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Abstract 

Security operators are increasingly interested in solutions 
that can provide an automatic understanding of potentially 
crowded public environments. In this paper, an on-going re-
search is presented, on building a complex system consists 
of three main components: human security operators carry-
ing sensors, mobile robotic platforms carrying sensors and 
network of fixed sensors (i.e. cameras) installed in the envi-
ronment. The main objectives of this research are: 1) to de-
velop models and solutions for an intelligent integration of 
sensorial information coming from different sources, 2) to 
develop effective human-robot interaction methods in the 
paradigm multi-human vs. multi-robot, 3) to integrate all 
these components in a system that allows for robust and ef-
ficient coordination among robots, vision sensors and hu-
man guards, in order to enhance surveillance in crowded 
public environments. 

 Introduction    

The aim of the research presented in this paper is to study a 
surveillance system composed of human security operators 
managing different devices such as mobile phones, PDAs 
and desktop PCs. It is also composed of a network of fixed 
sensors such as cameras and mobile robotic platforms car-
rying sensors. The guards, mobile robots and operators at a 
control room should communicate by means of a wireless 
network infrastructure, to which different devices such as 
mobile phones, PDAs, desktop PCs and computational 
units onboard the robots are also connected.  The proposed 
solution is intended to be modular and considers the inte-
gration of the following approaches in a hierarchical archi-
tecture (see Figure1): 

• Sensor networks. Sensor nodes are embedded through-
out the environment, and are interconnected by a wire-
less network. Each node comprises a number of sensors 
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and sufficient local processing capability to carry out on-
board the required processing.  

• Computer vision for scene understanding. The pro-
posed system relies on implementing techniques for ro-
bust dynamic scene interpretation in complex, crowded 
environments to trigger signals to the reactive compo-
nents of the system (i.e. robots and guards).  

• Multi robot systems. Mobile platforms are very useful 
in a surveillance task, since they provide mobility to in-
telligent sensors.  

• Localization of security personnel. The position of 
mobile nodes (including human guards) must be known 
to the command centre. Position estimation of the per-
sonnel will be achieved with a Radio Frequency Identi-
fication (RFID) system. 

The paper is structured as follows: next section describes 
related work on the components listed above to be inte-
grated to build such autonomous surveillance systems. Af-
ter this section, the architecture of the proposed system is 
discussed. Then, the fusion of information coming from 
different sources is described, following a brief discussion 
section on human-robot interaction methods. In the next 
section, a case study where an integration of a fixed node 
(e.g. camera) and a PDA device is described. In the last 
section the conclusions and future work are presented. 

Related work 

The literature and survey in video-surveillance systems is 
large (Raty 2010)(Valera, Velastin 2005).Traditionally, 
these systems were based on static sensor devices such as 
CCTV cameras and later on, smart cameras were used, as 
computer vision algorithms were  able to be embedded on 
these sensors. The image processing in video-surveillance 
systems mainly consists in video analysis of the monitoring 
area. The analysis may be used to interpret stationary ob-
jects and people of a scene (Harveille, Dalong 2004)(Zhao 
et al. 2005) or to interpret dynamic scenes (Fusier et al. 
2006). The analysis of dynamic scenes are based on the 



