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Abstract

Hand-based verification is a key biometric technology
with a wide range of potential applications both in indus-
try and government. The focus of this work is on improving
the efficiency, accuracy, and robustness of hand-based veri-
fication. In particular, we propose using high-order Zernike
moments to represent hand geometry, avoiding the more dif-
ficult and prone to errors process of hand-landmark extrac-
tion (e.g., finding finger joints). The proposed system op-
erates on 2D hand silhouette images acquired by placing
the hand on a planar lighting table without any guidance
pegs, increasing the ease of use compared to conventional
systems. Zernike moments are powerful translation, rota-
tion, and scale invariant shape descriptors. To deal with
several practical issues related to the computation of high-
order Zernike moments including computational cost and
lack of accuracy due to numerical errors, we have employed
an efficient algorithm that uses arbitrary precision arith-
metic, a look-up table, and avoids recomputing the same
terms multiple times [2]. The proposed hand-based authen-
tication system has been tested on a database of 40 subjects
illustrating promising results. Qualitative comparisons with
state of the art systems illustrate comparable of better per-
formance.

1. Introduction

Recently, there has been increased interest in developing
biometrics-based authentication systems which has led to
intensive research in fingerprint, face, hand, ear, and iris
recognition. Each biometric has its strength and weak-
ness depending on the application and its requirements.
Hand-based authentication, which is the topic of this study,
is among the oldest live biometrics-based authentication
modalities. The geometry of the hand contains relatively
invariant features of an individual. The existence of several
hand-based authentication commercial systems and patents
indicate the effectiveness of this type of biometric. Hand-
based verification systems are usually employed in small-
scale person authentication applications due to the fact that

geometric features of the hand (e.g., finger length/width,
area/size of the palm) are not as distinctive as fingerprint
or iris features.

There are several reasons for developing hand-based au-
thentication systems. First, hand shape can be easily cap-
tured in a relatively user friendly manner by using conven-
tional CCD cameras. Second, this technology is more ac-
ceptable by the public in daily life mainly because it lacks
a close connection to forensic applications. Finally, there
has been some interest lately in fusing different biometrics
to increase system performance [15, 9]. The ease of use and
acceptability of hand-based biometrics make hand shape a
good candidate in these heterogeneous systems.

Although hand-based live verification has a long history
and a considerable market share [1], most studies address-
ing enhancements of this technology are rather recent [7].
Increases in computing power and advances in computer
vision and pattern recognition are expected to facilitate the
implementation of easier to use systems with higher accu-
racy. Removal of pegs, to improve convenience, and use
of more principled feature extraction techniques to capture
the shape of the hand in more detail represent promising
research directions in this area.

The focus of this work is on improving the efficiency,
accuracy, and robustness of hand-based verification. One
can imagine utilizing various shape descriptors to provide a
more powerful representation of the shape of the hand, re-
placing the conventional geometric features. In this study,
we present the design and implementation of a hand-based
verification system using high-order Zernike moments. The
system operates on 2D hand silhouette images acquired by
placing the hand on a planar lighting table without any guid-
ance pegs, therefore, increasing the ease of use. Moreover,
it does not require extracting any landmarks on the hand
(e.g., finding finger joints), a process which could be prone
to errors.

Zernike moments, have been employed in a wide range
of applications in image analysis, and object recognition
[21]. They are quite attractive for representing hand shape
information due to having minimal redundancy (i.e., or-
thogonal basis functions [19]), and being invariant with re-
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spect to translation, rotation, and scale, as well as robust
to noise [20]. In most applications, however, their use has
been limited to low-orders only or small low-resolution im-
ages due to high computational requirements and lack of ac-
curacy due to numerical errors. Although there exist some
fast algorithms that rely on approximate polar coordinate
transformations [13, 3, 5], we could not obtain satisfactory
results in the context of our application due to the approxi-
mations involved (i.e., lack of accuracy).

Using Zernike moments for hand-based authentication
requires fast computation of high-order moments as accu-
rately as possible, in order to capture the details of the hand
shape. To deal with these requirements, we are employ-
ing an efficient algorithm previously developed in [2] that
reduces computation cost without sacrificing accuracy. To
preserve accuracy, this algorithm avoids any form of coor-
dinate transformations and it uses arbitrary precision arith-
metic. To reduce computational complexity, it avoids re-
computing the same terms multiple times and uses a look-
up table to save computations. It should be mentioned that
high-order Zernike moments are usually more sensitive to
noise, however, this is not an issue in our application since
the amount of noise present in our data is rather low due
to the acquisition process employed (see Section 3). We
demonstrate the performance of the proposed hand-based
authentication system on a database of 40 subjects with 10
images per subject. Qualitative comparisons illustrate that
the proposed approach performs comparable or better than
state of the art systems reported in the literature.

