
ROBUST 3-D INTERPRETATION FROM TWO FRAMES
WITH MULTIPLE MOTIONS

Mircea Nicolescu

Department of Computer Science
University of Nevada, Reno

Reno, NV 89557, USA
mircea@cs.unr.edu

Gérard Medioni

Integrated Media Systems Center
University of Southern California

Los Angeles, CA 90089-0273, USA
medioni@iris.usc.edu

ABSTRACT

A main difficulty for estimating camera and scene
geometry from a set of point correspondences is caused by
the presence of false matches and independently moving
objects. Given two images, after obtaining the matching
points they are usually filtered by an outlier rejection step
before being used to solve for epipolar geometry and 3-D
structure estimation. In the presence of moving objects,
image registration becomes a more challenging problem,
as the matching and registration phases become
interdependent. We propose a novel approach that
decouples the above operations, allowing for explicit and
separate handling of matching, outlier rejection, grouping,
and recovery of camera and scene structure. The key
aspect is that we first determine an accurate representation
in terms of dense image velocities (equivalent to point
correspondences), segmented motion regions and
boundaries, by using only the smoothness of image
motion. Only then we proceed with the extraction of
camera and scene 3-D geometry, separately for each
rigidly moving object.

KEYWORDS

Stereo vision, motion segmentation

1. Introduction

The problem of recovering the 3-D scene structure and
camera motion from two images has been intensively
studied and it is considered well understood. Given two
views, a set of matching points – typically corresponding
to salient image features – are first obtained by methods
such as cross-correlation. Assuming that matches are
perfect, a simple Eight Point Algorithm [1][2] can be used
for estimating the fundamental matrix, and thus the
epipolar geometry of the cameras is determined. A dense
set of matches can be then established, aided by the
epipolar constraint, and finally the scene structure is
recovered through triangulation.

However, most methods perform reasonably well only
when: (i) the set of matches contains no outlier noise, and
(ii) the scene is rigid – i.e., without objects having
independent motions.

The first assumption almost never holds, since image
measurements are bound to be imperfect, and matching
techniques will never produce accurate correspondences,
mainly due to occlusion or lack of texture. In this case, the
problem can still be solved by robust methods [3][4]. If
the second assumption is also violated by the presence of
multiple independent motions, even robust methods may
become unstable, as the scene is no longer a static one.
Depending on the size and number of the moving objects,
these techniques may return a totally incorrect
fundamental matrix. Furthermore, even if the dominant
epipolar geometry is recovered (for example, the one
corresponding to the static background), motion
correspondences are discarded as outliers.

The core inadequacy of most existing methods is that they
attempt to enforce a global constraint – such as the
epipolar one – on a data set which may include, in
addition to noise, independent subsets that are subject to
separate constraints. In this context, it is indeed very
difficult to recover structure from motion and segment the
scene into independently moving objects, if these two
tasks are performed simultaneously.

In order to address these difficulties, we propose a novel
approach that decouples the above operations, allowing
for explicit and separate handling of matching, outlier
rejection, grouping, and recovery of camera and scene
structure. In the first step, we determine an accurate
representation in terms of dense velocities (equivalent to
point correspondences), segmented motion regions and
boundaries, by using only the smoothness of image motion
[5]. In the second step we proceed with the extraction of
camera and scene 3-D geometry, separately on each rigid
component of the scene.

The main advantage of our approach is that at the 3-D
interpretation stage, noisy matches have been already
rejected, and correct matches have been grouped

mircea
Proceedings of the IASTED International Conference on Computer Graphics and Imaging,
pages 272-278, Kauai, Hawaii, August 2004.

according to the distinct motions in the scene. Therefore,
standard methods can be reliably applied on each subset
of matches in order to determine the 3-D camera and
scene structure.

1.1. Related Work

Linear methods, such as the Eight Point Algorithm [1][2]
can be used for accurate estimation of the fundamental
matrix, in the absence of noisy matches or moving objects.

In order to handle outlier noise, more complex, non-linear
iterative optimization methods are proposed [4][6]. These
techniques use objective functions, such as distance
between points and corresponding epipolar lines, or
gradient-weighted epipolar errors, to guide the
optimization process. Despite their increased robustness,
iterative optimization methods in general require
somewhat careful initialization for early convergence to
the correct optimum.