motion estimation or tracking people (Munoz, Salinas 
2009) to perform behavioral analysis or activity recogni-
tion. (Buxton,Gong 2002) presents a  survey of the state-
of-the-art on learning and understanding scene activity. 
  Lately, cooperative multi-robot solutions (MRS)  for 
surveillance have been proposed (Burgard et al. 
2000)(Zhang,Chen, and Xi 2005). MRS provide the advan-
tage of having many robots being distributed within the 
available space and carrying out different tasks at the same 
time. However, they cannot be simply regarded as a gene-
ralization of the single robot case, therefore the proposed 
approaches need to be more precisely characterized in 
terms of assumptions about the environment and in terms 
of the internal system organization (Iocchi, Nardi,  and Sa-
lerno 2001). The main challenges that MRS face are the 
fact that the monitoring area is unstructured and it is shared 
by humans, rising new challenges such as safety issues due 
to human interaction (users or security personnel of the 
system).  The effectiveness of a cooperative mixed team 
formed by many humans and many robots will strongly 
depend on the effectiveness of the human-machine inter-
face. The data have to be presented to the operators in 
easy-to-understand and intuitive way. The operators have 
to be able to quickly “grasp” the situation, to immediately 
assess the situation, without be overwhelmed by unneces-
sary information. 
  Besides the human-robot interaction, to also enhance 
the monitoring activity on these systems, the security per-
sonnel, carrying one or more computing devices containing 
devices, should be considered as a proactive node on the 
system. To localize accurately each of those proactive 
nodes in the system, a Global position Systems (GPS) solu-
tion is used in outdoors. However, for indoors applications, 
localization is less readily achievable. A number of RFID-
based localization schemes have been proposed using ac-
tive or passive tags; these include (Stelzer, Pourvoyeur, 
and Fischer 2004) using lateration techniques for distance 
estimation, (Wang, Huang and Hung 2010) that use a me-
thod referred to as scene analysis (or received Signal 
Strength, RSS-based) and  proximity (or constraint-based) 
methods (Tesoriero et al. 2010). Recent trends are towards 
combining methods to improve accuracy (Hatthasin  et al. 
2009). In the system described in this paper RSS-based po-
sition estimation is proposed for localization of the proac-
tive nodes. This method exploits the fact that an RF signal 
attenuates as it travels. 

System Architecture  

The research presented in this paper aims to create a het-
erogeneous intelligent multi-sensor system to monitor, un-
derstand and interpret complex public environments. 
Therefore, the goal is the use of multi-sensor gathering 
technology to extract automatically and on demand, infor-
mation of interest; top-down through a central directive 
(e.g.  behaviour analysis of a suspicious person or the 
analysis of video related to unattended luggage) or bottom-
up prompted by information extracted and analysed from 

the leaf nodes of the system. Figure 1 illustrates the com-
position of these leaf nodes. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical architecture of the system. 

 To build a heterogeneous multi-sensor surveillance sys-
tem there are three main concerns that should be analysed: 
the design of architecture of the system, the network infra-
structure to be able to communicate all the resources avail-
able in the system, and the integration of all the data in-
formation to enhance the monitoring activity of the system. 
Figure 2 and Figure 3 shows the system's design architec-
ture, using the solution presented in (Quigley et al. 
2009)(Valera, Velastin  2003). The architecture approach 
is based on a middleware architecture concept; any active 
node (i.e. sensor) in the system may join a service that suits 
its purpose (see Figure 2). All services are  published on 
the entire system and in terms of software computing, these 
services can process the signals provided by the sensors. 
The communication between active nodes and the services 
is peer-to-peer and it is completely transparent to them. 
 

 

 

 

 

 

 

 

Figure 2. Architecture design of the system. 

 Notice, that the solution presented in Figure 2,  is in-
tended to be distributed as each sensor should be com-
pletely autonomous and there is a completely decoupling 
between active nodes and services. However, the system 
should create a pervasive layer where information is inte-
grated to automatically interpret a complex and cluttered 
scene, potentially frequented by a large number of people 
(see scene analysis in Figure 3). 
 As mentioned, wireless network technology will be used 
to manage the communication of such different technology 
sensors. Therefore,  the following issues: routing protocols, 
security and QoS have to be analyzed.  However, the thor-
ough discussion of these three main topics is out of the 



scope of this paper, as the authors focussed on the descrip-
tion of the components of the system. 

 

 

 

 

 

 

 

 

Figure 3. Different services provided by the middleware and 
the communication with the sensors in the system. 

