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ABSTRACT 

A main difficulty for estimating camera and scene 
geometry from a set of point correspondences is caused by 
the presence of false matches and independently moving 
objects. Given two images, after obtaining the matching 
points they are usually filtered by an outlier rejection step 
before being used to solve for epipolar geometry and 3-D 
structure estimation. In the presence of moving objects, 
image registration becomes a more challenging problem, 
as the matching and registration phases become 
interdependent. We propose a novel approach that 
decouples the above operations, allowing for explicit and 
separate handling of matching, outlier rejection, grouping, 
and recovery of camera and scene structure. The key 
aspect is that we first determine an accurate representation 
in terms of dense image velocities (equivalent to point 
correspondences), segmented motion regions and 
boundaries, by using only the smoothness of image 
motion. Only then we proceed with the extraction of 
camera and scene 3-D geometry, separately for each 
rigidly moving object.  
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1. Introduction 

The problem of recovering the 3-D scene structure and 
camera motion from two images has been intensively 
studied and it is considered well understood. Given two 
views, a set of matching points – typically corresponding 
to salient image features – are first obtained by methods 
such as cross-correlation. Assuming that matches are 
perfect, a simple Eight Point Algorithm [1][2] can be used 
for estimating the fundamental matrix, and thus the 
epipolar geometry of the cameras is determined. A dense 
set of matches can be then established, aided by the 
epipolar constraint, and finally the scene structure is 
recovered through triangulation.  

However, most methods perform reasonably well only 
when: (i) the set of matches contains no outlier noise, and 
(ii) the scene is rigid – i.e., without objects having 
independent motions. 

The first assumption almost never holds, since image 
measurements are bound to be imperfect, and matching 
techniques will never produce accurate correspondences, 
mainly due to occlusion or lack of texture. In this case, the 
problem can still be solved by robust methods [3][4]. If 
the second assumption is also violated by the presence of 
multiple independent motions, even robust methods may 
become unstable, as the scene is no longer a static one. 
Depending on the size and number of the moving objects, 
these techniques may return a totally incorrect 
fundamental matrix. Furthermore, even if the dominant 
epipolar geometry is recovered (for example, the one 
corresponding to the static background), motion 
correspondences are discarded as outliers. 

The core inadequacy of most existing methods is that they 
attempt to enforce a global constraint – such as the 
epipolar one – on a data set which may include, in 
addition to noise, independent subsets that are subject to 
separate constraints. In this context, it is indeed very 
difficult to recover structure from motion and segment the 
scene into independently moving objects, if these two 
tasks are performed simultaneously. 

In order to address these difficulties, we propose a novel 
approach that decouples the above operations, allowing 
for explicit and separate handling of matching, outlier 
rejection, grouping, and recovery of camera and scene 
structure. In the first step, we determine an accurate 
representation in terms of dense velocities (equivalent to 
point correspondences), segmented motion regions and 
boundaries, by using only the smoothness of image motion 
[5]. In the second step we proceed with the extraction of 
camera and scene 3-D geometry, separately on each rigid 
component of the scene.  

The main advantage of our approach is that at the 3-D 
interpretation stage, noisy matches have been already 
rejected, and correct matches have been grouped 
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according to the distinct motions in the scene. Therefore, 
standard methods can be reliably applied on each subset 
of matches in order to determine the 3-D camera and 
scene structure. 

1.1. Related Work 

Linear methods, such as the Eight Point Algorithm [1][2] 
can be used for accurate estimation of the fundamental 
matrix, in the absence of noisy matches or moving objects.  

In order to handle outlier noise, more complex, non-linear 
iterative optimization methods are proposed [4][6]. These 
techniques use objective functions, such as distance 
between points and corresponding epipolar lines, or 
gradient-weighted epipolar errors, to guide the 
optimization process. Despite their increased robustness, 
iterative optimization methods in general require 
somewhat careful initialization for early convergence to 
the correct optimum.  

