
Motion Segmentation with Accurate Boundaries - A Tensor Voting Approach

Mircea Nicolescu and Gérard Medioni
Integrated Media Systems Center
University of Southern California

Los Angeles, CA 90089-0273
{mnicoles, medioni}@iris.usc.edu

Abstract

Producing an accurate motion flow field is very
difficult at motion boundaries. We present a novel, non-
iterative approach for segmentation from image motion,
based on two voting processes, in different dimensional
spaces. By expressing the motion layers as surfaces in a
4-D space, a voting process is first used to enforce the
smoothness of motion and determine an estimation of
pixel velocities, motion regions and boundaries. The
boundary estimation is then combined with intensity
information from the original images in order to locally
define a boundary tensor field. The correct boundary is
inferred by a 2-D voting process within this field, that
enforces the smoothness of boundaries. Finally, correct
velocities are computed for the pixels near boundaries, as
they are reassigned to different regions. We demonstrate
our contribution by analyzing several image sequences,
containing multiple types of motion.

1. Introduction

The motivation of the motion segmentation problem
stems from the fact that motion regions (pixels with
similar motion) usually correspond to distinct objects in
the scene. Computationally, the problem is addressed by
first establishing pixel correspondences between images
in order to obtain velocity values at each image location.
Based on their velocities, pixels are then grouped into
motion regions, separated by motion boundaries, thus
producing a segmentation of the image.

However, an inherent difficulty in this process is
caused by the presence of the motion boundaries
themselves. The very source of information used for
segmentation – pixel velocities – are mostly unreliable
exactly at the motion boundaries, where the segmentation
takes place. The example in Figure 1, showing a truck
moving from left to right over a static background, is used

to illustrate the problem. From area A that appears in the
first image, only half is visible in the second image, the
other half being occluded by the moving region. At the
opposite side, area B is still visible in the second image,
but is now split into two regions, with new, un-occluded
pixels in between. Even where no occlusion takes place,
such as at the upper boundary, area C is also split in the
second image, due to the motion between regions.

Consequently, the apparent motion around boundaries
cannot be precisely determined by using any similarity
criteria, since the areas being compared must have a finite
extent. Moreover, it is not realistic to assume that all the
wrong matches can be later removed as noise. Due to the
similarity of partial areas, wrong correspondences are
often assigned in a consistent manner, resulting in over-
extended image regions.

The key observation is that one should not only rely on
motion cues in order to perform motion segmentation.
Examining the original images reveals a multitude of
monocular cues, such as intensity edges, that can aid in
identifying the true object boundaries. A second look at
Figure 1 will confirm it.

In this context, we formulate the problem of motion
analysis as a two-component process, that:
• enforces the smoothness of motion, except at its

discontinuities
• enforces the smoothness of such discontinuities, aided

by monocular cues

AB

C

AB

C

Figure 1. Non-similarity at motion boundaries

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

A computational methodology that successfully
enforces the smoothness constraint in a consistent and
unified manner, while preserving discontinuities is
Tensor Voting [1]. This technique also benefits from the
fact that it is non-iterative and it does not depend on
critical thresholds.

In our previous work [2] we have developed a voting-
based framework designed initially for sparse data, that
enforces the smoothness of motion in order to extract
motion layers, as smooth surfaces in the 4-D space of
image coordinates and pixel velocities.

In this paper we propose a novel approach for motion
segmentation from two images, by extending our 4-D
framework in order to handle real data, and integrating it
with a 2-D voting-based method for accurate inference of
motion boundaries.

In the next subsections we give a brief review of the
related work in the area, and an overview of our method.
In Section 2 we examine the voting framework by first
describing the Tensor Voting formalism in 2-D, then we
discuss how the voting concepts are generalized and
extended to the 4-D case. In Section 3 we present our
approach for establishing the initial candidate matches. In
Section 4 we describe the extraction of motion layers in 4-
D, and in Section 5 we present the boundary inference in
2-D. Section 6 shows our experimental results, while
Section 7 summarizes our contribution and provides
further research directions.

1.1. Related work

Barron, Fleet, and Beauchemin [3] provide a useful
review of the computational methodologies used in the
motion analysis field. Optical flow techniques – such as
differential methods [4], region-based matching [5], or
energy-based methods [6] – rely on local, raw estimates of
the optical flow field to produce a partition of the image.
However, the flow estimates are very poor at motion
boundaries and cannot be obtained in uniform areas.