Autonomous multi-robot systems and human-
robot interaction 

The use of mobile platforms carrying sensors is an impor-
tant component of the described system. This introduces 
two issues that must be considered: 1) the robots in the sys-
tem must act as an autonomous coordinated team: no direct 
supervision from human should be required; 2) humans 
(i.e., security personnel non expert in robotics) must be 
able to interact with robots in a natural way. In the remain-
ing of this section we briefly present the techniques used 
for autonomous coordinated multi-robot systems and hu-
man-robot interaction for security robots. 
 The main tasks for a team of surveillance robots are: pa-
trolling, i.e., the task of continuously visiting relevant loca-
tions of the environment where information have to be ga-
thered; threat response, that is any specific set of actions 
needed as a consequence of the detection of a threat. Pa-
trolling can be either passive or active. Passive patrolling is 
executed without any information from other components 
of the system, while active patrolling is driven by some 
specific request for information gathering. In both cases, 
robots must be able to move in the environment safely and 
effectively (so standard robotics modules, like mapping, 
localization, navigation, obstacle avoidance, etc. are pro-
vided to the robots), and to act in a coordinated way, by 
taking into account dynamic task assignment (for example, 
which location has to be visited by each robot), as well as 
action synchronization (for example, when two or more 
robots are required to get combined information from the 
same source).Coordination techniques for multi-robot pa-
trolling are described in (Iocchi, Nardi, and Salerno 2011), 
that include also an extensive experimental analysis show-
ing that on-line coordinated behavior, in contrast with pre-
defined off-line strategies, are fundamental for actual dep-
loyment of surveillance robots. 
 As mentioned, the second issue of surveillance robots is 
their way of interacting with human operators. Such opera-
tors need to interact in order to teach the robot about the 
environment (for example, which locations are important 

for the security mission), drive the robot to acquire new or 
additional information about a location or an event, receive 
the feedback from the user. These operators are expected to 
interact with robots in a natural way, without being re-
quired to have knowledge about the implementation of the 
system. 
 In (Randelli, Iocchi, Nardi 2011) we propose an archi-
tecture based on multi-modal user interfaces that allows a 
simple but effective form of human-robot interaction. Mul-
ti-modal user interaction include the combined use of a 
tangible device (e.g., a WiiMote controller), a pointing de-
vice (such as a laser pointer), laser and stereo-vision sen-
sors on the robots to acquire metric information from the 
environment, and speech recognition (using a small porta-
ble device: Speaky

1
). With this tool effective knowledge 

about the environment (for example a semantic map) can 
be easily acquired by the robots and used for the surveil-
lance task.  

Localization of security personnel 

Personnel carry active RIFD tags/readers as well as other 
Wi-Fi enabled communication equipment. The attenuation 
of the signals emitted from these devices is available. A 
model of the propagation characteristics can be used to es-
timate the range at between transmitter and receiver using 
the difference in signal strength. The nature of the model 
can be theoretical or empirical. The challenge for such a 
system is that RF propagation suffers from a number of 
problems including diffraction, reflection, and scattering of 
the signal that introduce significant errors; thus probabilis-
tic methods are usually employed. The proposed approach 
is based on scene analysis with additional reference tags. 
Scene analysis uses fingerprinting and operates in two 
phases. In the first offline phase a fingerprint of the envi-
ronment or a map of the signal strength at all locations is 
produced. In the second or online phase, the fingerprint is 
employed to estimate position given signal strength. Kal-
man filters (Bekkali, Sanson, Matsumoto 2007), particle 
filters and Bayesian techniques have been used to improve 
the localization estimate. 

Video analysis for scene understanding  

In fusion data process of multi-camera sensors, the first 
step is the object detection and tracking of the target in the 
scene being monitored.  

Object detection and Tracking algorithms 

The approach is based on (Harveille, Dalong 2004) work. 
It consists in tracking using 3D information and Kalman 
Filters (Bekkali, Sanson, Matsumoto 2007), fixed tem-
plates which are implemented as the combination of the 
height and statistical data of occupancy of the object de-
tected. Figure 4 illustrates the whole process. Background 
subtraction technique is applied to obtain the object from 
the scene. Initially, a background model is computed and 
adapted, applying a well-known statistical method for clus-
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tering called Gaussian Mixture Model (GMM) per-pixel, 
using four channels of information (color and depth). Fol-
lowing equation illustrates the computation of the GMM: 

 

    

