BIP algorithm to solve t-OOP will be ready to be developed.

A. Privacy-Preserving LP Algorithm

We first rewrite t-OOP in a more general form2

Maximize: Ct = c
�
x

s.t. αx ≤ β

xi ∈ {0, 1}

where α is the constraint matrix of size (M+t−1)×|N |. Then

we apply the B&B algorithm to decompose this BIP problem.

In each branching step, an arbitrary variable is picked from

the unexplored variables to branch on, i.e., setting its value

to either 0 or 1. By further taking linear relaxation on binary

constraints, we obtain the following two LP problems

K0(K1) Maximize: C′
t =

∑
i∈Nu

cixi +
∑
i∈Ne

cixi + ckxk

(9)

s.t.
∑
i∈Nu

αmixi ≤ βm −
∑
i∈Ne

αmixi − αmkxk

(∀1 ≤ m ≤ M + t− 1)

0 ≤ xi ≤ 1 (∀i ∈ Nu)

xk = 0 (or xk = 1)

where xk is the branching variable, Ne is the explored variable

set with fixed values xi’s, and Nu = N/(Ne ∪ {xk}) is the

2The problem when t = 1 can be transformed similarly. We focus on the
general case where 2 ≤ t ≤ L in the following analysis.
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unexplored variable set. Without loss of generality, we now

discuss how the auctioneer obtains the optimum solution of

the above LP problem, K0(K1), without the knowledge of

ci’s.

The proposed privacy-preserving LP algorithm is developed

based on the revised simplex method which enables the LP

problem to be solved in a distributed way. Both STs and the

auctioneer compute locally and exchange their intermediate

results, based on which a new round of computation is con-

ducted, until the optimal solution is found by the auctioneer.

During the computation, ci is kept at ST i locally. Since the

revised simplex method can only be applied to an LP problem

with equality constraints, we first transform (9) into its aug-

mented form by introducing non-negative slack variables s to

replace inequalities with equalities in its constraints

Maximize: C′
t = c

′�
x
′ + 0

�
s+Q0 (10)

s.t. Ax
′ + Is = b

x
′, s ≥ 0,

where c
′ = {ci|i ∈ Nu}, x′ = {xi|i ∈ Nu}, and Q0 denotes

the fixed value of
∑

i∈Ne
cixi + ckxk. I is an identity matrix

of size M + t− 1 + |Nu|.
Algorithm 1 gives details of our privacy-preserving LP

algorithm in solving (10) based on the revised simplex method

introduced in Section II-D. Initially, we set B = I, N =
A, cB = 0, cN = c

′, xB = s, xN = x
′, and I = ∅, among

which B, N, xB , and xN are known to all entities, while

ci ∈ c
′ is kept by ST i itself. The “for” loop from line 1

to line 15 captures the spirit of the privacy-preserving aspect.

For each non-basic variable, if i ∈ N , after obtaining the

encrypted zi, the auctioneer engages with ST i in comparing

zi and ci via secure comparison without the knowledge of

either zi or ci. ST i is unaware of zi either. Following similar

steps, if i �∈ N , i.e., xi is a slack variable, ST j3 (xj ∈ xB)

engages the auctioneer in comparing zi and 0. Both ST j
and the auctioneer are unaware of zi. For these two cases, if

the reduced cost is negative, the auctioneer will add i to I.

Thereafter, the auctioneer randomly picks a leaving non-basic

variable with index k from I following line 17. Line 18 and

19 determine the leaving basic variable. Then, B, N, xB , and

xN are updated accordingly. The iteration continues until all

non-basic variables generate non-negative reduced cost, i.e.,

the optimal solution is found.

Remark 1 When determining the leaving non-basic vari-

able in line 17, different from the typical way of choosing

one with the most negative reduced cost as introduced in

Section II-D, the auctioneer randomly picks a leaving non-

basic variable. This is because the ordering of the non-basic

variables’ reduced costs will enable the auctioneer to infer a

nonuniform probability distribution upon the space of possible

cost functions [18] and thus ci’s. However, the auctioneer

can still optimally solve the LP problem under this modified

revised simple method, because it suffices to choose any non-

basic variable that improves the solution at each iteration [32].