Some of the most successful algorithms in this class are
LMedS [4] and RANSAC [3], which perform random
sampling of a minimum subset with seven pairs of
matching points for parameter estimation. The candidate
subset that minimizes the residual or maximizes the
number of inliers is the solution. Although these methods
are considerably robust to outliers, if both false matches
and independent motions exist, many matching points on
the moving objects are discarded as outliers.

In [7], Pritchett and Zisserman propose the use of local
planar homographies, generated by Gaussian pyramid
techniques. However, the homography assumption does
not generally apply to the entire image.

1.2. Overview of Our Method

The first step of the proposed method formulates the
motion analysis problem as an inference of motion layers
from a noisy and possibly sparse point set in a 4-D space.
In order to compute a dense set of matches (equivalent to
a velocity field) and to segment the image into motion
regions, we use an approach based on a layered 4-D
representation of data, and a voting scheme for
communication. First we establish candidate matches
through a multi-scale, normalized cross-correlation
procedure. Following a perceptual grouping perspective,
each potential match is seen as a token characterized by
four attributes – the image coordinates (x,y) in the first
image, and the velocity with the components (vx,vy).

Tokens are encapsulated as (x,y,vx,vy) points in the 4-D
space, this being a natural way of expressing the spatial
separation of tokens according to both velocities and
image coordinates. In general, for each pixel (x,y) there
can be several candidate velocities, so each 4-D point
(x,y,vx,vy) represents a potential match.

The key observation is that within this representation,
distinct moving regions correspond to smooth, salient

surface layers in the 4-D space. The extraction of these
motion layers is performed through a tensor voting
process, described in the next section. By letting tokens
propagate their affinity through voting, the correct
matches (corresponding to salient layers) strongly
reinforce each other, while wrong matches (isolated
tokens) receive little support and can be rejected as
outliers. The measure of support is given by the surface
saliency computed through voting at each token.

The second step interprets the image motion by estimating
the 3-D scene structure and camera geometry. A rigidity
test is performed on the matches within each region, to
identify potential non-rigid (deforming) objects, and also
between objects, to merge those that move rigidly together
but have separate image motions due to depth
discontinuities. Finally, the epipolar geometry is estimated
separately for each rigid component by using standard
methods for parameter estimation (such as RANSAC),
and the scene structure and camera motion are recovered
by using the dense velocity field.

2. The Tensor Voting Framework

2.1. Tensor representation and voting

The use of a voting process for feature inference from
sparse and noisy data was formalized into a unified tensor
framework by Medioni, Lee and Tang [8].

Input data is encoded as elementary tensors, then support
information (including proximity and smoothness of
continuity) is propagated by voting. Tensors that lie on
smooth, salient features (such as curves or surfaces)
strongly support each other and deform according to the
prevailing orientation, producing generic tensors. Each
such tensor encodes the local orientation of features
(given by the tensor orientation), and their saliency (given
by the tensor shape and size). Features can be then
extracted by examining the tensors resulted after voting.

11,λe
r

33,λe
r

22,λe
r

(a) generic tensor

(b) stick tensor
(surface element)

(c) plate tensor
(curve element)

(d) ball tensor
(point element)

Figure 1. Tensor representation in 3-D

In 3-D, a generic tensor can be visualized as an ellipsoid
(Figure 1). It is described by a 3×3 eigensystem, where
eigenvectors e1, e2, e3 give the ellipsoid orientation and
eigenvalues λ1, λ2, λ3 give its shape and size. The tensor is
represented as a matrix TTT eeeeeeS 333222111 ⋅+⋅+⋅= λλλ .

There are three types of features in 3-D – surfaces, curves
and points – that correspond to three elementary tensors,
also shown in Figure 1. A surface element can be
intuitively encoded as a stick tensor where one dimension
dominates (along the surface normal), while the length of
the stick represents the surface saliency (confidence in this
knowledge). A curve element appears as a plate tensor
where two dimensions co-dominate (in the plane of curve
normals). A point element appears as a ball tensor where
no dimension dominates, showing no preference for any
particular orientation.

Input tokens are encoded as such elementary tensors. A
point element is encoded as a ball tensor, with e1, e2, e3

being any orthonormal basis, while λ1=λ2=λ3=1. A curve
element is encoded as a plate tensor, with e1, e2 being
normal to the curve, while λ1=λ2=1 and λ3=0. A surface
element is encoded as a stick tensor, with e1 being normal
to the surface, while λ1=1 and λ2=λ3=0.