Past approaches have investigated the use of Markov
Random Fields (MRF) in handling discontinuities in the
optical flow [7]. While these methods give some good
results, they rely heavily on a proper spatial segmentation
early in the algorithm, which will not be realistic in many
cases. Another research direction uses regularization
techniques, which preserve discontinuities by weakening
the smoothing in areas that exhibit strong intensity
gradients [8]. Here an incorrect assumption is also made,
that the motion boundaries can always be detected in
advance, based on intensity only.

Significant improvements have been achieved by using
layered representations and the Expectation-
Maximization algorithm [9][10]. There are many

advantages of this formalism – mainly because it
represents a natural way to incorporate motion field
discontinuities, and it allows for handling occlusion
relationships between different regions in the image.
While these techniques provide a basis for much
subsequent study, they still suffer from some major defects
– the procedure requires an initialization step, which is
essentially arbitrary, the algorithm is iterative, subject to
stability concerns, and the description of the optical flow
is parameterized and does not permit a general
description as would be desirable.

Shi and Malik [11] have approached the problem of
motion segmentation in terms of recursive partitioning of
the spatio-temporal space through normalized cuts within
a weighted graph, but no prescription is offered for
deciding when the space has been adequately partitioned.

1.2. Overview of our method

In order to compute a dense velocity field and to
segment the image into motion regions, we use an
approach based on a layered 4-D representation of data,
and a voting scheme for communication. First we
establish candidate matches through a multi-scale,
normalized cross-correlation procedure. Following a
perceptual grouping perspective, each potential match is
seen as a token characterized by four attributes – the
image coordinates (x,y) in the first image, and the velocity
with the components (vx,vy).

Tokens are encapsulated as (x,y,vx,vy) points in the 4-D
space, this being a natural way of expressing the spatial
separation of tokens according to both velocities and
image coordinates. In general, for each pixel (x,y) there
can be several candidate velocities, so each 4-D point
(x,y,vx,vy) represents a potential match.

Within this representation, smoothness of motion is
embedded in the concept of surface saliency exhibited by
the data. By letting the tokens communicate their mutual
affinity through voting, noisy matches are eliminated as
they receive little support, and distinct moving regions are
extracted as smooth, salient surface layers, in the 4-D
space.

Although noisy correspondences are rejected as
outliers, there are also wrong matches that are consistent
with the correct ones. This mostly occurs at the motion
boundaries, where the occluding layer is typically over-
extended towards the occluded area.

In the next stage we infer the correct motion boundary
by adding monocular information from the original
images. First we define zones of boundary uncertainty
along the margins of layers. Within these zones we create
a 2-D saliency map that combines the following
information: the position and overall orientation of the

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

layer boundary, and the strength and orientation of the
intensity edges from the images. Then we enforce the
smoothness and continuity of the boundary through a 2-D
voting process. The true boundaries are finally extracted
as the most salient curves within these zones.

2. The Tensor Voting framework

2.1. Voting in 2-D

The use of a voting process for feature inference from
sparse and noisy data was formalized into a unified tensor
framework by Medioni, Lee and Tang [1]. The input data
is encoded as tensors, then support information (including
proximity and smoothness of continuity) is propagated by
voting. The only free parameter is the scale of analysis,
which is indeed an inherent property of visual perception.

In the 2-D case, the salient features to be extracted are
points and curves. Each token is encoded as a second
order symmetric 2-D tensor, geometrically equivalent to
an ellipse. It is described by a 2×2 eigensystem, where
eigenvectors e1 and e2 give the ellipse orientation and
eigenvalues λ1 and λ2 are the ellipse size. The tensor is
represented as a matrix TT eeeeS 222111 ⋅+⋅= λλ .

An input token that represents a curve element is
encoded as a stick tensor, where e2 represents the curve
tangent and e1 the curve normal, while λ1=1 and λ2=0.
An input point element is encoded as a ball tensor, with
no preferred orientation, while λ1=1 and λ2=1.