 
Where δ, it is the mixing weights of pass observations and 

, 1 , 1( , )j i t i t     it is a Gaussian density function compo-
nent. Once the object is detected, the two data templates 
are created by projecting the object detected data to the 
ground plane, from a top-camera view. The height template 
is computed using the object detected height information 
(i.e. the head pixels would provide the highest value and 
the feet the lowest). The occupancy template is compute as 
follows; all pixels from the object are projected to the 
ground plane in an accumulative manner, therefore the re-
gion of the pixels belonging to the head and main body of 
the object provide higher occupancy values as they accu-
mulate more number of pixels (the projection of all pixels 
is made from top to bottom).See top images in Figure 4. 
 The 2D position of the center of mass of the computed 
templates are thus tracked using Kalman Filters. See bot-
tom images in Figure 4. The state vector is composed by 
the 2D position of the templates, their velocity, and the 
highest value of the height template and the highest value 
of the occupancy template. The area to search for corres-
pondence on the tracks, is centered to the estimated 2D po-
sition of the ground plane object's projection. The corres-
pondence is resolved via match score, which is computed 
at all localizations within the search zone. A lower match 
score implies better match. Following equation illustrates 
the computation of the match score: 
 
 

 

       
SAD refers to the sum of absolute differences between 
height and occupancy templates created from the current 
frame. The (ρ,ω,β,α)  weights are deduced in (Harveille, 
Dalong 2004). 

 

 

 

 

 

 

Figure 4. Results of height and occupancy maps and tracking.  

 Furthermore, to enable in future the recognition of more 
detailed human actions, in addition to tracking persons, the 
system is able to detect their body parts (torso and arms). 
The approach is based on background-foreground segmen-
tation, followed by identifying and tracking the torso and 
labeling silhouette segments with respect to the torso (us-
ing extremal convex points and SIFT tracking for increased 
robustness (Lowe 2004). Figure 5 shows an example of de-
tected body parts, to be used for recognizing a grabbing ac-
tion. 

Figure 5. Detection of body parts. 

 As illustrated in Figure 3, the object detection (OD), 
tracking individuals and tracking human body parts servic-
es have defined outputs. For example, the tracking individ-
uals service outputs the certainty or likelihood of the target 
position being tracked. Therefore, once a target starts to be 
tracked a certainty map (Munoz, Salinas 09) is created with 
the target's data, as shown in the following equation: 

 

 

  

 

 
 The certainty maps presented in this paper are computed using 

a third moment (skew) of the Gaussian density function that 

represents the reliability of the 3D data coming from the camera 

sensor; i.e. the working range of camera sensor. 

Information Fusion 

The solution we research consists in the implementation of 
a system composed of a network of video cameras, radio-
frequency devices (RFID) sensors, robotic platforms and 
portable devices worn by guards. One of the implications 
of using heterogeneous sensors to monitor the same loca-
tion is the large amount of redundant data, which can be 
exploited to improve performance on the system’s moni-
toring activity (Snidaro, Visentini, Foresti 2009). However, 
to manage successfully this amount of data, the fusion 
should be driven by the quality of data to be integrated. 
 Different approaches have been researched in computer 
vision to fusion multi-cameras. The common related work 
is based on finding the topological relation between cam-
eras (Lobaton et al. 2010) using appearance models (Ellis, 
Markis, Black 2003). Other work is based on fusion using 
statistical data association (Kettnaker,Zabih 1999), others 
use temporal matching cues (Zhao et al. 05) or color cues 
matching (Gilbert  et al. 2009) or integrating both informa-
tion cues using unsupervised learning methods 
(Chen,Hung 2010)(Vivek, Pradeep 2008). Other related 
work is based on finding the relative position of the cam-
eras on a common reference system (Mavrinac, Chen, Tepe 
2010)(Zhang et al. 2008). 
 Some of these work present good results. However, all 
these approaches are hardly based on the assumption of fu-
sion the same type of data from the same type of sensors 
(i.e. cameras). The approach presented in this paper is fo-
cused not only on fusion data but the quality of data to be 
fused, and also the fact that the representation of this data 
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should be standard as the sensors may be different technol-
ogy (i.e. RFID, robot and cameras). Thus, the data that 
they output would be different. The certainty maps used in 
this approach, which are described in previous section, 
provide at the same time a degree of data quality (i.e. the 
sensor output how certain is from the output data). The fu-
sion approach used, is based on distributed independent li-
kelihood pool mechanism (Snidaro et al. 2009) and the de-
centralized data fusion is obtained by applying the local 
beliefs concepts (Capitan et al. 2009).  