Tokens communicate through a voting process, where
each token casts a vote at each token in its neighborhood.
The size and shape of this neighborhood, and the vote
strength and orientation are encapsulated in predefined
voting fields (kernels), one for each feature type – there is
a stick, a plate and a ball voting field in the 3-D case.

At each receiving site, the collected votes are combined
through simple tensor addition, producing generic tensors
that reflect the saliency and orientation of the underlying
smooth features. Local features can be extracted by
examining the properties of a generic tensor, which can be
decomposed in its stick, ball and plate components:

)(

)()()(

3322113

2211321121

TTT

TTT

eeeeee

eeeeeeS

++⋅+

+⋅−+⋅−=

λ
λλλλ (1)

Each type of feature can be characterized as follows:

• Surface: saliency is (λ1-λ2), normal orientation is e1
• Curve: saliency is (λ2-λ3), normal orientations are e1, e2
• Point: saliency is λ3, no preferred orientation

Therefore, the voting process infers surfaces, curves and
junctions simultaneously, while also identifying outliers
(tokens that receive little support). The method is non-
iterative, and does not depend on critical thresholds, the
only free parameter being the scale factor σ which defines
the voting fields.

Vote generation. For simplicity of illustration, we
describe the vote generation process in the 2-D case.
Tensors in 2-D are ellipses (represented by 2x2
eigensystems) and the features are curves and points,
corresponding to stick and ball tensors.

Vote strength)(dVS
r

 decays with distance || d
r

 between

voter and recipient, and with curvature ρ:








 +−

=
2

22||

)(σ
ρd

edVS

r

r
 (2)

Vote orientation corresponds to the smoothest local
continuation from voter to recipient – see Figure 2. A
tensor P where curve information is locally known
(illustrated by curve normal

PN
r

) casts a vote at its

neighbor Q. The vote orientation is chosen so that it
ensures a smooth curve continuation through a circular arc
from voter P to recipient Q. To propagate the curve
normal N

r
 thus obtained, the vote)(dVstick

r
 sent from P to

Q is encoded as a tensor according to:

 T
stick NNdVSdV

rrrr
⋅=)()((3)

Figure 2(b) shows the 2-D stick field, with its color-coded
strength. When the voter is a ball tensor, with no
information known locally, the vote is generated by
rotating a stick vote in the 2-D plane and integrating all
contributions. The 2-D ball field is shown in Figure 2(c).

2.2. Extension to 4-D

Table 1 shows all the geometric features that appear in a
4-D space and their representation as elementary 4-D

(b) 2-D stick field (a) Vote orientation

Q

Q’

Q”

P

N
r

PN
r

Figure 2. Vote generation in 2-D

(c) 2-D ball field

Feature λ1 λ2 λ3 λ4 e1 e2 e3 e4 Tensor

point 1 1 1 1 Any orth. basis Ball

curve 1 1 1 0 n1 n2 n3 t C-Plate

surface 1 1 0 0 n1 n2 t1 t2 S-Plate

volume 1 0 0 0 n t1 t2 t3 Stick

 Table 1. Elementary tensors in 4-D

Table 2. A generic tensor in 4-D

Feature Saliency Normals Tangents

point λ4 none none

curve λ3 - λ4 e1 e2 e3 e4

surface λ2 - λ3 e1 e2 e3 e4

volume λ1 - λ2 e1 e2 e3 e4

tensors, where n and t represent normal and tangent
vectors, respectively. Note that a surface in the 4-D space
can be characterized by two normal vectors, or by two
tangent vectors. From a generic 4-D tensor that results
after voting, the geometric features are extracted as shown
in Table 2.

The 4-D voting fields are obtained as follows. First the 4-
D stick field is generated in a similar manner to the 2-D
stick field (see Figure 2). Then, the other three voting
fields are built by integrating all the contributions
obtained by rotating a 4-D stick field around appropriate
axes. For example, the 4-D ball field is generated
according to:

∫ ∫ ∫ −=
π

θθθ
2

0

1)()(xvxuxy
T

stickball dddRdRVRdV
rr (4)

where x, y, u, v are the 4-D coordinates axes and R is the
rotation matrix with angles θxy, θxu, θxv.