Some of the most successful algorithms in this class are 
LMedS [4] and RANSAC [3], which perform random 
sampling of a minimum subset with seven pairs of 
matching points for parameter estimation. The candidate 
subset that minimizes the residual or maximizes the 
number of inliers is the solution. Although these methods 
are considerably robust to outliers, if both false matches 
and independent motions exist, many matching points on 
the moving objects are discarded as outliers. 

In [7], Pritchett and Zisserman propose the use of local 
planar homographies, generated by Gaussian pyramid 
techniques. However, the homography assumption does 
not generally apply to the entire image. 

1.2. Overview of Our Method 

The first step of the proposed method formulates the 
motion analysis problem as an inference of motion layers 
from a noisy and possibly sparse point set in a 4-D space. 
In order to compute a dense set of matches (equivalent to 
a velocity field) and to segment the image into motion 
regions, we use an approach based on a layered 4-D 
representation of data, and a voting scheme for 
communication. First we establish candidate matches 
through a multi-scale, normalized cross-correlation 
procedure. Following a perceptual grouping perspective, 
each potential match is seen as a token characterized by 
four attributes – the image coordinates (x,y) in the first 
image, and the velocity with the components (vx,vy).  

Tokens are encapsulated as (x,y,vx,vy) points in the 4-D 
space, this being a natural way of expressing the spatial 
separation of tokens according to both velocities and 
image coordinates. In general, for each pixel (x,y) there 
can be several candidate velocities, so each 4-D point 
(x,y,vx,vy) represents a potential match. 

The key observation is that within this representation, 
distinct moving regions correspond to smooth, salient 

surface layers in the 4-D space. The extraction of these 
motion layers is performed through a tensor voting 
process, described in the next section. By letting tokens 
propagate their affinity through voting, the correct 
matches (corresponding to salient layers) strongly 
reinforce each other, while wrong matches (isolated 
tokens) receive little support and can be rejected as 
outliers. The measure of support is given by the surface 
saliency computed through voting at each token. 

The second step interprets the image motion by estimating 
the 3-D scene structure and camera geometry. A rigidity 
test is performed on the matches within each region, to 
identify potential non-rigid (deforming) objects, and also 
between objects, to merge those that move rigidly together 
but have separate image motions due to depth 
discontinuities. Finally, the epipolar geometry is estimated 
separately for each rigid component by using standard 
methods for parameter estimation (such as RANSAC), 
and the scene structure and camera motion are recovered 
by using the dense velocity field. 

2. The Tensor Voting Framework 

2.1. Tensor representation and voting 

The use of a voting process for feature inference from 
sparse and noisy data was formalized into a unified tensor 
framework by Medioni, Lee and Tang [8].  

Input data is encoded as elementary tensors, then support 
information (including proximity and smoothness of 
continuity) is propagated by voting. Tensors that lie on 
smooth, salient features (such as curves or surfaces) 
strongly support each other and deform according to the 
prevailing orientation, producing generic tensors. Each 
such tensor encodes the local orientation of features 
(given by the tensor orientation), and their saliency (given 
by the tensor shape and size). Features can be then 
extracted by examining the tensors resulted after voting. 
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(surface element) 
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Figure 1. Tensor representation in 3-D 
 



In 3-D, a generic tensor can be visualized as an ellipsoid 
(Figure 1). It is described by a 3×3 eigensystem, where 
eigenvectors e1, e2, e3 give the ellipsoid orientation and 
eigenvalues λ1, λ2, λ3 give its shape and size. The tensor is 
represented as a matrix TTT eeeeeeS 333222111 ⋅+⋅+⋅= λλλ . 

There are three types of features in 3-D – surfaces, curves 
and points – that correspond to three elementary tensors, 
also shown in Figure 1. A surface element can be 
intuitively encoded as a stick tensor where one dimension 
dominates (along the surface normal), while the length of 
the stick represents the surface saliency (confidence in this 
knowledge). A curve element appears as a plate tensor 
where two dimensions co-dominate (in the plane of curve 
normals). A point element appears as a ball tensor where 
no dimension dominates, showing no preference for any 
particular orientation.  