Fusion through distributed independent likelihood pool 

As mentioned, the approach to fusion all the data (initially 
the probability of the position of a target) coming from dif-
ferent sensors is based on distributed independent likelih-
ood pool mechanism (Snidaro et al. 2009) and local beliefs 
concepts (Capitan et al. 2009). The probability of the tar-
get’s localization is approximated using a third moment of 
a Gaussian. Assuming that all the data coming from K sen-
sors are conditionally independent given certain state X 
with a set of measurements Z, then the posterior distribu-
tion of the state X is composed by the independent likelih-
ood pool of the likelihood functions of each sensor: 

 

 

 
 Therefore, X represents the fusion of the position of the 
target once all the positions provided by the K sensors are 
combined through their local beliefs ( ( )i X ) and the 
common information shared (i.e. the prior over the trajec-
tory P(Xo) is removed. C is a constant to normalize the 
posterior distribution. 

Case study 

The scenario for the system to be built could be the bag-
gage area of an airport as it is a complex environment 
where crowded situations may occur at random times. 
People in this type of scenario with their luggage provide 
all sorts of shapes and forms interesting to analyse. This 
section presents an initial prototype of small scale of the 
final system to illustrate what is presented in Figure 3.  The 
prototype consists of two robots patrolling an area and 
communicating with a fix camera and also with a control 
room operator, sees Figure 6. The prototype has also a fix 
camera operating in a remote localization and providing 
the results to a mobile operator through a PDA, which it is 
illustrated in Figure 7.  

 

 

 

 

 

 
 

Figure 6. Robot goes to the position indicated by the camera. 

 Figure 6 shows the results of implementing the camera, 
robot, map, localization, OD and tracking individual ser-
vices illustrated in Figure 3. First, the robots create the map 
and localize themselves. Then, the personnel from the con-
trol room, can operate the robots in two ways: manually, 
the operators send the robots to a position that they want to 
monitor or automatically, once the fix camera sensor de-
tects a predefined event (i.e. someone in a forbidden area) , 
sends the target position to the robot and the robot goes 
there. 

  

 

 

 

 

 

 

 

 

Figure 7. The system transmits the event monitored by the 
camera sensor to the control room and PDA device.  

 Figure 7 shows the results of the implementation of 
camera, archive, visualize and OD services. Once the fix 
camera sensor detects a target, it archives the output, which 
then allows a mobile node (i.e. security personnel) to vi-
sualize the output through a PDA device. 

Conclusions and future work 

This paper presented an earlier stage of the research focus 
on building a heterogeneous multi-sensor system to moni-
tor public environments. The paper discussed the proposed 
solution and presented the fusion data approach that is 
going to use between the sensors that conform the system. 
Although the fusion data approach described in this paper 
is based on multi-camera sensors, the framework is devel-
oped to fusion in future, data coming from different sen-
sors (i.e. RFID, robot and cameras). The approach is based 
on fusion likelihood functions based on the target’s locali-
zations provided by each sensor.  
 However, research is still required in several topics, 
which have been explained along the paper as e.g. in multi-
human/multi-robot paradigm (MHMR). Also, further work 
in interaction and feedback mechanism within sensors 
should be carried out e.g. applying approaches that allow 
to cooperate sensors on a merit decided by competition 
(Vivek et al. 2008) optimizing the cooperation between the 
sensors, increasing the performance of the system. 

References  

Raty D. T. 2010. Survey on Contemporary Remote Surveillance Systems 

for public Safety. Part C:Applications and Reviews.  IEEE Transactions 

on Systems, Man and Cybernetics. 40(5): 492-315. 

