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Abstract 

Producing an accurate motion flow field is very 
difficult at motion boundaries. We present a novel, non-
iterative approach for segmentation from image motion, 
based on two voting processes, in different dimensional 
spaces. By expressing the motion layers as surfaces in a 
4-D space, a voting process is first used to enforce the 
smoothness of motion and determine an estimation of 
pixel velocities, motion regions and boundaries. The 
boundary estimation is then combined with intensity 
information from the original images in order to locally 
define a boundary tensor field. The correct boundary is 
inferred by a 2-D voting process within this field, that 
enforces the smoothness of boundaries. Finally, correct 
velocities are computed for the pixels near boundaries, as 
they are reassigned to different regions. We demonstrate 
our contribution by analyzing several image sequences, 
containing multiple types of motion. 

1. Introduction 

The motivation of the motion segmentation problem 
stems from the fact that motion regions (pixels with 
similar motion) usually correspond to distinct objects in 
the scene. Computationally, the problem is addressed by 
first establishing pixel correspondences between images 
in order to obtain velocity values at each image location. 
Based on their velocities, pixels are then grouped into 
motion regions, separated by motion boundaries, thus 
producing a segmentation of the image.  

However, an inherent difficulty in this process is 
caused by the presence of the motion boundaries 
themselves. The very source of information used for 
segmentation – pixel velocities – are mostly unreliable 
exactly at the motion boundaries, where the segmentation 
takes place. The example in Figure 1, showing a truck 
moving from left to right over a static background, is used 

to illustrate the problem. From area A that appears in the 
first image, only half is visible in the second image, the 
other half being occluded by the moving region. At the 
opposite side, area B is still visible in the second image, 
but is now split into two regions, with new, un-occluded 
pixels in between. Even where no occlusion takes place, 
such as at the upper boundary, area C is also split in the 
second image, due to the motion between regions.  

Consequently, the apparent motion around boundaries 
cannot be precisely determined by using any similarity 
criteria, since the areas being compared must have a finite 
extent. Moreover, it is not realistic to assume that all the 
wrong matches can be later removed as noise. Due to the 
similarity of partial areas, wrong correspondences are 
often assigned in a consistent manner, resulting in over-
extended image regions. 

The key observation is that one should not only rely on 
motion cues in order to perform motion segmentation. 
Examining the original images reveals a multitude of 
monocular cues, such as intensity edges, that can aid in 
identifying the true object boundaries. A second look at 
Figure 1 will confirm it.  

In this context, we formulate the problem of motion 
analysis as a two-component process, that: 
• enforces the smoothness of motion, except at its 

discontinuities 
• enforces the smoothness of such discontinuities, aided 

by monocular cues 
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C
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C

Figure 1. Non-similarity at motion boundaries
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A computational methodology that successfully 
enforces the smoothness constraint in a consistent and 
unified manner, while preserving discontinuities is 
Tensor Voting [1]. This technique also benefits from the 
fact that it is non-iterative and it does not depend on 
critical thresholds. 

In our previous work [2] we have developed a voting-
based framework designed initially for sparse data, that 
enforces the smoothness of motion in order to extract 
motion layers, as smooth surfaces in the 4-D space of 
image coordinates and pixel velocities.  

In this paper we propose a novel approach for motion 
segmentation from two images, by extending our 4-D 
framework in order to handle real data, and integrating it 
with a 2-D voting-based method for accurate inference of 
motion boundaries. 

In the next subsections we give a brief review of the 
related work in the area, and an overview of our method. 
In Section 2 we examine the voting framework by first 
describing the Tensor Voting formalism in 2-D, then we 
discuss how the voting concepts are generalized and 
extended to the 4-D case. In Section 3 we present our 
approach for establishing the initial candidate matches. In 
Section 4 we describe the extraction of motion layers in 4-
D, and in Section 5 we present the boundary inference in 
2-D.  Section 6 shows our experimental results, while 
Section 7 summarizes our contribution and provides 
further research directions. 

1.1. Related work 

Barron, Fleet, and Beauchemin [3] provide a useful 
review of the computational methodologies used in the 
motion analysis field. Optical flow techniques – such as 
differential methods [4], region-based matching [5], or 
energy-based methods [6] – rely on local, raw estimates of 
the optical flow field to produce a partition of the image. 
However, the flow estimates are very poor at motion 
boundaries and cannot be obtained in uniform areas.  