Input tokens are encoded as such elementary tensors. A 
point element is encoded as a ball tensor, with e1, e2, e3 

being any orthonormal basis, while λ1=λ2=λ3=1. A curve 
element is encoded as a plate tensor, with e1, e2 being 
normal to the curve, while λ1=λ2=1 and λ3=0. A surface 
element is encoded as a stick tensor, with e1 being normal 
to the surface, while λ1=1 and λ2=λ3=0. 

Tokens communicate through a voting process, where 
each token casts a vote at each token in its neighborhood. 
The size and shape of this neighborhood, and the vote 
strength and orientation are encapsulated in predefined 
voting fields (kernels), one for each feature type – there is 
a stick, a plate and a ball voting field in the 3-D case.  

At each receiving site, the collected votes are combined 
through simple tensor addition, producing generic tensors 
that reflect the saliency and orientation of the underlying 
smooth features. Local features can be extracted by 
examining the properties of a generic tensor, which can be 
decomposed in its stick, ball and plate components: 
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Each type of feature can be characterized as follows: 

• Surface: saliency is (λ1-λ2), normal orientation is e1 
• Curve: saliency is (λ2-λ3), normal orientations are e1, e2 
• Point: saliency is λ3, no preferred orientation 

Therefore, the voting process infers surfaces, curves and 
junctions simultaneously, while also identifying outliers 
(tokens that receive little support). The method is non-
iterative, and does not depend on critical thresholds, the 
only free parameter being the scale factor σ which defines 
the voting fields. 

Vote generation. For simplicity of illustration, we 
describe the vote generation process in the 2-D case. 
Tensors in 2-D are ellipses (represented by 2x2 
eigensystems) and the features are curves and points, 
corresponding to stick and ball tensors.  
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Vote orientation corresponds to the smoothest local 
continuation from voter to recipient – see Figure 2. A 
tensor P where curve information is locally known 
(illustrated by curve normal

PN
r

) casts a vote at its 

neighbor Q. The vote orientation is chosen so that it 
ensures a smooth curve continuation through a circular arc 
from voter P to recipient Q. To propagate the curve 
normal N

r
 thus obtained, the vote )(dVstick

r
 sent from P to 

Q is encoded as a tensor according to: 
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Figure 2(b) shows the 2-D stick field, with its color-coded 
strength. When the voter is a ball tensor, with no 
information known locally, the vote is generated by 
rotating a stick vote in the 2-D plane and integrating all 
contributions. The 2-D ball field is shown in Figure 2(c). 

2.2. Extension to 4-D 

Table 1 shows all the geometric features that appear in a 
4-D space and their representation as elementary 4-D 
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Figure 2. Vote generation in 2-D 
 

(c) 2-D ball field 

Feature λ1  λ2  λ3  λ4 e1  e2  e3  e4 Tensor 

point 1   1   1   1 Any orth. basis Ball 

curve 1   1   1   0 n1  n2  n3  t C-Plate 

surface 1   1   0   0 n1  n2  t1   t2 S-Plate 

volume 1   0   0   0 n   t1   t2   t3 Stick 

 Table 1. Elementary tensors in 4-D 

Table 2. A generic tensor in 4-D 

Feature Saliency Normals Tangents 

point λ4 none none 

curve λ3 - λ4 e1  e2  e3 e4 

surface λ2 - λ3 e1  e2 e3  e4 

volume λ1 - λ2 e1 e2  e3  e4 

 



tensors, where n and t represent normal and tangent 
vectors, respectively. Note that a surface in the 4-D space 
can be characterized by two normal vectors, or by two 
tangent vectors. From a generic 4-D tensor that results 
after voting, the geometric features are extracted as shown 
in Table 2. 