The communication between tokens is performed
through a voting process, where each token casts a vote at
each site in its neighborhood. The size and shape of this
neighborhood, and the vote strength and orientation are
encapsulated in predefined voting fields (kernels), one for
each feature type – there is a stick voting field and a ball
voting field in the 2-D case. The fields are generated
based only on the scale factor σ. Vote orientation
corresponds to the smoothest local curve continuation
from voter to recipient, while vote strength)(dVS decays

with distance || d between them, and with curvature ρ:

+−

=
2

22||

)(σ
ρd

edVS (1)

Figure 2(a) shows how votes are generated to build the
2-D stick field. A tensor P where curve information is
locally known (illustrated by curve normal

PN) casts a

vote at its neighbor Q. The vote orientation is chosen so
that it ensures a smooth curve continuation through a
circular arc from voter P to recipient Q. To propagate the

curve normal N thus obtained, the vote)(dVstick sent

from P to Q is encoded as a tensor according to:

T
stick NNdVSdV ⋅=)()((2)

Figure 2(b) shows the 2-D stick field, with its color-
coded strength. When the voter is a ball tensor, with no
information known locally, the vote is generated by
rotating a stick vote in the 2-D plane and integrating all
contributions. The 2-D ball field is shown in Figure 2(c).

At each receiving site, the collected votes are combined
through simple tensor addition, producing generic 2-D
tensors. During voting, tokens that lie on a smooth curve
reinforce each other, and the tensors deform according to
the prevailing orientation. Each tensor encodes the local
orientation of geometric features (given by the tensor
orientation), and their saliency (given by the tensor shape
and size). For a generic 2-D tensor, its curve saliency is
given by (λ1-λ2), the curve normal orientation by e1, while
its point saliency is given by λ2. Therefore, the voting
process infers curves and junctions simultaneously, while
also identifying outlier noise (tokens that receive very
little support).

2.2. Extension to 4-D

The issues to be addressed here are the tensorial
representation of the features in the 4-D space, the
generation of voting fields, and the data structures used
for vote collection. Table 1 shows all the geometric
features that appear in a 4-D space and their
representation as elementary 4-D tensors, where n and t
represent normal and tangent vectors, respectively. Note
that a surface in the 4-D space can be characterized by
two normal vectors, or by two tangent vectors. From a
generic 4-D tensor that results after voting, the geometric
features are extracted as shown in Table 2.

The 4-D voting fields are obtained as follows. First the
4-D stick field is generated in a similar manner to the 2-D
stick field (see Figure 2(a)). Then, the other three voting
fields are built by integrating all the contributions
obtained by rotating a 4-D stick field around appropriate

(b) 2-D stick field (a) vote generation

Q

Q’

Q”

P

N

PN

Figure 2. Voting in 2-D

(c) 2-D ball field

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

axes. In particular, the 4-D ball field – the only one
directly used here – is generated according to:

−=
π

θθθ
2

0

1)()(xvxuxy
T

stickball dddRdRVRdV (3)

where x, y, u, v are the 4-D coordinates axes and R is the
rotation matrix with angles θxy, θxu, θxv.

The data structure used to store the tensors is an
approximate nearest neighbor (ANN) k-d tree [12]. The
space complexity of is O(n), where n is the input size. The
average time complexity of the voting process is O(µn)
where µ is the average number of tokens in the
neighborhood. Therefore, in contrast to other voting
techniques, such as the Hough Transform, both time and
space complexities of the Tensor Voting methodology are
independent of the dimensionality of the desired feature.

3. Generating candidate matches

We take as input two image frames that involve
general motion – that is, both the camera and the objects
in the scene may be moving. For illustration purposes, we
give a description of our approach by using a specific
example – the two images in Figure 3 are taken with a
handheld moving camera, where the candy box and the
background exhibit distinct image motions due to their
different distances from the camera.

For every pixel in the first image, the goal at this stage
is to produce candidate matches in the second image. We
use a normalized cross-correlation procedure, where all
peaks of correlation are retained as candidates. When a
peak is found, its position is also adjusted for sub-pixel

precision according to the correlation values of its
neighbors. Finally, each candidate match is represented as
a (x,y,vx,vy) point in the 4-D space of image coordinates
and pixel velocities, with respect to the first image.

Since we want to increase the likelihood of including
the correct match among the candidates, we repeat this
process at multiple scales, by using different correlation
window sizes. Small windows have the advantage of
capturing fine detail, and are effective close to the motion
boundaries, but produce considerable noise in areas
lacking texture or having small repetitive patterns. Larger
windows generate smoother matches, but their
performance degrades in large areas along motion
boundaries. We have experimented with a large range of
window sizes, and found that best results are obtained by
using only two or three different sizes, that should include
at least a very small one. Therefore, in all the examples
described in this paper we used three correlation
windows, with 3x3, 5x5 and 7x7 sizes.

