
A. Heyden et al. (Eds.): ECCV 2002, LNCS 2352, pp. 423-437, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Perceptual Grouping from Motion Cues Using Tensor
Voting in 4-D

Mircea Nicolescu and Gérard Medioni

Integrated Media Systems Center
University of Southern California

Los Angeles, CA 90089-0273
{mnicoles, medioni}@iris.usc.edu

Abstract. We present a novel approach for motion grouping from two frames,
that recovers the dense velocity field, motion boundaries and regions, based on
a 4-D Tensor Voting computational framework. Given two sparse sets of point
tokens, we encode the image position and potential velocity for each token into
a 4-D tensor. The voting process then enforces the motion smoothness while
preserving motion discontinuities, thus selecting the correct velocity for each
input point, as the most salient token. By performing an additional dense voting
step we infer velocities at every pixel location, motion boundaries and regions.
Using a 4-D space for this Tensor Voting approach is essential, since it allows
for a spatial separation of the points according to both their velocities and image
coordinates. Unlike other methods that optimize a specific objective function,
our approach does not involve initialization or search in a parametric space, and
therefore does not suffer from local optima or poor convergence problems. We
demonstrate our method with synthetic and real images, by analyzing several
difficult cases – opaque and transparent motion, rigid and non-rigid motion,
curves and surfaces in motion.

1 Introduction

A traditional formulation of the motion analysis problem is the following: given two
or more image frames, the goal is to determine three types of information – a dense
velocity field, motion boundaries, and regions. Computationally, the problem can be
decomposed in two processes - matching and motion capture. The matching process
identifies the elements (tokens) in successive views that represent the same physical
object, thus producing a (possibly sparse) velocity field. The motion capture process
infers velocity vectors at every image location, thus producing a dense velocity field,
and groups tokens into regions separated by motion boundaries.

Here we focus on the problem of matching and motion capture from sparse sets of
point tokens in two frames. Two examples of such input are shown in Fig. 1 and Fig.
2. If the frames in each pair are presented in a properly timed succession, a certain
motion of image regions is perceived from one frame to the other. However, while in
one case the regions can be detected even without motion, only from monocular cues
(here, different densities of points), in the other case no monocular information is
available. This example shows that analysis is possible even from motion cues only.

mircea
Proceedings of the European Conference on Computer Vision, vol. III, pages 423-437, Copenhagen, Denmark, May 2002.

424 M. Nicolescu and G. Medioni

Another interesting aspect is the fact that the human vision system not only
establishes point correspondences, but also perceives regions in motion, although the
input consists of sparse points only. This demonstrates that both processes of
matching and motion capture are involved in motion analysis.

Ullman presents an excellent analysis of the correspondence problem, from both a
psychological and a computational perspective [1]. Here we are following his
conclusion, that correspondence formation is a low-level process which expresses
mutual token affinities, and takes place prior to any 3-D interpretation. Tokens
involved in matching are non-complex elements, such as points, blobs, edge and line
fragments.

Optical flow techniques [2] – such as differential methods, region-based matching,
energy-based or phase-based methods – rely on local, raw estimates of the optical
flow field to produce a partition of the image. However, the flow estimates are very
poor at motion boundaries and cannot be obtained in uniform areas.

Past approaches have investigated the use of Markov Random Fields (MRF) in
handling discontinuities in the optical flow [3]. Another research direction uses
regularization techniques, which preserve discontinuities by weakening the smoothing
in areas that exhibit strong intensity gradients [4][5].

Significant improvements have been achieved more recently by using layered
representations [6][7]. There are many advantages of this formalism – mainly because
it represents a natural way to incorporate motion field discontinuities, and it allows
for handling occlusion relationships between different regions in the image.

Establishing an association between input tokens and layers is still difficult. Some
methods perform an iterative fitting of data to parametric models [8][9][10]. The
difficulties involved in this estimation process range from a severe restriction in
motion representation (as rigid or planar), to over-fitting and instability due to high-
order parameterizations.