Past approaches have investigated the use of Markov 
Random Fields (MRF) in handling discontinuities in the 
optical flow [7]. While these methods give some good 
results, they rely heavily on a proper spatial segmentation 
early in the algorithm, which will not be realistic in many 
cases. Another research direction uses regularization 
techniques, which preserve discontinuities by weakening 
the smoothing in areas that exhibit strong intensity 
gradients [8]. Here an incorrect assumption is also made, 
that the motion boundaries can always be detected in 
advance, based on intensity only. 

Significant improvements have been achieved by using 
layered representations and the Expectation-
Maximization algorithm [9][10]. There are many 

advantages of this formalism – mainly because it 
represents a natural way to incorporate motion field 
discontinuities, and it allows for handling occlusion 
relationships between different regions in the image. 
While these techniques provide a basis for much 
subsequent study, they still suffer from some major defects 
– the procedure requires an initialization step, which is 
essentially arbitrary, the algorithm is iterative, subject to 
stability concerns, and the description of the optical flow 
is parameterized and does not permit a general 
description as would be desirable.  

Shi and Malik [11] have approached the problem of 
motion segmentation in terms of recursive partitioning of 
the spatio-temporal space through normalized cuts within 
a weighted graph, but no prescription is offered for 
deciding when the space has been adequately partitioned. 

1.2. Overview of our method 

In order to compute a dense velocity field and to 
segment the image into motion regions, we use an 
approach based on a layered 4-D representation of data, 
and a voting scheme for communication. First we 
establish candidate matches through a multi-scale, 
normalized cross-correlation procedure. Following a 
perceptual grouping perspective, each potential match is 
seen as a token characterized by four attributes – the 
image coordinates (x,y) in the first image, and the velocity 
with the components (vx,vy).  

Tokens are encapsulated as (x,y,vx,vy) points in the 4-D 
space, this being a natural way of expressing the spatial 
separation of tokens according to both velocities and 
image coordinates. In general, for each pixel (x,y) there 
can be several candidate velocities, so each 4-D point 
(x,y,vx,vy) represents a potential match. 

Within this representation, smoothness of motion is 
embedded in the concept of surface saliency exhibited by 
the data. By letting the tokens communicate their mutual 
affinity through voting, noisy matches are eliminated as 
they receive little support, and distinct moving regions are 
extracted as smooth, salient surface layers, in the 4-D 
space. 

Although noisy correspondences are rejected as 
outliers, there are also wrong matches that are consistent 
with the correct ones. This mostly occurs at the motion 
boundaries, where the occluding layer is typically over-
extended towards the occluded area. 

In the next stage we infer the correct motion boundary 
by adding monocular information from the original 
images. First we define zones of boundary uncertainty 
along the margins of layers. Within these zones we create 
a 2-D saliency map that combines the following 
information: the position and overall orientation of the 
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layer boundary, and the strength and orientation of the 
intensity edges from the images. Then we enforce the 
smoothness and continuity of the boundary through a 2-D 
voting process. The true boundaries are finally extracted 
as the most salient curves within these zones.  

2. The Tensor Voting framework 

2.1. Voting in 2-D 

The use of a voting process for feature inference from 
sparse and noisy data was formalized into a unified tensor 
framework by Medioni, Lee and Tang [1]. The input data 
is encoded as tensors, then support information (including 
proximity and smoothness of continuity) is propagated by 
voting. The only free parameter is the scale of analysis, 
which is indeed an inherent property of visual perception. 

In the 2-D case, the salient features to be extracted are 
points and curves. Each token is encoded as a second 
order symmetric 2-D tensor, geometrically equivalent to 
an ellipse. It is described by a 2×2 eigensystem, where 
eigenvectors e1 and e2 give the ellipse orientation and 
eigenvalues λ1 and λ2 are the ellipse size. The tensor is 
represented as a matrix TT eeeeS 222111 ⋅+⋅= λλ .