The 4-D voting fields are obtained as follows. First the 4-
D stick field is generated in a similar manner to the 2-D 
stick field (see Figure 2). Then, the other three voting 
fields are built by integrating all the contributions 
obtained by rotating a 4-D stick field around appropriate 
axes. For example, the 4-D ball field is generated 
according to: 
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where x, y, u, v are the 4-D coordinates axes and R is the 
rotation matrix with angles θxy, θxu, θxv. 

The data structure used to store the tensors is an 
approximate nearest neighbor (ANN) k-d tree [9]. The 
space complexity is O(n), where n is the input size (the 
total number of candidate tokens). The average time 
complexity of the voting process is O(µn) where µ is the 
average number of candidate tokens in the neighborhood. 
Therefore, in contrast to other voting techniques, such as 
the Hough Transform, both time and space complexities 
of the Tensor Voting methodology are independent of the 
dimensionality of the desired feature. 

3. Grouping into Motion Layers 

We take as input two image frames that involve general 
motion – that is, both the camera and the objects in the 
scene may be moving. For illustration purposes, we give a 
description of our approach by using a specific example – 
the two images in Figure 3(a) are taken with a handheld 
moving camera, while the stack of books has also been 
moved between taking the two pictures.  

Matching. For every pixel in the first image, the goal at 
this stage is to produce candidate matches in the second 
image. We use a normalized cross-correlation procedure, 
where all peaks of correlation are retained as candidates. 
Each candidate match is represented as a (x,y,vx,vy) point 
in the 4-D space of image coordinates and pixel velocities, 
with respect to the first image. 

In order to increase the likelihood of including the correct 
match among the candidates, we repeat this process at 
multiple scales, by using different correlation window 
sizes. Small windows have the advantage of capturing fine 
detail, but produce considerable noise in areas lacking 
texture or having small repetitive patterns. Larger 
windows generate smoother matches, but their 
performance degrades in large areas along motion 
boundaries. We have experimented with a large range of 
window sizes, and found that best results are obtained by 
using only two or three different sizes, that should include 
at least a very small one. In practice we used three 
correlation windows, with 3x3, 5x5 and 7x7 sizes. 

The resulting candidates appear as a cloud of (x,y,vx,vy) 
points in the 4-D space. Figure 3(b) shows the candidate 
matches. In order to display 4-D data, the last component 
of each 4-D point has been dropped – the 3 dimensions 
shown are x and y (in the horizontal plane), and vx (the 
height). The motion layers can be already perceived as 
their tokens appear grouped in two layers surrounded by 
noisy matches. Extracting statistically salient structures 
from such noisy data is very difficult for most existing 
methods. Because our voting framework is robust to 
considerable amounts of noise, we can afford using the 
multiple window sizes in order to extract the motion 
layers. 

Selection. Since no information is initially known, each 
potential match is encoded as a 4-D ball tensor. Then 
each token casts votes by using the 4-D ball voting field. 
During voting there is strong support between tokens that 
lie on a smooth surface (layer) – therefore, for each pixel 
(x,y) we retain the candidate match with the highest 
surface saliency (λ2-λ3), and we reject the others as wrong 

Figure 3. BOOKS sequence 

(a) Input images (b) Candidate matches (c) Dense layers (d) Layer velocities 

(e) Layer boundaries (f) Epipolar lines (g) 3-D structure and motion 



matches. By voting we also estimate the normals to layers 
at each token as e1 and e2.  

Outlier rejection. In the selection step, we kept only the 
most salient candidate at each pixel. However, there are 
pixels where all candidates are wrong, such as in areas 
lacking texture. Therefore now we eliminate all tokens 
that have received very little support. Typically we reject 
all tokens with surface saliency less that 10% of the 
average saliency of the entire set. 