Other approaches employ the rigidity constraint [1] to solve the correspondence
problem, but besides the inability to handle non-rigid motions, such methods require
three or more frames, while we process input from two frames only.

Little et al. [11] developed a parallel algorithm for computing the optical flow by
using a local voting scheme based on similarity of planar patches. However, their
methodology cannot prevent motion boundary blurring due to over-smoothing and is
restricted to short-range motion only.

From a computational point of view, one of the most powerful and most often used
constraints is the smoothness of motion. Usually, previous techniques encounter
traditional difficulties in image regions where motion is not smooth (i.e., around
motion boundaries). To compute the velocity field, knowledge of the boundaries is

Fig. 1. Translating circle Fig. 2. Translating disk

Perceptual Grouping from Motion Cues Using Tensor Voting in 4-D 425

required so that the smoothness constraint can be relaxed around the discontinuities.
But the boundaries cannot be computed without first having determined the pixel
velocities. This “chicken-and-egg” problem has lead to numerous inconsistent
methods, with ad-hoc criteria introduced to account for motion discontinuities.

A computational framework that successfully enforces the smoothness constraint
in a unified manner, while preserving smoothness discontinuities is Tensor Voting
[12]. This approach also benefits from the fact that it is non-iterative, it does not
depend on critical thresholds, does not involve initialization or search in a parametric
space, and therefore it does not suffer from local optima and poor convergence
problems. The first to propose using Tensor Voting to determine the velocity field
were Gaucher and Medioni [13]. They employ successive steps of voting, first to
determine the boundary points as the tokens with maximal motion uncertainty, and
then to locally refine velocities near the boundaries by allowing communication only
between tokens placed on the same side of the boundary. However, in their approach
the voting communication between tokens is essentially a 2-D process that does not
inhibit neighboring elements with different velocities from influencing each other.

In this paper we propose a novel approach based on a layered 4-D representation
of data, and a voting scheme for token communication. Our methodology is
formulated as a 4-D Tensor Voting computational framework. The position (x,y) and
potential velocity (vx,vy) of each token are encoded as a 4-D tuple. By letting the
tokens propagate their information through voting, distinct moving regions emerge as
smooth surface layers in this 4-D space of image coordinates and pixel velocities.

In the next section we examine the voting framework by first giving an overview
of the Tensor Voting formalism, then we discuss how the voting concepts are
generalized and extended to the 4-D case. In Section 3 we present our approach and
show how this formalism is applied to the problem of matching and motion capture.
In Section 4 we present our experimental results, while Section 5 summarizes our
contribution and provides further research directions.

2 Voting Framework

2.1 Tensor Voting Overview

The use of a voting process for feature inference from sparse and noisy data was
introduced by Guy and Medioni [14] and then formalized into a unified tensor
framework [12]. This methodology is non-iterative and robust to considerable
amounts of outlier noise. The only free parameter is the scale of analysis, which is
indeed an inherent property of visual perception. The input data is encoded as tensors,
then support information (including proximity and smoothness of continuity) is
propagated by convolution-like voting within a neighborhood.

In the 2-D case, the salient features to be extracted are points and curves. Each
token is encoded as a second order symmetric 2-D tensor, which is geometrically
equivalent to an ellipse. This ellipse can be described by a 2�2 eigensystem, where
the eigenvectors e1 and e2 give the ellipse orientation and the eigenvalues �1 and �2

(�1 � �2) represent the ellipse size. The tensor is internally represented as a matrix S:

426 M. Nicolescu and G. Medioni

TT eeeeS 222111 ⋅+⋅= λλ (1)

An input token that represents a curve element is encoded as a stick tensor, where
e2 represents the curve tangent and e1 the curve normal, while �1=1 and �2=0. An
input token that represents a point element is encoded as a ball tensor, with no
preferred orientation, while �1=1 and �2=1.