The rest of the paper is organized as follows: in the
next Section, we present a brief literature review on hand-
based authentication systems. Section 3, contains the de-
tails of the image acquisition process and preprocessing.
In Section 4, we present a short introduction to Zernike
moments, and provide a brief review of the algorithm for
high-order Zernike moments computation. Feature extrac-
tion and matching are presented in Section 5 while experi-
mental results and comparisons are presented in Section 6.
Finally, Section 7 includes our conclusions and plans for
future work.

2. Previous Work

The majority of hand-based verification systems using
geometric measurements are based on research limited to
considerably old patents [7] and commercial products. In
these systems, the user is asked to place his/her hand on a
surface and align it, with the help of some guidance pegs, on
the surface. A mirror is usually used to obtain a side view
of the hand using a single camera. The alignment operation
simplifies the feature extraction process to a great extent and
allows high processing speeds. In most cases, a few hand-
crafted geometric features (e.g. length, width and height of
the fingers, thickness of the hand, aspect ratio of fingers and

palm . . . etc.) are extracted, making it possible to construct
a small template (i.e., 9 bytes in some commercial systems).

Enhancing the ease of use and/or recognition accuracy of
the system described above has drawn some attention only
recently. Some studies have concentrated on accuracy only.
Sanchez-Reillo et al. [17, 16] have proposed a new and
richer set of geometric features and have investigated the
use of multiple templates for an individual. Gaussian Mix-
ture Models (GMMs) were employed to model each subject.
Jain and Duta [6] proposed the use of the whole silhouette
contour of the hand directly for alignment and matching.

Several studies have reported that peg-based alignment
is not very satisfactory and represents in some cases a
considerable source of failure [17, 7]. Although peg re-
moval provides a solution to reduce user inconvenience,
it also raises more challenging research problems due to
the increase in intra-class variance. More recent studies
[14, 22, 9, 4, 12, 24] have concentrated on the design of
more convenient peg-free systems. Segmenting each finger
and the palm in the silhouette image is usually the first pro-
cessing stage in these systems. Once the fingers have been
segmented, it becomes possible to extract and normalize ge-
ometric features [22, 9, 12], or contours [12, 24] for each
part of the hand. Employing multiple templates is usually a
requirement in peg-free systems [22, 9, 4].

Another important approach in the literature involves re-
constructing the 3D surface of the hand. Woodard et. al
[23] have used a range sensor to reconstruct the dorsal part
of the hand. Local shape index values of the fingers were
used as features in matching. In a related study, Lay et. al.
[10] projected a parallel grating onto the dorsal part of the
hand to extract features that indirectly capture 3D shape in-
formation.

3. Image Acquisition and Preprocessing

Our image acquisition system consists of a VGA resolu-
tion CCD camera and a planar lighting table, which forms
the surface for placing the hand. The direction of the cam-
era is perpendicular to the lighting table as shown in Fig.
1(a). The camera has been calibrated to remove lens distor-
tion. It should be mentioned that, both the camera and the
lighting table can be placed inside a box to completely elim-
inate light interferences from the surrounding environment;
however, the current setting provides fairly high quality im-
ages without much effort from our side to control the envi-
ronment. When the user places his/her hand on the surface
of the lighting table, an almost binary, shadow and noise
free, silhouette of the hand is obtained (see Fig. 1(b) and
(c)). An alternative approach would be using a scanner to
acquire the hand silhouette. During the acquisition process,
users are just asked to stretch their hand and place it inside
a large rectangular region marked on the surface of the ta-
ble. This is to ensure the visibility of the whole hand and



Figure 1. (a) Image acquisition system, (b, c) Images of the the
same hand acquired by the system.

Figure 2. Hand-forearm segmentation: (a) original image, (b) bi-
narized image, (c) largest circle inside the silhouette, and (d) seg-
mented hand silhouette.

to avoid perspective distortions. There are no limitations on
the orientation of the hand.