3This ST can be determined as the one with the lowest ID number within
current basic variables.

Algorithm 1 Privacy-Preserving LP Algorithm

Input: B = I, N = A, cB = 0, cN = c
′, xB = s, xN = x

′,

and I = ∅
Output: x

∗
N , x∗

B , and C
′∗
t

1: for xi ∈ xN do

2: if i ∈ N then

3: Auctioneer obtains Enci(zi) = Enci(c
�
B ·

B
−1

Ni);
4: Auctioneer and ST i compare zi and ci via

secure comparison;

5: if zi < ci then

6: I = I ∪ i;
7: end if

8: else

9: ST j (xj ∈ xB) obtains EncA(zi) = EncA(c
�
B ·

B
−1

Ni);
10: ST j and the auctioneer compare zi and 0 via

secure comparison;

11: if zi < 0 then

12: I = I ∪ i;
13: end if

14: end if

15: end for

16: if I �= ∅ then

17: Auctioneer randomly picks k ∈ I and sets I = ∅;

18: Calculates ηk = B
−1

Ni and ξ = B
−1

b, or stops if

the optimal solution is unbounded;

19: Determines the index l of the variable leaving the

basic variable set following (5);

20: Updates B by replacing Bl with ηk, N by replacing

Nk with Bl, as well as xB , and xN ;

21: Broadcasts the updated values;

22: Go to line 1;

23: else

24: Auctioneer broadcasts x
∗
N = xN , x∗

B = xB;

25: Computes C′∗
t = c

�
Bx

∗
B +Q0;

26: end if

Remark 2 One question left in Algorithm 1 is how the

auctioneer obtains Enci(zi) = Enci(c
�
B ·B−1

Ni) without the

information of ci’s. Here, Enci(·) stands for the encryption

with ST i’s Paillier public encryption key. We first express zi
as

∑M+t−1+|Nu|
j=1 cjdij , where dij represents the j-th element

of vector B
−1

Ni. The elements of cB can be divided into

two types, bids ci’s from STs and 0’s of slack variables’

coefficients. Thus, we have zi =
∑

{j|xj∈x′∩xB} cjdij . Then

we apply in our algorithm a privacy-preserving data aggre-

gation scheme [33] developed based on Paillier cryptosystem

to securely calculate zi. First, each ST j (xj ∈ x
′ ∩ xB)

generates a random value rjp and sends it to the rest STs p’s

(xp ∈ x
′ ∩ xB). At the end of this step, each ST j receives

|x′ ∩ xB| − 1 random values from its peers. Next, each ST j
computes Rj based on all collected random values

Rj = n+
∑

{p|xp∈x
′∩xB}

p�=j

rjp −
∑

{p|xp∈x
′∩xB}

p�=j

rpj (11)
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where n is the public modulus of the Paillier cryptosystem.

Then, ST j encrypts cjdij by g
cjdij

i · hRj , and sends it to the

auctioneer, where gi ∈ Z
∗
n2 is ST i’s Paillier public encryption

key, and h ∈ Z
∗
n is a public random value. After collecting

masked cj’s from |x′ ∩ xB| STs, the auctioneer calculates

∏
{j|xj∈x′∩xB}

g
cjdij

i · hRj

= g

∑
{j|xj∈x

′∩xB} cjdij

i · h
∑

{j|xj∈x
′∩xB}Rj

= g

∑
{j|xj∈x

′∩xB} cjdij

i · h|x′∩xB |·n = Enci(zi).

The last second equation comes from (11). We notice that

g

∑
{j|xj∈x

′∩xB} cjdij

i ·h|x′∩xB |·n is actually the Paillier encryp-

tion of
∑

{j|xj∈x′∩xB} cjdij with random value h|x′∩xB| using

ST i’s public encryption key. Since the auctioneer does not

have ST i’s private decryption key, it cannot obtain the plain-

text zi. The reason we protect zi from the auctioneer is that zi
is actually the linear combination of ci’s. Obtaining sufficient

number of zi’s during multiple iterations, the auctioneer can

generate a linear equation system and derive ci’s. Although

ST i has a decryption key, it cannot decrypt gcjdij · hRj to

obtain its peers’ bids cj’s due to the random value hRj .