An input token that represents a curve element is 
encoded as a stick tensor, where e2 represents the curve 
tangent and e1 the curve normal, while λ1=1 and λ2=0. 
An input point element is encoded as a ball tensor, with 
no preferred orientation, while λ1=1 and λ2=1. 

The communication between tokens is performed 
through a voting process, where each token casts a vote at 
each site in its neighborhood. The size and shape of this 
neighborhood, and the vote strength and orientation are 
encapsulated in predefined voting fields (kernels), one for 
each feature type – there is a stick voting field and a ball 
voting field in the 2-D case. The fields are generated 
based only on the scale factor σ. Vote orientation 
corresponds to the smoothest local curve continuation 
from voter to recipient, while vote strength )(dVS  decays 

with distance || d  between them, and with curvature ρ:

+−

=
2

22||

)( σ
ρd

edVS (1)

Figure 2(a) shows how votes are generated to build the 
2-D stick field. A tensor P where curve information is 
locally known (illustrated by curve normal

PN ) casts a 

vote at its neighbor Q. The vote orientation is chosen so 
that it ensures a smooth curve continuation through a 
circular arc from voter P to recipient Q. To propagate the 

curve normal N  thus obtained, the vote )(dVstick  sent 

from P to Q is encoded as a tensor according to: 

T
stick NNdVSdV ⋅= )()( (2)

Figure 2(b) shows the 2-D stick field, with its color-
coded strength. When the voter is a ball tensor, with no 
information known locally, the vote is generated by 
rotating a stick vote in the 2-D plane and integrating all 
contributions. The 2-D ball field is shown in Figure 2(c). 

At each receiving site, the collected votes are combined 
through simple tensor addition, producing generic 2-D 
tensors. During voting, tokens that lie on a smooth curve 
reinforce each other, and the tensors deform according to 
the prevailing orientation. Each tensor encodes the local 
orientation of geometric features (given by the tensor 
orientation), and their saliency (given by the tensor shape 
and size). For a generic 2-D tensor, its curve saliency is 
given by (λ1-λ2), the curve normal orientation by e1, while 
its point saliency is given by λ2. Therefore, the voting 
process infers curves and junctions simultaneously, while 
also identifying outlier noise (tokens that receive very 
little support).  

2.2. Extension to 4-D 

The issues to be addressed here are the tensorial 
representation of the features in the 4-D space, the 
generation of voting fields, and the data structures used 
for vote collection. Table 1 shows all the geometric 
features that appear in a 4-D space and their 
representation as elementary 4-D tensors, where n and t
represent normal and tangent vectors, respectively. Note 
that a surface in the 4-D space can be characterized by 
two normal vectors, or by two tangent vectors. From a 
generic 4-D tensor that results after voting, the geometric 
features are extracted as shown in Table 2. 

The 4-D voting fields are obtained as follows. First the 
4-D stick field is generated in a similar manner to the 2-D 
stick field (see Figure 2(a)). Then, the other three voting 
fields are built by integrating all the contributions 
obtained by rotating a 4-D stick field around appropriate 

(b) 2-D stick field (a) vote generation 

Q

Q’

Q”

P

N

PN

Figure 2. Voting in 2-D 

(c) 2-D ball field 
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axes. In particular, the 4-D ball field – the only one 
directly used here – is generated according to: 

−=
π

θθθ
2

0

1 )()( xvxuxy
T

stickball dddRdRVRdV (3)

where x, y, u, v are the 4-D coordinates axes and R is the 
rotation matrix with angles θxy, θxu, θxv.

The data structure used to store the tensors is an 
approximate nearest neighbor (ANN) k-d tree [12]. The 
space complexity of is O(n), where n is the input size. The 
average time complexity of the voting process is O(µn)
where µ is the average number of tokens in the 
neighborhood. Therefore, in contrast to other voting 
techniques, such as the Hough Transform, both time and 
space complexities of the Tensor Voting methodology are 
independent of the dimensionality of the desired feature.  

3. Generating candidate matches 

We take as input two image frames that involve 
general motion – that is, both the camera and the objects 
in the scene may be moving. For illustration purposes, we 
give a description of our approach by using a specific 
example – the two images in Figure 3 are taken with a 
handheld moving camera, where the candy box and the 
background exhibit distinct image motions due to their 
different distances from the camera.  