After the image has been captured, it is binarized to ob-
tain the hand and forearm silhouettes. Due to the high con-
trast of the images obtained, simple thresholding gives high
quality and accurate silhouettes as shown in Fig. 2(b). The
next step involves separating the forearm from the hand. For
this purpose, first we detect the palm by finding the largest
circle inscribed in the hand-arm silhouette as shown in Fig.
2(c)). This process is fully automated and uses morphologi-
cal operators. Then, the intersection of the forearm with the
circle’s boundary is found to segment the hand. Fig. 2(d)
shows an example.

4. Zernike Moment Computation

Zernike moments are based on a set of complex polyno-
mials that form a complete orthogonal set over the interior
of the unit circle [25]. They are defined as the projection of
the image on these orthogonal basis functions. Specifically,
the basis functionsVn,m(x, y) are given by

Vn,m(x, y) = Vn,m(ρ, θ) = Rn,m(ρ)ejmθ (1)

wheren is a non-negative integer,m is a non-zero integer
subject to the constraintsn− |m| is even and|m| < n, ρ is
the length of the vector from origin to(x, y) , θ is the angle
between the vectorρ and thex-axis in a counter clockwise
direction, andRn,m(ρ) is the Zernike radial polynomial.
Rn,m(ρ) is defined as follows:

Rn,m(ρ) =
n∑

k=|m|,n−k=even

(−1)
n−k

2 n+k
2 !

n−k
2 !k+m

2 !k−m
2 !

ρk

=
n∑

k=|m|,n−k=even

βn,m,kρk (2)

The Zernike moment of ordern with repetitionm for a
digital image functionf(x, y) is given by [8]:

Zn,m =
n + 1

π

∑ ∑

x2+y2≤1

f(x, y)V ∗
n,m(x, y) (3)

whereV ∗
n,m(x, y) is the complex conjugate ofVn,m(x, y).

To compute the Zernike moments of a given image, the im-
age center of mass is taken to be the origin.

A method to improve the speed of Zernike moments
computation involves using a quantized polar coordinate
system. In [13] and [5], a square to a circle transformation
was employed for this purpose. In [3], for anM ×M im-
age, the angles were quantized to4M and the radii were
quantized toM levels. A side effect of quantization is
that errors are introduced in the computation of high-order
Zernike moments (see next Section).

In this work, we employ an improved algorithm reported
in [2] which avoids using any quantization, therefore, the
computation of the moments is as accurate as in the tra-
ditional approach (i.e., no approximations). To save com-
putation time, this algorithm finds the terms that occur re-
peatedly in various orders and avoids recomputing. Further
computations are saved by employing a look-up table. To
ensure high accuracy, it uses arbitrary precision arithmetic.
In the next subsection, we summarize the main ideas be-
hind this algorithm and compare it with Belkasim’s method,
which has given the best reconstruction error among the fast
implementations mentioned above.

4.1. Efficient High-Order Zernike Moment Com-
putation

By substituting Eqs. 2 and 1 in 3 and re-organizing the
terms, the Zernike moments can be computed as follows:



Figure 3. Common terms for computing Zernike moments up to
order 10 with zero repetition.

Zn,m =
n + 1

π

∑ ∑

x2+y2≤1

(
n∑
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βn,m,kρk)e−jmθf(x, y)

=
n + 1

π

n∑
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βn,m,k(
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=
n + 1

π

n∑
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βn,m,kχm,k (4)

Theχm,k ’s defined in Eq. 4 become common terms in
the computation of moments with the same repetition as
shown in Fig. 3 for repetitionm=0. In general, to compute
Zernike moments up to order N, we would need to compute
χm,k for each repetition. However, computingχm,k only
once would be enough for computing Zernike moments of
any order and any repetition by simply taking linear com-
binations as shown in Eq. 4. Moreover, the coefficients
βn,m,k (see Eq. 2) do not depend on the image or the co-
ordinates; therefore, they can be stored in a small look-up
table to save computations [2].

Another important issue in high-order Zernike moment
computation is numerical precision [2]. Depending on the
image size and the maximum order, double precision arith-
metic does not provide enough precision and serious nu-
merical errors can be introduced in the computation of the
moments. This fact is demonstrated in Fig. 4 by showing
the effect of numerical errors on the orthogonality of the
basis functions. As it can be observed in Fig. 4(a), ob-
tained using double precision, orthogonality is violated se-
riously. Fig. 4(b), obtained using arbitrary precision arith-
metic, shows that the orthogonality of the basis functions is
preserved (i.e., only a delta function peak is present).