The computation of EncA(zi) at ST j (xj ∈ xB) is

similar to that at the auctioneer. Here, EncA(·) stands for

the encryption with the auctioneer’s Paillier encryption key.

Although the auctioneer can decrypt EncA(zi), ST j won’t

share EncA(zi) with the auctioneer; otherwise zi will expose

ST j’s own private information cj . We also apply the similar

privacy-preserving data aggregation approach to compute C′∗
t

in line 25. We do not calculate c
�
x
∗
B and Q0 separately. The

reason will be explained in Section V. In particular, we first

express C′∗
t as c

�
x
∗
B +

∑
i∈Ne

cixi + ckxk = c
�
x. Then, by

asking all STs to participate in data aggregation, the auctioneer

can obtain C′∗
t with individual ci’s hidden.

Remark 3 The last question left in Algorithm 1 is how

the auctioneer and ST i (ST j and the auctioneer) compare

zi and ci (zi and 0) while preserving privacy. Let us take

the comparison between zi and ci as an example. First, the

auctioneer will not send Enci(zi) to ST i directly, because ST

i can infer other STs’ bids from sufficient number of zi’s by

formulating and solving a linear equation system. With the

knowledge of others’ bids, ST i can manipulate the auction

outcome and impair the auctioneer’s revenue4. Second, ST i
will not submit its private information ci to the auctioneer for

comparison. Therefore, we apply a Paillier cryptosystem based

secure comparison mechanism [34] to enable the privacy-

preserving comparison between zi and ci, with zi and ci
concealed from ST i and the auctioneer, respectively. Due to

limited space, we omit its description here. Please refer to our

online technical report [35] for details.

4For instance, if ST i has the highest bid 10, with the knowledge that the
second highest bid is 9.9, ST i may quit from this auction and wait for the
next one.

B. Privacy-Preserving BIP Algorithm

Based on the privacy-preserving LP algorithm proposed in

the previous subsection, we are now ready to develop the

privacy-preserving BIP algorithm allowing the auctioneer to

optimally solve t-OOP without knowing ci’s. Its details are

given by Algorithm 2. We denote by Live the set of unexplored

subproblems. In each iteration, a subproblem K is selected

for exploration from Live. Then, a branching is performed: by

letting the selected subproblem’s corresponding variable xk

be either 0 and 1, and relaxing binary constraints, two child

subproblems, K0 and K1, are formulated. Algorithm 1 is then

applied to solve these two child LP subproblems. Line 7 to line

15 discuss different actions this algorithm takes in different

cases. First, in the case that the relaxed LP subproblem does

not have any feasible solution, the subproblem is discarded

(or fathomed). Second, if the relaxed LP subproblem has

a feasible solution, but C′∗
t ≤ C∗

t , the subproblem is also

fathomed. Third, if C′∗
t > C∗

t and the solution is an integral

solution, the obtained result C′∗
t and solution {x∗

B,x
∗
N} are

kept as the current best finding. Fourth, otherwise, i.e., if

C′∗
t > C∗

t and the solution is not an integral solution, it is

possible that a better integral solution exists. Thus, the child

subproblem is then added to Live. The iteration continues until

all subproblems have been explored.

Algorithm 2 Privacy-Preserving BIP Algorithm

Input: c, α, β, C∗
t = −∞, Live = {Kini}

Output: x
∗, and C∗

t

1: while Live �= ∅ do

2: Pop out a subproblem K associated with variable xk

from Live to be processed;

3: Live = Live/{K};

4: Branch on xk generating K0 and K1;

5: for 0 ≤ i ≤ 1 do

6: Solving Ki by Algorithm 1;

7: if Ki does not has any feasible solution then

8: Fathom Ki;

9: else if C′∗
t ≤ C∗

t then

10: Fathom Ki;

11: else if x∗
B and x

∗
N are integral then

12: C∗
t = C′∗

t , x∗ = {x∗
B,x

∗
N};

13: else

14: Live = Live ∪ {Ki};