Densification. Since the previous step created holes (i.e., 
pixels where no velocity is available), we must infer them 
from the neighbors by using the smoothness constraint. 
For each pixel (x,y) without an assigned velocity we try to 
find the best (vx,vy) location at which to place a newly 
generated token. The candidates considered are all the 
discrete points (vx,vy) between the minimum and 
maximum velocities in the set, within a neighborhood of 
the (x,y) point. At each candidate position (x,y,vx,vy) we 
accumulate votes, according to the same Tensor Voting 
framework that we have used so far. After voting, the 
candidate token with maximal surface saliency (λ2-λ3) is 
retained, and its (vx,vy) coordinate represent the most 
likely velocity at (x,y). By following this procedure at 
every (x,y) image location we generate a dense velocity 
field. Note that in this process, along with velocities we 
simultaneously infer layer orientations. A 3-D view of the 
dense layers is shown in Figure 3(c). 

Segmentation. The next step is to group tokens into 
motion regions, by using again the smoothness constraint. 
We start from an arbitrary point in the image, assign a 
region label to it, and try to recursively propagate this 

label to all its image neighbors. In order to decide whether 
the label must be propagated, we use the smoothness of 
both velocity and layer orientation as a grouping criterion. 
Figure 3(d) illustrates the recovered vx velocities within 
layers (dark corresponds to low velocity). 

Boundary inference. The extracted layers may still be 
over or under-extended along the true object boundaries, 
typically due to occlusion. The boundaries of the extracted 
layers give us a good estimate for the position and overall 
orientation of the true boundaries. We combine this 
knowledge with monocular cues (intensity edges) from the 
original images in order to build a boundary saliency map 
within the uncertainty zone along the layers margins. At 
each location in this area, a 2-D stick tensor is generated, 
having an orientation normal to the image gradient, and a 
saliency proportional to the gradient magnitude. 

The smoothness and continuity of the boundary is then 
enforced through a 2-D voting process, and the true 
boundary is extracted as the most salient curve within the 
saliency map. Finally, pixels from the uncertainty zone are 
reassigned to regions according to the new boundaries, 
and their velocities are recomputed. Figure 3(e) shows the 
refined motion boundaries, that indeed correspond to the 
actual objects. 

4. Three-Dimensional Interpretation 

So far we have not made any assumption regarding the 3-
D motion, and the only constraint used has been the 
smoothness of image motion. The observed image motion 
could have been produced by the 3-D motion of objects in 

(a) Input images (b) Candidate matches (d) Dense layers (c) Velocities (e) 3-D structure 

Figure 4. CYLINDERS sequence 

Figure 5. CAR sequence 

(a) Input images (b) Candidate matches (c) Dense layers (d) Layer velocities 

(e) Layer boundaries (f) Epipolar lines (g) 3-D structure and motion 



the scene, or the camera motion, or both. Furthermore, 
some of the objects may suffer non-rigid motion.  

For classification we used an algorithm introduced by 
McReynolds and Lowe [10], that verifies the potential 
rigidity of a set of minimum six point correspondences 
from two views under perspective projection. The rigidity 
test is performed on a subset of matches within each 
object, to identify potentially rigid objects, and also across 
objects, to merge those that move rigidly together but 
have distinct image motions due to depth discontinuities. 
It is also worth mentioning that the rigidity test is actually 
able to only guarantee the non-rigidity of a given 
configuration. Indeed, if the rigidity test fails, it means 
that the image motion is not compatible to a rigid 3-D 
motion, and therefore the configuration must be non-rigid. 
If the test succeeds, it only asserts that a possible rigid 3-
D motion exists, that is compatible to the given image 
motion. However, this computational approach 
corresponds to the way human vision operates – as shown 
in [11], human perception solves this inherent ambiguity 
by always choosing a rigid interpretation when possible. 

The remaining task at this stage is to determine the 3-D 
object (or camera) motion, and the scene structure. Since 
wrong matches have been eliminated, and correct matches 
are already grouped according to the rigidly moving 
objects in the scene, standard methods for reconstruction 
can be reliably applied. For increased robustness, we 
chose to use RANSAC [3] to recover the epipolar 
geometry for each rigid object, followed by an estimation 
of camera motion and projective scene structure.  