For every pixel in the first image, the goal at this stage 
is to produce candidate matches in the second image. We 
use a normalized cross-correlation procedure, where all 
peaks of correlation are retained as candidates. When a 
peak is found, its position is also adjusted for sub-pixel 

precision according to the correlation values of its 
neighbors. Finally, each candidate match is represented as 
a (x,y,vx,vy) point in the 4-D space of image coordinates 
and pixel velocities, with respect to the first image. 

Since we want to increase the likelihood of including 
the correct match among the candidates, we repeat this 
process at multiple scales, by using different correlation 
window sizes. Small windows have the advantage of 
capturing fine detail, and are effective close to the motion 
boundaries, but produce considerable noise in areas 
lacking texture or having small repetitive patterns. Larger 
windows generate smoother matches, but their 
performance degrades in large areas along motion 
boundaries. We have experimented with a large range of 
window sizes, and found that best results are obtained by 
using only two or three different sizes, that should include 
at least a very small one. Therefore, in all the examples 
described in this paper we used three correlation 
windows, with 3x3, 5x5 and 7x7 sizes. 

The resulting candidates appear as a cloud of (x,y,vx,vy)
points in the 4-D space. Figure 4 shows the candidate 
matches. In order to display 4-D data, the last component 
of each 4-D point has been dropped – the 3 dimensions 
shown are x and y (in the horizontal plane), and vx (the 
height). The motion layers can be already perceived as 
their tokens are grouped in two layers surrounded by 
noisy matches. 

Extracting statistically salient structures from such 
noisy data is very difficult for most existing methods. 
Because our voting framework is robust to considerable 
amounts of noise, we can afford using the multiple 
window sizes in order to extract the motion layers. 

4. Extraction of motion layers in 4-D 

Selection. Since no information is initially known, 
each potential match is encoded into a 4-D ball tensor.

Figure 3. Candy box – input images

Figure 4. Matching 
candidates

Figure 5. Selected 
velocities

Feature λ1 λ2 λ3 λ4 e1  e2  e3  e4 Tensor 

point 1   1   1   1 Any orth. basis Ball 

curve 1   1   1   0 n1  n2  n3  t C-Plate 

surface 1   1   0   0 n1  n2  t1   t2 S-Plate 

volume 1   0   0   0 n   t1   t2   t3 Stick 

Table 1. Elementary tensors in 4-D 

Table 2. A generic tensor in 4-D

Feature Saliency Normals Tangents

point λ4 none none 

curve λ3 - λ4 e1  e2  e3 e4

surface λ2 - λ3 e1  e2 e3  e4

volume λ1 - λ2 e1 e2  e3  e4
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Then each token casts votes by using the 4-D ball voting 
field. During voting there is strong support between 
tokens that lie on a smooth surface (layer), while 
communication between layers is reduced by the spatial 
separation in the 4-D space of both image coordinates and 
pixel velocities.  

For each pixel (x,y) we retain the candidate match with 
the highest surface saliency (λ2-λ3), and we reject the 
others as outliers. Figure 5 shows a 3-D view of the 
recovered matches (the height represents vx). 

Orientation refinement. In order to obtain an 
estimation of the layer orientations as accurate as 
possible, we perform an orientation refinement through 
another voting process, but now with the selected matches 
only. After voting, the normals to layers are found at each 
token as e1 and e2.

Outlier rejection. In the selection step, we retained 
only the most salient candidate at each pixel. However, 
there may be pixels where all candidates were wrong, 
such as in areas lacking texture. Therefore now we 
eliminate all tokens that have received very little support. 
Typically we reject all tokens with surface saliency less 
that 10% of the average saliency of the entire set. 

Densification. Since the previous step created “holes” 
(i.e., pixels where no velocity is available), we must infer 
their velocities from the neighbors by using a smoothness 
constraint. For each pixel (x,y) without an assigned 
velocity we try to find the best (vx,vy) location at which to 
place a newly generated token. The candidates considered 
are all the discrete points (vx,vy) between the minimum 
and maximum velocities in the set, within a neighborhood 
of the (x,y) point. At each candidate position (x,y,vx,vy) we 
accumulate votes, according to the same Tensor Voting 
framework that we have used so far. After voting, the 
candidate token with maximal surface saliency (λ2-λ3) is 
retained, and its (vx,vy) coordinate represent the most 

likely velocity at (x,y). By following this procedure at 
every (x,y) image location we generate a dense velocity 
field. Note that in this process, along with velocities we 
simultaneously infer layer orientations. A 3-D view of the 
dense layers is shown in Figure 6. 