The communication between tokens is performed through a voting process, where
each token casts a vote at each site in its neighborhood. The size and shape of this
neighborhood, and the vote strength and orientation are encapsulated in predefined
voting fields (kernels), one for each feature type – there is a stick voting field and a
ball voting field in the 2-D case. The fields are generated based on a single parameter
– the scale factor �. Vote orientation corresponds to the best (smoothest) possible

local curve continuation from the voter to the recipient, while vote strength)(dVS
�

decays with distance || d
�

from voter to recipient, and with curvature �:

 +−

=
2

22||

)(σ
ρd

edVS

r

� (2)

Fig. 3 shows how votes are generated to build the 2-D stick field. A tensor P where

curve information is locally known (illustrated by curve normal PN
�

) casts a vote at its

neighbor Q. The vote orientation is chosen so that it ensures a smooth curve
continuation (through a circular arc) from voter P to recipient Q. The curve normal

N
�

 thus obtained needs to be propagated by the vote from P to Q. The vote)(dVstick

�

received from P at Q is encoded as a tensor according to (3), where PQd −=
�

.

T
stick NNdVSdV

����
⋅=)()((3)

Note that vote strength at both Q’ and Q” is smaller than at Q – because Q’ is
farther, and Q” requires a higher curvature than Q. Fig. 4 shows the 2-D stick field,
with its color-coded strength. When the voter is a ball tensor, with no information
known locally, the vote is generated by rotating a stick vote in the 2-D plane and
integrating all contributions, according to equation (4). The corresponding 2-D ball
field is shown in Fig. 5.

Fig. 4. 2-D stick fieldFig. 3. Vote generation

Q

Q’

Q”

P

N
r

PN
r

Fig. 5. 2-D ball field

Perceptual Grouping from Motion Cues Using Tensor Voting in 4-D 427

θθθ

π

θ dRdRVRdV T
stickball)()(1

2

0

��
−∫= (4)

At each receiving site, the collected votes are combined through simple tensor

addition (sum of matrices)(dV
�

), thus producing generic 2-D tensors. During voting,

tokens that lie on a smooth curve reinforce each other, and the tensors deform
according to the prevailing orientation. Each such tensor encodes the local orientation
of geometric features such as curves (given by the tensor orientation), and confidence
of this knowledge (also called saliency, given by the tensor shape and size). For a
general tensor, its curve saliency is given by (�1-�2) and the curve normal orientation
by e1, while its point saliency is given by �2. After voting, each resulting tensor S in
general form is decomposed into a stick and a ball component, each being weighted
by the corresponding saliency:

)()(221121121
TTT eeeeeeS ++−= λλλ (5)

Therefore, the voting process infers curves and junctions (points) simultaneously,
while also identifying outlier noise (tokens that receive very little support).

In the 3-D case, the salient features are points, curves and surfaces. A point
element corresponds to a ball tensor, with �1=�2=�3=1 and no preferred orientation, a
curve element is represented by a plate tensor, where two eigenvalues co-dominate
(�1=1, �2=1, �3=0) and the eigenvector e3 gives the curve tangent, and a surface
element is represented by a stick tensor, where one eigenvalue dominates (�1=1, �2=0,
�3=0), the surface normal is given by e1, and e2 and e3 are surface tangents.

2.2 Tensor Voting in 4-D

The Tensor Voting framework is general enough to be extended to any dimension
readily, except for some implementation changes, mainly for efficiency purposes [15].
The issues to be addressed are the tensorial representation of the features in the
desired space, the generation of voting fields, and the data structures used for vote
collection.

Table 1 shows all the geometric features that appear in a 4-D space and their

Feature �1 �2 �3 �4 e1 e2 e3 e4 Tensor

point 1 1 1 1 Any orthonormal basis Ball

curve 1 1 1 0 n1 n2 n3 t C-Plate

surface 1 1 0 0 n1 n2 t1 t2 S-Plate

volume 1 0 0 0 n t1 t2 t3 Stick

Table 1. Elementary tensors in 4-D

428 M. Nicolescu and G. Medioni

representation as elementary 4-D tensors, where n and t represent normal and tangent
vectors, respectively. Note that a surface in the 4-D space can be characterized by two
normal vectors, or by two tangent vectors. From a generic 4-D tensor that results after
voting, the geometric features can be extracted as shown in Table 2.