Multiple rigid motions. This case is illustrated by the 
BOOKS example in Figure 3, where two sets of matches 
have been detected, corresponding to the two distinct 
objects – the stack of books and the background. The 
rigidity test shows that, while each object moves rigidly, 
they cannot be merged into a single rigid structure. The 
two sets of recovered epipolar lines are illustrated in 
Figure 3(f), while the 3-D scene structure and motion are 
shown in Figure 3(g).  

The CYLINDERS example, shown in Figure 4, is adapted 
from Ullman [11], and consists of two images of random 
points in a sparse configuration, taken from the surfaces of 
two transparent co-axial cylinders, rotating in opposite 
directions. This extremely difficult example clearly 
illustrates the power of our approach, which is able to 
determine accurate point correspondences and scene 
structure – even from a sparse input, based on motion cues 
only (without any monocular cues), and for transparent 
motion. 

In the CAR example, shown in Figure 5, the sign and the 
background correspond to a rigid configuration and can be 
merged, while the car exhibits an independent motion. 

Single rigid motion. This is the stereo case, illustrated by 
the CANDY BOX example in Figure 6, where the scene is 
static and the camera is moving. Due to the depth 
disparity between the box and the background, they 
exhibit different image motions, and thus they have been 
segmented as two separate objects. However, the rigidity 
test shows that the two objects form a rigid configuration, 
and therefore the epipolar geometry estimation and scene 

Figure 6. CANDY BOX sequence 

 

(a) Input images (b) Candidate matches (c) Dense layers (d) Layer velocities 

(e) Layer boundaries (f) Epipolar lines (g) 3-D structure and motion 

 

Figure 7. FLAG sequence 

(a) Input images (b) Candidate matches (vx) (d) Dense layers (vx) (c) Velocities (e) Dense layers (vy) 



reconstruction are performed on the entire set of matches. 
Along with the 3-D structure, Figure 6(g) also shows the 
two recovered camera positions. 

Non-rigid motion. The FLAG example, shown in Figure 
7, is a synthetic sequence where sparse random dots from 
the surface of a waving flag are displayed in two frames. 
The configuration is recognized as non-rigid, and 
therefore no reconstruction is attempted. However, since 
the image motion is smooth, our framework is still able to 
determine correct correspondences, extract motion layers, 
segment non-rigid objects, and label them as such. 

We also analyzed a standard sequence (the TEDDY 
example – Figure 8) with ground truth available, to 
provide a quantitative estimate for the performance of our 
approach, as compared to other methods. As shown in 
Table 3 (partially reproduced from [12]), our voting-based 
approach has the smallest error rate (percentage of pixels 
with a disparity error greater than 1), among the 
techniques mentioned. 

5. Conclusions 

We have presented a novel approach that decouples 
grouping and interpretation of visual motion, allowing for 
explicit and separate handling of matching, outlier 
rejection, grouping, and recovery of camera and scene 
structure. The advantage of the proposed framework over 
existing methods is its ability to handle data sets that 
simultaneously contain large amounts of outlier noise and 
multiple independently moving objects. 

Our methodology for extracting motion layers is based on 
a layered 4-D representation of data, and a voting scheme 
for token communication. It allows for structure inference 
without using any prior knowledge of the motion model, 
based on the smoothness of image motion only, while 
consistently handling both smooth moving regions and 
motion discontinuities. The method is also 
computationally robust, being non-iterative, and does not 
depend on critical thresholds, the only free parameter 
being the scale of analysis. 

We plan to extend our approach by incorporating 
information from multiple frames, and to study the 

possibility of using an adaptive scale of analysis in the 
voting process. 
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Figure 8. TEDDY sequence 

(a) An input image (b) Ground truth 
disparity map 

(c) Tensor Voting 
disparity map 

Table 3. TEDDY sequence – results 

Methods Error Rate 

Tensor Voting 15.4% 

Sum of Squared Differences 26.5% 

Dynamic Programming 30.1% 

Graph Cuts 29.3% 

 