15: end if

16: end for

17: end while

C. Privacy-Preserving Pricing

As we discussed before, if an ST’s bid is revealed at the end

of an auction for pricing purpose, the auctioneer can utilize it

to manipulate favorable outcomes of sequential auctions. Even

though an ST’s bid may vary in different auctions based on

its current status, e.g., traffic load and etc., the auctioneer can

still predict it by analyzing this ST’s existing bids. Therefore,

we need to protect bid privacy in pricing procedure as well.
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Following (8), the charging price for a winning ST is the

sum of all its charging price pti’s in all winning iterations

Hi. Without loss of generality, we discuss how to calculate

pti = Ct,−i − (Ct − ci) with ci protected. Instead of obtaining

Ct,−i and ci separately, we propose to have the auctioneer

know Ct,−i+ci as a whole value. As Ct,−i can be obtained by

recalculating t-OOP with xi excluded from both the objective

function and the constraint, Ct,−i + ci can be directly derived

by adding ci to Ct,−i. In particular, when calculating C′∗
t,−i

in

Algorithm 1, we propose all STs, including i, to participant in

this data aggregation, where i always contributes ci. Therefore,

the auctioneer actually obtains C′∗
t,−i

+ ci for each relaxed

LP problem and thus Ct,−i + ci in the pricing procedure.

Since the auctioneer obtains Ct,−i + ci as a whole value, it

cannot identify ci separately. Together with Ct obtained in

spectrum allocation procedure, pti is available at the auctioneer.

Following the similar approach, the auctioneer can calculate

all pti’s (t ∈ Hi) and thus pi.

V. PERFORMANCE ANALYSIS

In this section, we first prove that our proposed PPER spec-

trum auction is economic-robust. Then, we analyze how the

privacy of STs’ bids is protected. We also conduct simulations

to evaluate the performance of PPER, and compare it with an

existing privacy-preserving spectrum auction scheme THEMIS

[10], in terms of computation time, communication cost, and

auction outcome.

A. Economic-Robustness Analysis

In the following, we will demonstrate that our proposed

PPER spectrum auction is economic-robust. Since a winning

ST can receive multiple spectrums which are determined in

multiple iterations of auctions in our scheme, the economic

property analysis is more complicated than that in the existing

works. To prove the economic-robustness of the proposed

spectrum auction scheme, we first have the following lemma:

Lemma 1: When the other STs’ bids, i.e., c−i, are fixed, if

a BG that contains ST i with bid ci wins in the t-th iteration,

it also wins by the t-th iteration when ST i bids c′i > ci.
Proof: Please refer to our online technical report [35] for

the proof details.

Using the above lemma, we can arrive at the following

theorem.

Theorem 1: The proposed spectrum auction framework is

incentive compatibility.

Proof: Please refer to our online technical report [35] for

the proof details.

Theorem 2: The proposed spectrum auction framework is

individual rationality.

Proof: Please refer to our online technical report [35] for

the proof details.

Theorem 3: The proposed spectrum auction framework is

budget balance.

Proof: Please refer to our online technical report [35] for

the proof details.

With Theorem 1, 2 and 3, we conclude that the proposed

spectrum auction scheme is economic-robust.

B. Privacy Analysis

We now analyze the STs’ bid privacy is protected in both

spectrum allocation and pricing procedures under the proposed

PPER scheme. In particular, we focus on the privacy analysis

of Algorithm 1, which is the main component of solving

spectrum allocation and pricing problems.

We start by examining the information known by the

auctioneer when calculating Enci(zi) in Algorithm 1. As we

described in Section IV-A, each ST j (xj ∈ x
′ ∩ xB) submits

g
cjdij

i · hRj to the auctioneer. Although the auctioneer is able

to obtain Enci(zi) by data aggregation, it cannot decrypt to

obtain cjdij and thus infer cj , as it does not have ST i’s
private decryption key. Although with the private decryption

key, ST i cannot decrypt g
cjdij

i · hRj to obtain ci either due

to the random number hRj . This data aggregation scheme

is proven to be semantically secure [33]. For the similar

reason, an ST’s bid is also protected from the auctioneer and

other STs when computing EncA(zi)’s and C′∗
t . In Algorithm

1, since the auctioneer and ST i compare zi and ci via

secure comparison, zi and ci are protected from ST i and

the auctioneer, respectively. In addition, the auctioneer is

unaware of zi during comparison either. This is necessary as

we explained in Section IV-A that any entity can reveal cj’s

by collecting sufficient number of zi’s.