The resulting candidates appear as a cloud of (x,y,vx,vy)
points in the 4-D space. Figure 4 shows the candidate
matches. In order to display 4-D data, the last component
of each 4-D point has been dropped – the 3 dimensions
shown are x and y (in the horizontal plane), and vx (the
height). The motion layers can be already perceived as
their tokens are grouped in two layers surrounded by
noisy matches.

Extracting statistically salient structures from such
noisy data is very difficult for most existing methods.
Because our voting framework is robust to considerable
amounts of noise, we can afford using the multiple
window sizes in order to extract the motion layers.

4. Extraction of motion layers in 4-D

Selection. Since no information is initially known,
each potential match is encoded into a 4-D ball tensor.

Figure 3. Candy box – input images

Figure 4. Matching
candidates

Figure 5. Selected
velocities

Feature λ1 λ2 λ3 λ4 e1 e2 e3 e4 Tensor

point 1 1 1 1 Any orth. basis Ball

curve 1 1 1 0 n1 n2 n3 t C-Plate

surface 1 1 0 0 n1 n2 t1 t2 S-Plate

volume 1 0 0 0 n t1 t2 t3 Stick

Table 1. Elementary tensors in 4-D

Table 2. A generic tensor in 4-D

Feature Saliency Normals Tangents

point λ4 none none

curve λ3 - λ4 e1 e2 e3 e4

surface λ2 - λ3 e1 e2 e3 e4

volume λ1 - λ2 e1 e2 e3 e4

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

Then each token casts votes by using the 4-D ball voting
field. During voting there is strong support between
tokens that lie on a smooth surface (layer), while
communication between layers is reduced by the spatial
separation in the 4-D space of both image coordinates and
pixel velocities.

For each pixel (x,y) we retain the candidate match with
the highest surface saliency (λ2-λ3), and we reject the
others as outliers. Figure 5 shows a 3-D view of the
recovered matches (the height represents vx).

Orientation refinement. In order to obtain an
estimation of the layer orientations as accurate as
possible, we perform an orientation refinement through
another voting process, but now with the selected matches
only. After voting, the normals to layers are found at each
token as e1 and e2.

Outlier rejection. In the selection step, we retained
only the most salient candidate at each pixel. However,
there may be pixels where all candidates were wrong,
such as in areas lacking texture. Therefore now we
eliminate all tokens that have received very little support.
Typically we reject all tokens with surface saliency less
that 10% of the average saliency of the entire set.

Densification. Since the previous step created “holes”
(i.e., pixels where no velocity is available), we must infer
their velocities from the neighbors by using a smoothness
constraint. For each pixel (x,y) without an assigned
velocity we try to find the best (vx,vy) location at which to
place a newly generated token. The candidates considered
are all the discrete points (vx,vy) between the minimum
and maximum velocities in the set, within a neighborhood
of the (x,y) point. At each candidate position (x,y,vx,vy) we
accumulate votes, according to the same Tensor Voting
framework that we have used so far. After voting, the
candidate token with maximal surface saliency (λ2-λ3) is
retained, and its (vx,vy) coordinate represent the most

likely velocity at (x,y). By following this procedure at
every (x,y) image location we generate a dense velocity
field. Note that in this process, along with velocities we
simultaneously infer layer orientations. A 3-D view of the
dense layers is shown in Figure 6.

Segmentation. The next step is to group tokens into
regions, by using again the smoothness constraint. We
start from an arbitrary point in the image, assign a region
label to it, and try to recursively propagate this label to all
its image neighbors. In order to decide whether the label
must be propagated, we use the smoothness of both
velocity and layer orientation as a grouping criterion.

Figure 7 illustrates the recovered vx velocities within
layers (dark corresponds to low velocity), and Figure 8
shows the layer boundaries superimposed over the first
image.

5. Boundary inference in 2-D

At this stage, the extracted motion layers can still be
over or under-extended along the motion boundaries. This
situation typically occurs in areas subject to occlusion,
where the initial correlation procedure may generate
wrong matches that are consistent with the correct ones,
and therefore could not be rejected as outlier noise.

However, now it is known how many moving objects
are present in the scene and where they are. The margins
of the layers provide a good estimate for the position and
overall orientation of the true motion boundaries. We
combine this knowledge with monocular cues (intensity
edges) from the original images in order to build a
boundary saliency map along the layers margins. Next we
enforce the smoothness and continuity of the boundary
through a 2-D voting process, and extract the true
boundary as the most salient curve within the map.