The data structure used to store the tensors is an
approximate nearest neighbor (ANN) k-d tree [9]. The
space complexity is O(n), where n is the input size (the
total number of candidate tokens). The average time
complexity of the voting process is O(µn) where µ is the
average number of candidate tokens in the neighborhood.
Therefore, in contrast to other voting techniques, such as
the Hough Transform, both time and space complexities
of the Tensor Voting methodology are independent of the
dimensionality of the desired feature.

3. Grouping into Motion Layers

We take as input two image frames that involve general
motion – that is, both the camera and the objects in the
scene may be moving. For illustration purposes, we give a
description of our approach by using a specific example –
the two images in Figure 3(a) are taken with a handheld
moving camera, while the stack of books has also been
moved between taking the two pictures.

Matching. For every pixel in the first image, the goal at
this stage is to produce candidate matches in the second
image. We use a normalized cross-correlation procedure,
where all peaks of correlation are retained as candidates.
Each candidate match is represented as a (x,y,vx,vy) point
in the 4-D space of image coordinates and pixel velocities,
with respect to the first image.

In order to increase the likelihood of including the correct
match among the candidates, we repeat this process at
multiple scales, by using different correlation window
sizes. Small windows have the advantage of capturing fine
detail, but produce considerable noise in areas lacking
texture or having small repetitive patterns. Larger
windows generate smoother matches, but their
performance degrades in large areas along motion
boundaries. We have experimented with a large range of
window sizes, and found that best results are obtained by
using only two or three different sizes, that should include
at least a very small one. In practice we used three
correlation windows, with 3x3, 5x5 and 7x7 sizes.

The resulting candidates appear as a cloud of (x,y,vx,vy)
points in the 4-D space. Figure 3(b) shows the candidate
matches. In order to display 4-D data, the last component
of each 4-D point has been dropped – the 3 dimensions
shown are x and y (in the horizontal plane), and vx (the
height). The motion layers can be already perceived as
their tokens appear grouped in two layers surrounded by
noisy matches. Extracting statistically salient structures
from such noisy data is very difficult for most existing
methods. Because our voting framework is robust to
considerable amounts of noise, we can afford using the
multiple window sizes in order to extract the motion
layers.

Selection. Since no information is initially known, each
potential match is encoded as a 4-D ball tensor. Then
each token casts votes by using the 4-D ball voting field.
During voting there is strong support between tokens that
lie on a smooth surface (layer) – therefore, for each pixel
(x,y) we retain the candidate match with the highest
surface saliency (λ2-λ3), and we reject the others as wrong

Figure 3. BOOKS sequence

(a) Input images (b) Candidate matches (c) Dense layers (d) Layer velocities

(e) Layer boundaries (f) Epipolar lines (g) 3-D structure and motion

matches. By voting we also estimate the normals to layers
at each token as e1 and e2.

Outlier rejection. In the selection step, we kept only the
most salient candidate at each pixel. However, there are
pixels where all candidates are wrong, such as in areas
lacking texture. Therefore now we eliminate all tokens
that have received very little support. Typically we reject
all tokens with surface saliency less that 10% of the
average saliency of the entire set.

Densification. Since the previous step created holes (i.e.,
pixels where no velocity is available), we must infer them
from the neighbors by using the smoothness constraint.
For each pixel (x,y) without an assigned velocity we try to
find the best (vx,vy) location at which to place a newly
generated token. The candidates considered are all the
discrete points (vx,vy) between the minimum and
maximum velocities in the set, within a neighborhood of
the (x,y) point. At each candidate position (x,y,vx,vy) we
accumulate votes, according to the same Tensor Voting
framework that we have used so far. After voting, the
candidate token with maximal surface saliency (λ2-λ3) is
retained, and its (vx,vy) coordinate represent the most
likely velocity at (x,y). By following this procedure at
every (x,y) image location we generate a dense velocity
field. Note that in this process, along with velocities we
simultaneously infer layer orientations. A 3-D view of the
dense layers is shown in Figure 3(c).