We now explain why we do not separately calculate c
�
Bx

∗
B

and Q0 when calculating C′∗
t . In algorithm 1, we calculate

c
�
x
∗
B +

∑
i∈Ne

cixi + ckxk via privacy-preserving data ag-

gregation. This is because if Q0 is available at the auctioneer, it

will have Q0(xk = 0) and Q0(xk = 1) for two subproblems

K0 and K1, according to Algorithm 2. Moreover, we have

Q0(xk = 1) − Q0(xk = 0) = (
∑

i∈Ne
cixi + ck) −

(
∑

i∈Ne
cixi) = ck, which is ST k’s bid. If the auctioneer

only has the knowledge of C′∗
t , even though it knows two

C′∗
t ’s obtained under xk = 0 and xk = 1, it cannot infer ck

because the corresponding c
�
Bx

∗
B’s under Q0(xk = 0) and

Q0(xk = 1) are not the same also.

C. Simulation Results

We randomly deploy a number of SUs in a square network

of area 1×1. The STs are randomly chosen and their SRs are

randomly selected from the nodes within their transmission

ranges. All STs’ transmission ranges and interference ranges

are set to 0.05 and 0.1, respectively. The STs’ true valuations

of (and hence their bids for) a spectrum are assumed to

be i.i.d random variables uniformly distributed over (0,10].

Besides, there are totally 30 STs, 30 SRs, and 1-5 spectrums in

the network. To secure the communication among STs when

generating random value in data aggregation, RSA-1024 is

adopted. For Paillier cryptosystem based operations, including

data aggregation and secure comparison, we set its modulus

n = 1024.

For the computation time of PPER, we focus on analyzing

the time spent on cryptographic calculations since they are

much more time-consuming than normal arithmetics.

We first discuss the computation related to data aggregation,

including generating Enci(zi), EncA(zi), C
′∗
t and Ct,−i+ci for

pricing. In the process of generating Enci(zi), the auctioneer’s
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TABLE I
NOTATIONS OF OPERATIONS.

Operations Description

Exp Exponentiation
Mul Multiplication
Enc1/Dec1 Paillier Encryption/Decryption
Enc2/Dec2 RSA Encryption/Decryption

computation is to multiply together all data received from STs,

resulting in (|x′ ∩ xB | − 1) × Mul. An ST j’s (xj ∈ x
′ ∩

xB) computation includes: encrypting its generated random

number with its peer’s RSA encryption key, decrypting its

received data by its own decryption key, and masking cj with

Rj . Thus, its computation complexity contains: (|x′ ∩ xB | −
1)×Enc2, (|x′ ∩ xB | − 1)×Dec2, 2×Exp, and 1×Mul.
For generating EncA(zi), the computation complexity of an

ST j (xj ∈ x
′ ∩ xB) is the same above. If it is selected to

compute EncA(zi), its computation complexity is added by

(|x′ ∩ xB| − 1) ×Mul. For generating C′∗
t , the auctioneer’s

computation complexity is (|x′|−1)×Mul. The computation

complexity of an ST j (xj ∈ x
′) contains: (|x′| − 1)×Enc2,

(|x′|−1)×Dec2, 2×Exp, and 1×Mul. For generating Ct,−i+
ci, the computation complexity at the auctioneer and STs is

the same as that in generating C′∗
t . We leave the computation

analysis related of secure comparison in technical report [35].

We show the computation time and communication cost at

both ST and auctioneer in Table II and Table III, respectively.

We notice that the average computation time at an ST is lower

than that at the auctioneer, for the auctioneer has to participate

in each secure comparison while an ST participates in one

secure comparison. Besides, as only the STs associated with

basic variables involve in data aggregation procedures, this

also alleviates the computation burden at STs. From Table II

and Table III, we find the ST has lower computation time and

communication cost than the auctioneer. These results further

validate our PPER scheme: we leave most of the computation

and communication tasks to the auctioneer, which is rich in

computation and energy resources, so as to save the limited

resources at STs.
TABLE II

COMPUTATION TIME OF PPER.