The voting fields are a key part of the formalism – they are responsible of the size
and shape of the neighborhood where the votes are cast, and also control how the
votes depend on distance and orientation. The 4-D voting fields are obtained as
follows. First the 4-D stick field is generated in a similar manner to the 2-D stick
field, as it was explained in Section 2.1 and illustrated in Fig. 3. Then, the other three
voting fields are built by integrating all the contributions obtained by rotating a 4-D
stick field around appropriate axes. In particular, the 4-D ball field – the only one
directly used here – is generated according to:

∫ ∫ ∫ −=
π

θθθθθθθθθ θθθ
2

0

1)()(xvxuxy
T

stickball dddRdRVRdV
xvxuxyxvxuxyxvxuxy

��
(6)

where x, y, u, v are the 4-D coordinates axes, �xy, �xu, �xv are rotation angles in the
specified planes, and the stick field corresponds to the orientation (1 0 0 0).

In the 2-D or 3-D case, the data structure used to store the tensors during vote
collection was a simple 2-D grid or a red-black tree. Because we need a data structure
that is gracefully scalable to higher dimensions, the solution used in our approach is
an approximate nearest neighbor (ANN) k-d tree [16].

Since we use efficient data structures to store the tensors, the space complexity of
the algorithm is O(n), where n is the input size. The average time complexity of the
voting process is O(�n) where � is the average number of tokens in the neighborhood.
Therefore, in contrast to other voting techniques, such as the Hough Transform, both
time and space complexities of the Tensor Voting methodology are independent of
the dimensionality of the desired feature. The running time for an input of size 700 is
about 20 seconds on a Pentium III (600 MHz) processor.

3 Our Approach

The main difficulties in visual motion analysis appear at motion boundaries, where
velocity estimates are very poor. This happens because the problem is typically cast

Table 2. A generic tensor in 4-D

Feature Saliency Normals Tangents

point �4 none none

curve �3 - �4 e1 e2 e3 e4

surface �2 - �3 e1 e2 e3 e4

volume �1 - �2 e1 e2 e3 e4

Perceptual Grouping from Motion Cues Using Tensor Voting in 4-D 429

as a two-dimensional process. As a result, along boundaries tokens have a strong
mutual affinity because they are close in the image, despite the fact that they may
belong to different regions, with different velocities. Accordingly, we believe that the
desirable representation should be based on a layered description, where regions in
motion are represented as smooth and possibly overlapping layers.

In any method that seeks to solve the motion analysis problem, each token is
characterized by four attributes – its image coordinates (x,y) and its velocity with the
components (vx,vy). We encapsulate each token into a (x,y,vx,vy) tuple in the 4-D
space, this being a natural way of expressing the spatial separation of tokens
according to both velocities and image coordinates. It is especially helpful for
eliminating the problem of uncertainty along motion boundaries, where although
tokens are close in image space, their interaction is now inhibited by their separation
in velocity space. In general, there may be several candidate velocities for each point
(x,y), so each tuple (x,y,vx,vy) represents a (possibly wrong) candidate match.

Both matching and motion capture are based on a process of communicating the
affinity between tokens. In our representation, this affinity is expressed as the token
preference for being incorporated into a smooth surface layer in the 4-D space. A
necessary condition is to enforce strong support between tokens in the same layer, and
weak support across layers, or at isolated tokens.

A suitable computational framework that enforces the smoothness constraint while
preserving discontinuities is Tensor Voting, here performed in the 4-D space. The
affinities between tokens are embedded in the concept of surface saliency exhibited
by the data. By letting the tokens propagate their information through voting, wrong
matches are eliminated as they receive little support, and layers are extracted as
salient smooth surfaces. Essentially, the matching problem is expressed as an outlier
rejection process, while motion capture is performed mainly as a layer densification
process.