This procedure is performed in two successive passes –
by separately using the horizontal and vertical
components of the image gradient. In fact, during the first
pass all edges are found, with the exception of the ones
“perfectly” horizontal. The second pass is actually used to
only detect the remaining edges. Note that the two steps
are inter-changeable, and their order is not important.

5.1. The boundary saliency map

In the first pass, we start by finding the points that
belong to the layer boundaries, identified by changes in
region labels along horizontal lines. For each such point
(xc,yc) we define a horizontal zone of boundary
uncertainty, centered at (xc,yc). Since the over or under-
extension of motion layers is usually within the limits of
the correlation window size, we chose the largest size

Figure 6. Dense layers

Figure 7. Layer
velocities

Figure 8. Layer
boundaries

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

used in correlation as the zone width. The zone height is
one pixel.

Next we make use of the monocular cues by computing
the image gradient (from the intensity I in first image) at
each location within the zones of boundary uncertainty:

() ()yxIyxIyxGx ,1,),(−−=
() ()1,,),(−−= yxIyxIyxGy

(4)

Since at this pass we are looking for non-horizontal
edges, we initialize our saliency map with the horizontal
component of the gradient:

),(yxGsal x= (5)

This choice is made in order not to be influenced in the
analysis by purely horizontal edges, which will be
detected during the second pass. Diagonal edges that
exhibit a significant horizontal gradient contribute to the
saliency map and they are detected in the first pass.

 Finally, we incorporate our estimation of the boundary
position and orientation, as resulted from motion cues, by
introducing a bias towards the current layer boundaries.
Within each zone, we define a weight function W that is 1
at xc and decays exponentially by:

()
2

2

W

cxx

eW σ
−−

= (6)

where σW corresponds to a weight of 0.2 at the zone
extremities.

The saliency map is then updated by multiplying each
existing value with the corresponding weight.

5.2. Detecting the boundary

At this stage we have a saliency value and an
orientation at each location within the zones of
uncertainty. However, in order to extract the boundaries
we need to examine how neighboring locations agree
upon their information, through a voting process.

We proceed by encapsulating all the existing
information within a 2-D tensorial framework. Since we
have boundary orientations, at each location in the
uncertainty zones we create a 2-D stick tensor, with the
orientation (eigenvectors e1 and e2) given by the image
gradient, and the size taken from the saliency map:

e1 = (Gx Gy) (normal to edge)
e2 = (-Gy Gx) (tangent to edge)
λ1 = sal
λ2 = 0

(7)

The tensors then communicate through a 2-D voting
process, where each tensor is influenced by the saliency
and orientation of its neighbors. After voting, the curve

saliency values are collected at each tensor as (λ1-λ2) and
stored back in the saliency map. Figure 9 shows the
tensors after voting, with the local curve tangent given by
the eigenvector e2. The curve saliency (λ1-λ2) is illustrated
here as the length of the tangent vector. Note that
although strong texture edges are present in the
uncertainty zone, after voting their saliency is diminished
by the overall dominance of saliency and orientation of
the correct object edges.

 The true boundaries are extracted by choosing seeds
with maximum curve saliency, and growing the boundary
from an uncertainty zone to the next, according to the
local curve saliency and orientation.

After marking the detected boundaries, the entire
process is repeated in a similar fashion in the second pass,
this time using the vertical component of the gradient, in
order to detect any horizontal boundaries that have been
missed during the first pass.

Finally, each zone of boundary uncertainty is revisited
in order to reassign pixels to regions, according to the
new boundaries. In addition to changing the region label,
their velocities are recomputed in a 4-D voting process
similar to the one used for densification. However, since
region labels are now available, the votes are collected
only from points within the same layer.

Figure 10 shows the refined velocities within layers
(dark represents small velocity), and Figure 11 shows the
refined motion boundary, that indeed corresponds to the
actual object.

6. Results

We have also analyzed several other image sequences,
and we present here the results obtained. In all

Figure 9. Boundary saliency map

Figure 10. Refined
velocities

Figure 11. Refined
boundaries

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

experiments we used three correlation windows, with 3x3,
5x5 and 7x7 sizes, and for each window we retained all
peaks of correlation. Therefore each pixel in the image
had at least 3 candidate matches, among which at most
one was correct. For both the 4-D and 2-D voting
processes, in all examples we used the same scale factor,
corresponding to an image neighborhood with a radius of
16 pixels.