4.2. Comparison to Belkasim’s Method

Our initial experimental results have indicated that ac-
curate computation of Zernike moments is critical for our
system to perform well. Here, we used the reconstruction
error as a measure of accuracy:

εr =

∑
x

∑
y |f̃(x, y)− f(x, y)|2∑

x

∑
y f(x, y)2

(5)

Figure 4. Dot product of basis function withn = 43, m = 7 and
other basis functions up to order 50 using (a) double precision and
(b) arbitrary precision arithmetic.

wheref(x, y) is the original image and̃f(x, y) is the
reconstructed image (up to orderN )). Table 1 shows the re-
construction error of the method employed here and Belka-
sim’s method using several different images and different
orders. In implementing Belkasim’s algorithm, we used ar-
bitrary precision arithmetic to make a fair comparison. In
general, it should be expected that the error decreases with
increasing the order of Zernike moments. The method em-
ployed here illustrates such a behavior, however, Belkasim’s
method behaves quite differently which indicates that the
quantization of polar coordinates has a serious effect on the
computation of higher-order moments.

Table 1. Reconstruction error for a number of different images us-
ing our method and Belkasim’s method.

Order Our method Belkasim’s method
35 0.0647 0.0648
40 0.0621 0.0628
45 0.0596 0.063
50 0.0370 0.0557
55 0.0203 0.0645
60 0.0133 0.0665

Table 2 shows the number of multiplications and addi-
tions required by the method employed here and Belaksim’s
method for anM ×M image and moments up to orderN .
Overall, both methods have the same computational com-
plexity which is O(N2M2) although Belaksim’s method
performs less additions.

Table 2. Computational complexity of different methods.

Additions Multiplications

Belkasim’s method O(NM2) O(N2M2)

Our method O(N2M2) O(N2M2)

5. Feature Extraction and Matching

An important parameter in our system is choosing the
maximum order of Zernike moments. Liao et. al. [11]



Figure 5. (a) Original image, and (b) From left to right, top to
bottom, reconstructed images of original image up to order 10, 20,
30, 40, 50, 60, 70, 80 and 90, respectively.

Figure 6. Reconstruction error on hand images.

showed that there is an inherent limitation in the precision
of computing Zernike moments due to the circular geome-
try of the domain. Thus, arbitrarily high order moments are
not accurate and useful for recognition. In this study, we
used the average reconstruction error (see Eq. 5) on a large
number of hand images to decide the maximum order in the
context of our application. Fig. 6 shows the reconstruction
error for different orders. As it can be observed, the error
almost saturates for orders higher than 70. Fig. 5, shows
the reconstructions for different orders. The saturation ob-
served in Fig. 6 is also visually evident in Fig. 5. Based on
these experiments, the maximum order chosen in our sys-
tem was 70. Our experimental results justify this decision
too.

Zernike moments up to order 70 yield a feature vector of
1296 components. To enable a smaller template size, PCA
is used to reduce the dimensionality. Alternatively, feature
selection could be used to choose a small subset of discrim-
inant moments [18]. Using only 30 components, we were
able to capture 99% of the information. For matching, we
used the Euclidean distance. The resulting templates are
translation, rotation, and scale invariant although scale in-
variance is not absolutely necessary in our application since
the distance of the hand from the camera is fixed. Since we
use multiple templates for each subject, our similarity cri-
terion is based on the minimum distance between the query
and the templates.

Figure 7. Normalized Zernike moment differences for two images
of the same hand containing finger motion - less than 1.8% max
error is shown.

6. Experimental results

In order to evaluate our system, we collected data from
40 people of different age and sex. For each subject, we
collected 10 images of their right hand during the same ses-
sion. Besides asking the subjects to stretch their hand and
place it inside a square area drawn on the surface of the
lighting table, no other restrictions were imposed as shown
in Fig. 8). To capture different samples, subjects were asked
to remove their hand from the lighting table, relax for a few
seconds, and then place it back again. As a result, finger
movements were unavoidable. For example, the middle and
ring fingers are more apart from each other in Fig. 8(d) than
in Fig. 8(c). Our experimental results show that Zernike
moments can tolerate certain finger movement (e.g., 6 de-
grees rotation about the axis perpendicular to the joint of
the finger with the palm), however, they are more sensi-
tive when fingers move close to each other. Interestingly
enough, finger motion does not affect high-order moments
significantly more than low-order moments (see Fig. 7).
Also, Zernike moments cannot tolerate very well situations
where the hand is bent at the wrist. In our database, which
contains 400 samples, the maximum distance between sam-
ples was 0.6556. The mean distance between samples of
the same subject (i.e., 1800 pairs of hands) was 0.2063,
while the mean distance between samples of different sub-
jects (i.e.,76,200 pairs of hands) was 0.4507.