Network Size ST Auctioneer Total Comp. Time

N = 20, L = 2 3.62 s 5.72 s 8.34 s
N = 30, L = 2 5.43 s 9.51 s 14.94 s

TABLE III
COMMUNICATION COST OF PPER.

Network Size ST Auctioneer Total Comp. Time

N = 20, L = 2 110.6 KB 136.9 KB 247.5 KB
N = 30, L = 2 295.1 KB 326.4 KB 621.5 KB

We then compare the the computation time and communi-

cation cost of PPER and THEMIS. Since THEMIS requires

that all bidders choose their bids from a set of possible values,

we set this number to 1000 following the parameter settings

in [10].

Specifically, Fig. 2(a) shows the computation time of PPER

and THEMIS under different numbers of spectrums. We find

that PPER can be much more computationally efficient than

THEMIS especially when L > 3. This is because THEMIS
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Fig. 2. Computation time and communication cost comparison under different
numbers of spectrums.

contains large amount of multiplications among Paillier En-

cryption data, while PPER is based on solving small-scale

LP problems. Besides, the computation time of THEMIS

increases fast since its possible node-spectrum allocation

patterns increase exponentially to the number of spectrums.

Fig. 2(b) demonstrates the communication cost between them

under different numbers of spectrums. We can see that PPER

introduces a lower communication cost when L > 2.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of STs (Bidders)

S
at

is
fa

ct
io

n 
R

at
io

PPER
THEMIS

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of spectrums

S
at

is
fa

ct
io

n 
R

at
io

PPER
THEMIS

(b)

5 10 15 20 25 30
0

100

200

300

400

Number of STs (Bidders)

R
ev

en
ue

PPER
THEMIS

(c)

0 1 2 3 4 5 6
0

100

200

300

400

500

Number of spectrums

R
ev

en
ue

PPER
THEMIS

(d)

Fig. 3. Satisfaction ratio and revenue under different numbers of STs and
spectrums.

Fig. 3 compares the satisfaction ratio and the auctioneer’s

revenue of the proposed PPER with those of THEMIS, under

different numbers of STs and spectrums. Here, satisfaction

ratio is defined as the ratio of the number of STs who have

finally successfully delivered their traffics to the total number

of STs.

As shown in Fig. 3(a), when the number of STs increases,

THEMIS’s satisfaction ratio drops significantly, while our

PPER’s satisfaction ratio remains relatively stable. Thus, when

there are more STs in the network (≥ 20), PPER achieves

much higher satisfaction ratio than the other. Particularly, in

the case that there are 30 STs in the network, the satisfaction

ratio of PPER and THEMIS are 0.73 and 0.46, respectively.

As mentioned before, this is because in the existing auction

schemes, it is not clear whom a winning ST communicates

with and there can be more serious collisions in the network as

the number of STs increases. Besides, THEMIS allocates spec-

trums in a greedy manner which further reduces its satisfaction

ratio. Moreover, Fig. 3(b) compares the satisfaction ratio of
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these two schemes under different numbers of spectrums when

there are 30 STs in the network. As the number of spectrums

increases, the satisfaction ratio increases as well. We can see

that when the spectrum resource is scarce, PPER achieves

much higher satisfaction ratio than the other.

We also study the revenue generated by PPER and that by

THEMIS in Fig. 3(c) and Fig. 3(d). We observe that under

the same number of STs, our scheme achieves higher revenues

than the other. Particularly, as shown in Fig. 3(c), in the case

that there are 30 STs in the network, the revenues of PPER and

THEMIS are 359 and 240, respectively. Besides, as shown in

Fig. 3(d), our scheme achieves much higher revenues than the

other, especially when there are not many available spectrums.

VI. CONCLUSIONS

In this paper, we have developed a privacy-preserving

economic-robust spectrum auction scheme, called PPER.

Specifically, we first construct an economic-robust auction

framework which consists of two procedures: spectrum allo-

cation and pricing. Then, a privacy-preserving auction scheme

is proposed to protect the STs’ bid privacy. We have analyzed

the privacy of PPER and found that the STs’ bid privacy can

be well protected during the entire auction process. Extensive

simulation results have demonstrated that our scheme achieves

higher satisfaction ratio and revenue than previous work with

low computation and communication costs.
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