Fish sequence (Figure 12). To quantitatively estimate
the performance of our approach we created a synthetic
sequence from real images. The silhouette of a fish was
cropped from its image and pasted at different locations
over a second image, in order to generate a motion
sequence with ground truth. The average angular error we
obtained is 0.42° ± 1.2° for 100% field coverage, which is
very low despite the multitude of texture edges from the
cluttered background, that were competing with the true
object edges. This example is also used to show that we
can successfully handle more detailed and non-convex
motion boundaries.

Barrier sequence (Figure 13). We analyzed the
motion from two frames of a sequence showing two cars
moving away from the camera. The analysis is difficult
due to the large ground area with very low texture, and

because the two moving objects have relatively small sizes
in the image. Also note that the image motion is not
translational – the front of each car has a lower velocity
than its back. This is visible in the 3-D view of the motion
layers, which appear as tilted surfaces. In fact, our
framework does not make any assumption regarding the
type of motion – such as translational, planar, or rigid
motion. The only criterion used is the smoothness of
image motion.

7. Conclusions

We have presented a novel approach for the problem of
motion segmentation, by integrating motion and
monocular cues into a Tensor Voting computational
framework. Our methodology for extracting motion layers
is based on a layered 4-D representation of data, and a
voting scheme for token communication. Monocular cues
represented by intensity edges in the original images are
used to refine the extracted layers, through a 2-D voting
process. The boundary saliency map proves to be an
appropriate representation for this problem. It encodes the
position, orientation and strength of both the layer

Figure 12. Fish sequence

Figure 13. Barrier sequence

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

boundaries and image edges, all contributing to accurate
inference of the motion boundaries.

Despite the high dimensionality (in the 4-D case), our
voting scheme is both time and space efficient. It is non-
iterative and the only free parameter is scale, which is an
inherent characteristic of human vision.

We plan to extend our approach by incorporating
information from multiple frames, and to study the
possibility of using an adaptive scale of analysis in the
voting process.

Acknowledgements

This research has been funded in part by the Integrated
Media Systems Center, a National Science Foundation
Engineering Research Center, Cooperative Agreement
No. EEC-9529152, and by National Science Foundation
Grant 9811883. Any opinions, findings and conclusions
or recommendations expressed in this material are those
of the authors and do not necessarily reflect those of the
National Science Foundation.

References

[1] G. Medioni, Mi-Suen Lee, Chi-Keung Tang, “A
Computational Framework for Segmentation and Grouping”,
Elsevier Science, 2000.

[2] M. Nicolescu, G. Medioni, “Perceptual Grouping from
Motion Cues Using Tensor Voting in 4-D”, ECCV, vol. 3, pp.
423-437, 2002.

[3] J. Barron, D. Fleet, S. Beauchemin, “Performance of
Optical Flow Techniques”, IJCV, 12:1, pp. 43-77, 1994.

[4] H. Nagel, W. Enkelmann, “An Investigation of Smoothness
Constraints for the Estimation of Displacement Vector Fields
from Image Sequences”, PAMI, vol. 8, pp. 565-593, 1986.

[5] A. Singh, “Optical Flow Computation: A Unified
Perspective”, IEEE Computer Society Press, 1992.

[6] D. Heeger, “Optical Flow Using Spatiotemporal Filters”,
IJCV, vol. 1, pp. 279-302, 1988.

[7] F. Heitz, P. Bouthemy, “Multimodal Estimation of
Discontinuous Optical Flow Using Markov Random Fields”,
PAMI, 15: 12, pp. 1217-1232, 1993.

[8] S. Ghosal, “A Fast Scalable Algorithm for Discontinuous
Optical Flow Estimation”, PAMI, 18:2, pp. 181-194, 1996.

[9] S. Hsu, P. Anandan, S. Peleg, “Accurate Computation of
Optical Flow by Using Layered Motion Representations”, ICPR,
pp. 743-746, 1994.

[10] Y. Weiss, “Smoothness in Layers: Motion Segmentation
Using Nonparametric Mixture Estimation”, CVPR, pp. 520-526,
1997.

[11] J. Shi, J. Malik, “Motion Segmentation and Tracking Using
Normalized Cuts”, ICCV, pp. 1154-1160, 1998.

[12] S. Arya, D. Mount, N. Netanyahu, R Silverman, A. Wu,
“An Optimal Algorithm for Approximate Nearest Neighbor
Searching in Fixed Dimensions”, Journal of the ACM, 45:6, pp.
891-923, 1998.

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