Segmentation. The next step is to group tokens into
motion regions, by using again the smoothness constraint.
We start from an arbitrary point in the image, assign a
region label to it, and try to recursively propagate this

label to all its image neighbors. In order to decide whether
the label must be propagated, we use the smoothness of
both velocity and layer orientation as a grouping criterion.
Figure 3(d) illustrates the recovered vx velocities within
layers (dark corresponds to low velocity).

Boundary inference. The extracted layers may still be
over or under-extended along the true object boundaries,
typically due to occlusion. The boundaries of the extracted
layers give us a good estimate for the position and overall
orientation of the true boundaries. We combine this
knowledge with monocular cues (intensity edges) from the
original images in order to build a boundary saliency map
within the uncertainty zone along the layers margins. At
each location in this area, a 2-D stick tensor is generated,
having an orientation normal to the image gradient, and a
saliency proportional to the gradient magnitude.

The smoothness and continuity of the boundary is then
enforced through a 2-D voting process, and the true
boundary is extracted as the most salient curve within the
saliency map. Finally, pixels from the uncertainty zone are
reassigned to regions according to the new boundaries,
and their velocities are recomputed. Figure 3(e) shows the
refined motion boundaries, that indeed correspond to the
actual objects.

4. Three-Dimensional Interpretation

So far we have not made any assumption regarding the 3-
D motion, and the only constraint used has been the
smoothness of image motion. The observed image motion
could have been produced by the 3-D motion of objects in

(a) Input images (b) Candidate matches (d) Dense layers (c) Velocities (e) 3-D structure

Figure 4. CYLINDERS sequence

Figure 5. CAR sequence

(a) Input images (b) Candidate matches (c) Dense layers (d) Layer velocities

(e) Layer boundaries (f) Epipolar lines (g) 3-D structure and motion

the scene, or the camera motion, or both. Furthermore,
some of the objects may suffer non-rigid motion.

For classification we used an algorithm introduced by
McReynolds and Lowe [10], that verifies the potential
rigidity of a set of minimum six point correspondences
from two views under perspective projection. The rigidity
test is performed on a subset of matches within each
object, to identify potentially rigid objects, and also across
objects, to merge those that move rigidly together but
have distinct image motions due to depth discontinuities.
It is also worth mentioning that the rigidity test is actually
able to only guarantee the non-rigidity of a given
configuration. Indeed, if the rigidity test fails, it means
that the image motion is not compatible to a rigid 3-D
motion, and therefore the configuration must be non-rigid.
If the test succeeds, it only asserts that a possible rigid 3-
D motion exists, that is compatible to the given image
motion. However, this computational approach
corresponds to the way human vision operates – as shown
in [11], human perception solves this inherent ambiguity
by always choosing a rigid interpretation when possible.

The remaining task at this stage is to determine the 3-D
object (or camera) motion, and the scene structure. Since
wrong matches have been eliminated, and correct matches
are already grouped according to the rigidly moving
objects in the scene, standard methods for reconstruction
can be reliably applied. For increased robustness, we
chose to use RANSAC [3] to recover the epipolar
geometry for each rigid object, followed by an estimation
of camera motion and projective scene structure.

Multiple rigid motions. This case is illustrated by the
BOOKS example in Figure 3, where two sets of matches
have been detected, corresponding to the two distinct
objects – the stack of books and the background. The
rigidity test shows that, while each object moves rigidly,
they cannot be merged into a single rigid structure. The
two sets of recovered epipolar lines are illustrated in
Figure 3(f), while the 3-D scene structure and motion are
shown in Figure 3(g).

The CYLINDERS example, shown in Figure 4, is adapted
from Ullman [11], and consists of two images of random
points in a sparse configuration, taken from the surfaces of
two transparent co-axial cylinders, rotating in opposite
directions. This extremely difficult example clearly
illustrates the power of our approach, which is able to
determine accurate point correspondences and scene
structure – even from a sparse input, based on motion cues
only (without any monocular cues), and for transparent
motion.

In the CAR example, shown in Figure 5, the sign and the
background correspond to a rigid configuration and can be
merged, while the car exhibits an independent motion.