We demonstrate the contribution of this work by addressing the problems of
matching and motion capture. Given two sparse sets of point tokens, we first use 4-D
voting to select the correct match for each input point, as the most salient token, thus
producing a sparse velocity field. By using the same voting framework during the
motion capture process, we then generate a dense layer representation in terms of
motion boundaries and regions. We illustrate our method with both synthetic and real
images, by analyzing several cases – opaque and transparent motion, rigid and non-
rigid motion, curves and surfaces in motion.

3.1 Matching

We take as input two frames containing identical point tokens, in a sparse
configuration. For illustration purposes, we give a step-by-step description of our
approach by using a specific example – the point tokens represent an opaque
translating disk (Fig. 2) against a static background. Later we also show how our
method performs on several other examples.

Before proceeding, we need to make a brief comment on how we display the
intermediate results (i.e. those in 4-D). In order to allow for a three-dimensional
display, the last component of each 4-D point has been dropped, so that the 3

430 M. Nicolescu and G. Medioni

dimensions shown are image coordinates x and y (in the horizontal plane), and the vx

component of image velocity (the height).
We do not assume any a priori information about the scene. Candidate matches are

generated as follows: in a pre-processing step, for each token in the first frame we
simply create a potential match with every point in the second frame that is located
within a neighborhood (whose size is given by the scale factor) of the first token. The
resulted candidates appear as a cloud of (x,y,vx,vy) points in the 4-D space. In our
translation example we have 400 input points, and by using the procedure described
above we generate an average of 5.3 candidate matches per point, among which at
most one is correct. Fig. 6(a) shows the candidate matches. Note that the correct
matches can be already visually perceived as they are grouped in two parallel layers
surrounded by noisy matches.

Since no information is initially known, each potential match is encoded into a 4-D
ball tensor - the eigenvalues and eigenvectors are the following:

�1=1 e1 = (0 0 0 1)T

�2=1 e2 = (0 0 1 0)T

�3=1 e3 = (0 1 0 0)T

�4=1 e4 = (1 0 0 0)T

After encoding, each token casts votes in its neighborhood (given by the scale
factor). This is a sparse voting process, in the sense that votes are cast only at input
token locations. Votes are generated by using the 4-D ball voting field, where no
particular orientation is preferred.

During voting there is strong support between tokens that happen to lie on a
smooth surface (layer), while communication between layers is reduced by the spatial
separation in the 4-D space of both image coordinates and pixel velocities. Wrong
matches appear as isolated points, which receive little or no support. A measure of
this support is given by the surface saliency.

The next step is to eliminate wrong matches. For each group of tokens that have
common (x,y) coordinates but different (vx,vy) velocities, we retain the token with the
strongest surface saliency (that is, with the maximum value for �2-�3), while rejecting
the others as outliers. For the translating disk example, a comparison with the ground
truth shows that matching was 100% accurate - all 400 matches have been recovered
correctly, despite the large amount of approximately 500% noise present. Fig. 6(b)
shows the recovered sparse velocity field, while Fig. 6(c) shows a 3-D view of the
recovered matches, where the height represents the vx velocity component.

3.2 Motion Capture

We start with a sparse velocity field described by (x,y,vx,vy) tuples in the 4-D space,
that has been produced by the matching process. In the first stage we need to obtain
an estimation of the layer orientations as accurate as possible. Although local layer
orientations have been already determined as a by-product during the matching
process (after voting, the eigenvectors e1 and e2 represent the normals to layers), they
may have been corrupted by the presence of wrong correspondences.