( )

1

( | ) ( ) (4)
( )

i

K
XK

i

P X Z C P Xo
P Xo





  



Valera M. and Velastin, S.A .2005.  Intelligent distributed surveillance 

systems: a review. IEE Proceedings of Visual Image Signal Process, 

152(2):192-204. Calif.: IEE conference of Visual Image Signal Process. 

 Harville M. and Dalong Li. 2004.Fast, integrated person tracking and ac-

tivity recognition with plan-view templates from a single stereo camera. 

IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, 2: 398-405. 

Zhao T; Aggarwal M.; Kumar R.; and Harpreet Sawhney. 2005. Real-

time wide Multi-Robot and Multi-Camera. In Proceedings of IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition 

976-983. Washington, DC, USA. Calif:  IEEE Computer Society. 

Fusier F.; Valentin V.; Brémond F.; Thonnat M.; Borg M.; Thirde D. and 

Ferryman J.. 2006. Video Understanding for Complex Activity Recogni-

tion. In Machine Vision and Applications Journal , 18(3-4):167-188.  

Munoz-Salinas R.; Medina-carnicer R.; Madrid-Cuevas F.J.; Cartmona-

Poyato A. 2009. People detection and tracking with multiple stereo cam-

era using particle filters. Journal Visual Communication Image Represen-

tation. (20):339-350. 

Chen. K-W. and Hung Yi-P. 2010. Multi-Cue Integration for Multi-

Camera Tracking. In Proceedings of International Conference on Pattern 

Recognition. 145-148. Calif.: International Conference on Pattern Recog-

nition. 

Buxton H., Gong S. 2002. Generative Models for Learning and Under-

standing Scene Activity. Technical Report DIKU-TR. The University of 

Copenhagen. 

Burgard, W.; Moors M.; Fox D.; Simmons R.; and Thrun S. 2000. Col-

laborative Multi-Robot Exploration. In Proc. IEEE International Confer-

ence on Robotics and Automation. 476-481 .San Francisco. USA. Calif.: 

IEEE International Conference on Robotics and Automation. 

Zhang, F.; Chen W.D.; and Xi Y.G. 2005. Improving Collaboration 

through Fusion of Bid Information for Market-based Multi-robot Explora-

tion. In Proc. IEEE International Conference on Robotics and Automa-

tion. 1157-1162.Barcelona, Spain. Calif.: IEEE International Conference 

on Robotics and Automation. 

Iocchi L.; Nardi D.; and Salerno M. 2001. Reactivity and Deliberation: A 

Survey on Multi-Robot Systems. Balancing Reactivity and Social Delib-

eration in Multi-Agent Systems, From RoboCup to Real-World, 3-540-

42327-3, 9–34. Mass.: Springer-Verlag, London, UK. 

Stelzer A.; Pourvoyeur K.; and Fischer A.2004. Concept and application 

of LPM - a novel 3-D local position measurement system. IEEE Trans. on 

Microwave Theory and Techniques 52(12):2664–2669. 

A. Bekkali, H. Sanson, and M. Matsumoto. 2007. RFID indoor position-

ing based on probabilistic RFID map and kalman filtering. In Proc. of 

WiMOB. Calif.: Conference WiMOB. 

Wang Ching-Sheng; Huang Xin-Mao; And Hung Ming-Yu. 2010. Adap-

tive RFID Positioning System Using Signal Level Matrix. World Acade-

my of Science, Engineering and Technology 70 

Hatthasin, U.;   Thainimit, S.;   Vibhatavanij, K.;   Premasathian, N.;   

Worasawate, D. 2009. An improvement of an RFID indoor positioning 

system using one base station. In Proc. 6th International Conference on 

ECTI-CON. Calif.: Conference on ECTI-CON. 

Tesoriero R.; Tebar R.; Gallud J.A.; Lozano M.D. ; and Penichet 

V.M.R.2010. Improving location awareness in indoor spaces using RFID 

technology. Expert Systems with Applications 37:894-898. 