Single rigid motion. This is the stereo case, illustrated by
the CANDY BOX example in Figure 6, where the scene is
static and the camera is moving. Due to the depth
disparity between the box and the background, they
exhibit different image motions, and thus they have been
segmented as two separate objects. However, the rigidity
test shows that the two objects form a rigid configuration,
and therefore the epipolar geometry estimation and scene

Figure 6. CANDY BOX sequence

(a) Input images (b) Candidate matches (c) Dense layers (d) Layer velocities

(e) Layer boundaries (f) Epipolar lines (g) 3-D structure and motion

Figure 7. FLAG sequence

(a) Input images (b) Candidate matches (vx) (d) Dense layers (vx) (c) Velocities (e) Dense layers (vy)

reconstruction are performed on the entire set of matches.
Along with the 3-D structure, Figure 6(g) also shows the
two recovered camera positions.

Non-rigid motion. The FLAG example, shown in Figure
7, is a synthetic sequence where sparse random dots from
the surface of a waving flag are displayed in two frames.
The configuration is recognized as non-rigid, and
therefore no reconstruction is attempted. However, since
the image motion is smooth, our framework is still able to
determine correct correspondences, extract motion layers,
segment non-rigid objects, and label them as such.

We also analyzed a standard sequence (the TEDDY
example – Figure 8) with ground truth available, to
provide a quantitative estimate for the performance of our
approach, as compared to other methods. As shown in
Table 3 (partially reproduced from [12]), our voting-based
approach has the smallest error rate (percentage of pixels
with a disparity error greater than 1), among the
techniques mentioned.

5. Conclusions

We have presented a novel approach that decouples
grouping and interpretation of visual motion, allowing for
explicit and separate handling of matching, outlier
rejection, grouping, and recovery of camera and scene
structure. The advantage of the proposed framework over
existing methods is its ability to handle data sets that
simultaneously contain large amounts of outlier noise and
multiple independently moving objects.

Our methodology for extracting motion layers is based on
a layered 4-D representation of data, and a voting scheme
for token communication. It allows for structure inference
without using any prior knowledge of the motion model,
based on the smoothness of image motion only, while
consistently handling both smooth moving regions and
motion discontinuities. The method is also
computationally robust, being non-iterative, and does not
depend on critical thresholds, the only free parameter
being the scale of analysis.

We plan to extend our approach by incorporating
information from multiple frames, and to study the

possibility of using an adaptive scale of analysis in the
voting process.

6. Acknowledgements

This research has been funded in part by the Integrated
Media Systems Center, an NSF Engineering Research
Center, Cooperative Agreement No. EEC-9529152, and
by NSF Grant 9811883.

References

[1] H. C. Longuet-Higgins, A computer algorithm for
reconstructing a scene from two projections, Nature,
293, 1981, 133-135.

[2] R. I. Hartley, In defense of the 8-point algorithm,
Trans. PAMI, 19(6), 1997, 580-593.

[3] P. Torr, D. Murray, A review of robust methods to
estimate the fundamental matrix, IJCV, 1997.

[4] Z. Zhang, Determining the epipolar geometry and its
uncertainty: a review, IJCV, 27(2), 1998, 161-195.

[5] M. Nicolescu, G. Medioni, 4-D voting for matching,
densification and segmentation into motion layers,
ICPR, 2002.

[6] A. Adam, E. Rivlin, L. Shimshoni, Ror: rejection of
outliers by rotations, Trans. PAMI, 23(1), 2001, 78-
84.

[7] P. Pritchett, A. Zisserman, Wide baseline stereo
matching, ICCV, 1998, 754-760.

[8] G. Medioni, M-S. Lee, C-K. Tang, A computational
framework for segmentation and grouping (Elsevier
Science, 2000).

[9] S. Arya, D. Mount, N. Netanyahu, R Silverman, A.
Wu, An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions, Journal of
the ACM, 45(6), 1998, 891-923.

[10] D. McReynolds, D. Lowe, Rigidity checking of 3D
point correspondences under perspective projection,
Trans. PAMI, 18(12), 1996, 1174-1185.

[11] S. Ullman, The interpretation of visual motion (MIT
Press, 1979).

[12] D. Scharstein, R. Szeliski, High-accuracy stereo
depth maps using structured light, CVPR, 2003, 195-
202.

Figure 8. TEDDY sequence

(a) An input image (b) Ground truth
disparity map

(c) Tensor Voting
disparity map

Table 3. TEDDY sequence – results

Methods Error Rate

Tensor Voting 15.4%

Sum of Squared Differences 26.5%

Dynamic Programming 30.1%

Graph Cuts 29.3%