Segmentation. The next step is to group tokens into 
regions, by using again the smoothness constraint. We 
start from an arbitrary point in the image, assign a region 
label to it, and try to recursively propagate this label to all 
its image neighbors. In order to decide whether the label 
must be propagated, we use the smoothness of both 
velocity and layer orientation as a grouping criterion.  

Figure 7 illustrates the recovered vx velocities within 
layers (dark corresponds to low velocity), and Figure 8 
shows the layer boundaries superimposed over the first 
image. 

5. Boundary inference in 2-D 

At this stage, the extracted motion layers can still be 
over or under-extended along the motion boundaries. This 
situation typically occurs in areas subject to occlusion, 
where the initial correlation procedure may generate 
wrong matches that are consistent with the correct ones, 
and therefore could not be rejected as outlier noise. 

However, now it is known how many moving objects 
are present in the scene and where they are. The margins 
of the layers provide a good estimate for the position and 
overall orientation of the true motion boundaries. We 
combine this knowledge with monocular cues (intensity 
edges) from the original images in order to build a 
boundary saliency map along the layers margins. Next we 
enforce the smoothness and continuity of the boundary 
through a 2-D voting process, and extract the true 
boundary as the most salient curve within the map. 

This procedure is performed in two successive passes – 
by separately using the horizontal and vertical 
components of the image gradient. In fact, during the first 
pass all edges are found, with the exception of the ones 
“perfectly” horizontal. The second pass is actually used to 
only detect the remaining edges. Note that the two steps 
are inter-changeable, and their order is not important. 

5.1. The boundary saliency map 

In the first pass, we start by finding the points that 
belong to the layer boundaries, identified by changes in 
region labels along horizontal lines. For each such point 
(xc,yc) we define a horizontal zone of boundary 
uncertainty, centered at (xc,yc). Since the over or under-
extension of motion layers is usually within the limits of 
the correlation window size, we chose the largest size 

Figure 6. Dense layers 

Figure 7. Layer 
velocities

Figure 8. Layer 
boundaries
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used in correlation as the zone width. The zone height is 
one pixel. 

Next we make use of the monocular cues by computing 
the image gradient (from the intensity I in first image) at 
each location within the zones of boundary uncertainty: 

( ) ( )yxIyxIyxGx ,1,),( −−=
( ) ( )1,,),( −−= yxIyxIyxGy

(4)

Since at this pass we are looking for non-horizontal 
edges, we initialize our saliency map with the horizontal 
component of the gradient: 

),( yxGsal x= (5)

This choice is made in order not to be influenced in the 
analysis by purely horizontal edges, which will be 
detected during the second pass. Diagonal edges that 
exhibit a significant horizontal gradient contribute to the 
saliency map and they are detected in the first pass. 

 Finally, we incorporate our estimation of the boundary 
position and orientation, as resulted from motion cues, by 
introducing a bias towards the current layer boundaries. 
Within each zone, we define a weight function W that is 1 
at xc and decays exponentially by: 

( )
2

2

W

cxx

eW σ
−−

= (6)

where σW corresponds to a weight of 0.2 at the zone 
extremities. 

The saliency map is then updated by multiplying each 
existing value with the corresponding weight.  

5.2. Detecting the boundary 

At this stage we have a saliency value and an 
orientation at each location within the zones of 
uncertainty. However, in order to extract the boundaries 
we need to examine how neighboring locations agree 
upon their information, through a voting process. 