Perceptual Grouping from Motion Cues Using Tensor Voting in 4-D 431

Therefore, we perform here an orientation refinement through another sparse
voting process, but this time with the correct matches only. To this purpose, every 4-
D tuple is again encoded as a ball tensor. After voting, the desired orientations – as
normals to layers – are found at each token as the first two eigenvectors e1 and e2. We
remind the reader that a surface in 4-D is characterized by two normal vectors. In Fig.
6(d) we show a 3–D view of the tokens with refined layer orientations (only one of
the normals is shown at each token).

In order to attain the very goal of the motion capture problem – that is, to recover
boundaries and regions as continuous curves and surfaces, respectively – it is
necessary to first infer velocities and layer orientations at every image location.

The previously developed Tensor Voting framework allows for a densification
procedure that extracts surfaces or curves from sparse data. However, since the
algorithm is based on a marching process that grows the surface around a seed, if the
surfaces are not closed they will be over-extended. This happens because the growing
process stops only when saliency drops below a certain level, due to the decay with
distance from supporting tokens.

Since in our case it is crucial to obtain accurate motion boundaries, we devised a
different densification scheme. The key fact is that our 4-D space is not isotropic – we
need to obtain a tensor value at every (x y) image location, but certainly not at every
(vx,vy) location in velocity space.

In our approach, for each discrete point (x y) in the image we try to find the best
(vx,vy) location at which to place a newly generated token. The candidates considered

Fig. 6. Translating disk

(a) Candidate matches (b) Sparse velocity field (c) Recovered vx velocities

(d) Refined velocity field (sparse) (e) Dense velocity field

(f) Regions (g) Boundaries

432 M. Nicolescu and G. Medioni

are all the discrete points (vx,vy) between the minimum and maximum velocities in the
sparse tokens set, within a neighborhood of the (x y) point. At each candidate position
(x,y,vx,vy) we accumulate votes from the sparse tokens, according to the same Tensor
Voting framework that we have used so far. The candidate token with the largest
surface saliency after voting is retained, and its (vx,vy) coordinates represent the best
velocity at (x y). By following this procedure at every (x y) image location we
generate a dense velocity field. Note that in this process, along with velocities we
simultaneously infer layer orientations, given by eigenvectors e1 and e2. In Fig. 6(e)
we show a 3-D view of the dense set of tokens and their associated layer orientations.

The next step is to group tokens into regions that correspond to distinct moving
objects, by using again the smoothness constraint. We start from an arbitrary point in
the image, assign a region label to it, and try to recursively propagate this label to all
its image neighbors. In order to decide whether the label must be propagated, we use
the smoothness of both velocity and layer orientation as a grouping criterion. Having
both pieces of information available is especially helpful in situations where
neighboring pixels have very similar velocities, and yet they must belong to different
regions. Most methods that are based only on velocity discontinuities would fail on
these cases. We will show such an example later. After assigning region labels to
every token, for illustration purposes we perform a triangularization of each of the
regions detected. The resulting surfaces are presented in Fig. 6(f).

Finally, we have implemented a method to extract the motion boundary for each
region as a “partially convex hull”. The process is controlled by only one parameter –
the scale factor – that determines the perceived level of detail (that is, the departure
from the actual convex hull). The resulting boundary curves are shown in Fig. 6(g).

4 Results

The case illustrated so far may be considered too simple since the only motion
involved is translation. However, no assumption – such as translational, planar, or
rigid motion – has been made. The only criterion used is the smoothness of image
motion. To support this argument, we show next that our approach also performs very
well for several other configurations.

Expanding disk (Fig. 7). The input consists of two sets of 400 point tokens each,
representing an opaque disk in expansion against a static background. The average
number of candidate matches per point is 6.1. Comparing the resulting matches with
the true motion shows that only 1 match among 400 is wrong. This example
demonstrates that, without special handling, our framework can easily accommodate
non-rigid image motion.