We used different number of samples (e.g., 3,4, and 5)
for each subject as enrollment templates. To capture the ef-
fect of template selection on overall system performance,
we repeated each experiment ten times, each time choosing
the enrollment templates randomly. The remaining sam-
ples were used to construct matching and non-matching sets
to estimate False Acceptance Rate (FAR) and False Reject
Rate (FRR). Figs. 9, 10 and 11 show the average ROC



Figure 8. Sample images belonging to the same subject.

Figure 9. Average ROC curves using 3 templates for each sub-
ject; the solid and dashed curves correspond to the raw Zernike
moments and PCA features respectively.

Figure 10. Average ROC curves using 4 templates for each sub-
ject; the solid and dashed curves correspond to the raw Zernike
moments and PCA features respectively.

curves using 3, 4 and 5 templates per subject respectively.
For comparison purposes, our tests were performed using
both Zernike moments and PCA features.

Table 3 shows the mean and standard deviation of FRR
whenFAR = 1% using different number of templates. In
all cases, performance was better using PCA was rather than
using raw Zernike moments except for very low FAR val-
ues. Moreover, we obsereved that the error rates decrease to
a great extent with an increase in the number of templates,
which also enforces the use of PCA.

To further investigate the performance of our system, we
have performed a qualitative comparison of the error rate

Figure 11. Average ROC curves using 5 templates for each sub-
ject; the solid and dashed curves correspond to the raw Zernike
moments and PCA features respectively.

Table 3. Mean and standard deviation of FRR whenFAR = 1%.

No. of Training vectors 3 4 5
FRR (%) 6.03 3.56 2.44
σF RR (%) 2.09 1.80 0.67

FRR (%) [using PCA] 5.82 3.28 2.42
σF RR (%) [using PCA] 1.97 1.27 1.08

of our system and those reported in the literature (see Table
4, last row). Since there is no standard acquisition method
and, as a result, no benchmark databases, comparing dif-
ferent systems on a qualitative way is difficult. To make
the comparison more fair, for each study considered in our
comparison, we are also reporting several other factors such
as number of subjects, number of images per person, num-
ber of templates, use of pegs, type of features, and distance
measures. The results reported for our system in Table 4,
were obtained using 5 templates. From the table, it can be
concluded that our system has comparable or lower error
rates than any other system shown. In terms of systems us-
ing databases of comparable size to the one used in our ex-
periments, the error estimates produced by our system are
better than the first 5 systems reported in Table 4.

7. Conclusions and Future Work

We have presented a novel peg-free hand-based verifica-
tion system using high order Zernike moments. To make
the computation of high-order moments feasible, we pre-
sented a new algorithm that avoids redundant computations
to speed up things and uses arbitrary precision arithmetic to
ensure accurate moment computations. Using a database of
400 images from 40 subjects, the average error rate of our
system using 5 templates was FRR=2.42% when FAR=1%
and EER=2%. Qualitative comparisons between our system
and other systems reported in the literature indicate that our
system performs comparable or better.

It should be noted that our system is still under devel-
opment and further work is required to improve its per-
formance. First of all, to tolerate finger movement, espe-



cially movements of the middle finger, subjects were asked
to stretch their hand prior to placing it on the lighting table.
Although such a requirement does not cause any inconve-
nience to the subjects, an alternative approach would be seg-
menting the fingers and the palm. Then, verification can be
performed by just considering information from the fingers,
the palm or both. Such an approach would tolerate finger
motion and completely remove the requirement to place the
hand in a stretched position. Second, we plan to investi-
gate the idea of combining multiple templates into a single,
”super-template”, to reduce memory requirements but also
build more accurate models for each individual. Third, we
plan to increase the size of the database in order to perform
larger scale experiments and obtain more accurate error es-
timates. Moreover, we plan to test the robustness of the
method when there is substantial passage time between the
template and test images. Finally, we plan to compare our
technique with other techniques using the same database to
reach more useful conclusions.
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