We proceed by encapsulating all the existing 
information within a 2-D tensorial framework. Since we 
have boundary orientations, at each location in the 
uncertainty zones we create a 2-D stick tensor, with the 
orientation (eigenvectors e1 and e2) given by the image 
gradient, and the size taken from the saliency map: 

e1 = (Gx Gy)  (normal to edge) 
e2 = (-Gy Gx)  (tangent to edge) 
λ1 = sal
λ2 = 0 

(7)

The tensors then communicate through a 2-D voting 
process, where each tensor is influenced by the saliency 
and orientation of its neighbors. After voting, the curve 

saliency values are collected at each tensor as (λ1-λ2) and 
stored back in the saliency map. Figure 9 shows the 
tensors after voting, with the local curve tangent given by 
the eigenvector e2. The curve saliency (λ1-λ2) is illustrated 
here as the length of the tangent vector. Note that 
although strong texture edges are present in the 
uncertainty zone, after voting their saliency is diminished 
by the overall dominance of saliency and orientation of 
the correct object edges. 

 The true boundaries are extracted by choosing seeds 
with maximum curve saliency, and growing the boundary 
from an uncertainty zone to the next, according to the 
local curve saliency and orientation.  

After marking the detected boundaries, the entire 
process is repeated in a similar fashion in the second pass, 
this time using the vertical component of the gradient, in 
order to detect any horizontal boundaries that have been 
missed during the first pass. 

Finally, each zone of boundary uncertainty is revisited 
in order to reassign pixels to regions, according to the 
new boundaries. In addition to changing the region label, 
their velocities are recomputed in a 4-D voting process 
similar to the one used for densification. However, since 
region labels are now available, the votes are collected 
only from points within the same layer. 

Figure 10 shows the refined velocities within layers 
(dark represents small velocity), and Figure 11 shows the 
refined motion boundary, that indeed corresponds to the 
actual object. 

6. Results 

We have also analyzed several other image sequences, 
and we present here the results obtained. In all 

Figure 9. Boundary saliency map

Figure 10. Refined 
velocities 

Figure 11. Refined 
boundaries 
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experiments we used three correlation windows, with 3x3, 
5x5 and 7x7 sizes, and for each window we retained all 
peaks of correlation. Therefore each pixel in the image 
had at least 3 candidate matches, among which at most 
one was correct. For both the 4-D and 2-D voting 
processes, in all examples we used the same scale factor, 
corresponding to an image neighborhood with a radius of 
16 pixels.  

Fish sequence (Figure 12). To quantitatively estimate 
the performance of our approach we created a synthetic 
sequence from real images. The silhouette of a fish was 
cropped from its image and pasted at different locations 
over a second image, in order to generate a motion 
sequence with ground truth. The average angular error we 
obtained is 0.42° ± 1.2° for 100% field coverage, which is 
very low despite the multitude of texture edges from the 
cluttered background, that were competing with the true 
object edges. This example is also used to show that we 
can successfully handle more detailed and non-convex 
motion boundaries. 

Barrier sequence (Figure 13). We analyzed the 
motion from two frames of a sequence showing two cars 
moving away from the camera. The analysis is difficult 
due to the large ground area with very low texture, and 

because the two moving objects have relatively small sizes 
in the image. Also note that the image motion is not 
translational – the front of each car has a lower velocity 
than its back. This is visible in the 3-D view of the motion 
layers, which appear as tilted surfaces. In fact, our 
framework does not make any assumption regarding the 
type of motion – such as translational, planar, or rigid 
motion. The only criterion used is the smoothness of 
image motion. 

7. Conclusions 

We have presented a novel approach for the problem of 
motion segmentation, by integrating motion and 
monocular cues into a Tensor Voting computational 
framework. Our methodology for extracting motion layers 
is based on a layered 4-D representation of data, and a 
voting scheme for token communication. Monocular cues 
represented by intensity edges in the original images are 
used to refine the extracted layers, through a 2-D voting 
process. The boundary saliency map proves to be an 
appropriate representation for this problem. It encodes the 
position, orientation and strength of both the layer 

Figure 12. Fish sequence 

Figure 13. Barrier sequence 
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boundaries and image edges, all contributing to accurate 
inference of the motion boundaries. 

Despite the high dimensionality (in the 4-D case), our 
voting scheme is both time and space efficient. It is non-
iterative and the only free parameter is scale, which is an 
inherent characteristic of human vision. 

We plan to extend our approach by incorporating 
information from multiple frames, and to study the 
possibility of using an adaptive scale of analysis in the 
voting process. 
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