Valera, M. and Velastin, S A. 2003. An approach for designing a real-

time intelligent distributed surveillance system. In Proceedings on IEE 

Workshop on Intelligent Distributed Surveillance Systems. London. 42-

48.Calif.: IEE Workshop on IDSS.   

Quigley. M.; Gerkey B.;Conley. K.; Faust. J.; Foote. T. 2009. ROS: an 

open-source Robot Operating System. In Proceedings of IEEE Interna-

tional Conference on Robotics and Automation. Calif.: International Con-

ference on Robotics and Automation workshop. 

Iocchi L.; L. Marchetti, Nardi. D. 2011. Multi-Robot Patrolling with 

Coordinated Behaviours in Realistic Environments. In Proc. of IEEE/RSJ 

International Conference on  Intelligent Robots and Systems. San Fran-

cisco, USA. Calif.: International Conference on  Intelligent Robots and 

Systems.  

G. Randelli. G; Iocchi L.; Nardi. D. 2011. User-friendly security robots. 

In Proc. of IEEE International Symposium on Safety, Security, and Res-

cue Robotics. Kyoto, Japan. Calif.: International Symposium on Safety, 

Security, and Rescue Robotics. 

Lowe D. G. 2004. Distinctive Image Features from Scale-Invariant Key-

points . International Journal of Computer Vision 60(2):91–110. 

Snidaro L.; Visentini I.; and Foresti G.L. 2009. Multi-sensor multi-cue fu-

sion for object detection in video surveillance. In Proc. Of AVSS. 364-

369. Calif.: Conference on AVSS. 

Lobaton E.; Vasudevan R.; Bajcsy ;R. Sastry S. 2010.A distributed Topo-

logical Camera Network Representation for Tracking Applications. IEEE 

Trans. on image processing 19(10):2516-2528. 

Ellis T. J.; Makris D. ; and Black J. 2003. Learning a multi-camera topol-

ogy. In Proc. Of Joint IEEE Int. Workshop VS-PETS. 26-33. Calif.: IEEE 

International Workshop VS-PETS. 

Kettnaker V.;Zabih R. 1999. Bayesian Multi-camera Surveillance. In 

Proc. On IEEE International Computer Vision on Pattern Recogni-

tion.2253-2259. Calif.: International conference on Computer Vision. On 

Pattern Recognition.  

Vivek K.S.;Pradeep K.A.2008. Coopetitive multi-camera surveillance us-

ing model predictive control. Machine Vision and applications 19:375-

393. 

Gilbert A.; Illingworth J.; Bowden R.; Capitan J.; and Merino L. 2009. 

Accurate fusion of Robot, Camera and Wireless sensors for surveillance.  

The ninth IEEE International workshop on Visual Surveillance. Calif.: In-

ternational conference on Computer Vision. 

Mavrinac A.; Chen X.; Tepe K. 2010. An Automatic calibration method 

for stereo-based 3D distributed smart camera networks. Computer Vision 

and Image Understanding 114:952-962. 

Zhang Z.; Scalon A.; Yin W. ;Yu L. Venetianer P.L. 2008. Video Surveil-

lance Using a Multi-camera tracking and Fusion System. In Proc. Of 

workshop on Multi-Camera and Multi-modal Sensor Fusion Algorithms 

and Applications. 

Capitan J.;Merino L.; Caballero F.; and Ollero A. 2009. Delayed-state In-

formation Filter for Cooperative Decentralized Tracking. In Proc. on 

IEEE International Conference on Robotics and Automation. Japan.3865-

3870. Calif.: International conference on Robotics and automation. 

Acknowledgments 

This publication was developed under Department of 
Homeland Security (DHS) Science and Technology Assis-
tance Agreement No. 2011-ST-108-000021 awarded by the 
U.S. Department of Homeland Security. It has not been 
formally reviewed by DHS. The views and conclusions 
contained in this document are those of the authors and 
should not be interpreted as necessarily representing the of-
ficial policies, either expressed or implied, of the U.S. De-
partment of Homeland Security. The Department of Home-
land Security does not endorse any products or commercial 
services mentioned in this publication. 

 