Rotating disk – translating background (Fig. 8). The input consists of two sets
of 400 point tokens each, representing an opaque rotating disk against a translating
background. The average number of candidate matches per point is 5.8. After
processing, only 2 matches among 400 are wrong. This is a very difficult case even
for human vision, due to the fact that around the left extremity of the disk the two
motions (of the disk and the background) are almost identical. In that part of the
image there are points on different moving objects that are not separated, even in the

Perceptual Grouping from Motion Cues Using Tensor Voting in 4-D 433

4-D space. In spite of this inherent ambiguity, our method is still able to accurately
recover velocities, regions and boundaries. The key fact is that we rely not only on the
4-D positions, but also on the local layer orientations that are still different and
therefore provide a good affinity measure.

Rotating ellipse (Fig. 9). The input consists of two sets of 100 point tokens each,
representing a rotating ellipse. The average number of candidate matches per point is
5.9. After processing, all 100 matches have been correctly recovered. Many methods
would fail on this example (used in the literature to illustrate the aperture effect) – one
clear difficulty is that at the points where the rotated ellipse “intersects” the original
one the velocity could be wrongly estimated as zero.

Transparent motion (Fig. 10). The input consists of two sets of 500 point tokens
each, representing a transparent disk in translation against a static background. The
average number of candidate matches per point is 8.9. After processing, all 100
matches have been correctly recovered. This example is extremely relevant to
illustrate the power of our approach. If the analysis had been performed in a two-
dimensional space, it would have failed because the two motion layers are
superimposed in 2-D. In our framework, using the 4-D space provides a very natural
separation between layers, separation that is consistent with human perception. For

Fig. 7. Expanding disk

Fig. 8. Rotating disk – translating background

434 M. Nicolescu and G. Medioni

our matching method, the transparent motion does not appear as a special case and it
does not create any more difficulties than the opaque motion.

Rotating square (Fig. 11). The input consists of two sets of 100 point tokens each,
representing a rotating square. The average number of candidate matches per point is
5.7. After processing, all 100 matches have been correctly recovered. This example is
similar to the rotating ellipse and shows that the presence of non-smooth curves does
not produce additional difficulty for our methodology.

Translating circle (Fig. 12). The input consists of two sets of 400 point tokens
each, representing a translating circle against a static background. The average
number of candidate matches per point is 6. After processing, all 100 matches have
been correctly recovered. This example shows that we can successfully handle both
curves and surfaces in motion.

So far we have presented only cases where no monocular information (such as
intensity) is available, and the entire analysis has been performed based on motion
cues only. Human vision is able to handle these cases remarkably well, and their study
is fundamental for understanding the motion analysis process. Nevertheless they are
very difficult from a computational perspective – most existing methods cannot
handle such examples in a consistent and unified manner.

To further validate our approach we have also analyzed several standard image
sequences, where both monocular and motion cues are available. In order to
incorporate monocular information into our framework, we only needed to change the
pre-processing step where candidate matches are generated. We ran a simple
intensity-based cross-correlation procedure, and we retained all peaks of correlation
as candidate matches. The rest of our framework remains unchanged.

Yosemite sequence (Fig. 13). We analyzed the motion from two frames of the
Yosemite sequence (without the sky) to quantitatively estimate the performance of
our approach. The average angular error obtained is 3.74° ± 4.3° for 100% field
coverage, result which is comparable with those in the literature [2]. This example
also shows that our method successfully recovers non-planar motion layers.

Fig. 9. Rotating ellipse Fig. 10. Transparent motion

Fig. 11. Rotating square Fig. 12. Translating circle

Perceptual Grouping from Motion Cues Using Tensor Voting in 4-D 435

Flower Garden sequence (Fig. 14). For a qualitative estimation, we also analyzed
the motion from two frames of the Flower Garden sequence. It is worth mentioning
that wrong candidates generated due to occlusion are corrected during the
densification step.

Scale sensitivity. Since the only parameter involved in our voting framework is the
scale factor that defines the voting fields, we analyzed how it influences the quality of
the analysis. We ran our algorithm on the expanding disk example for a large range of

Fig. 13. Yosemite

(c) y-velocities(b) x-velocities(a) an input frame

(d) motion layer (x-velocities)

Fig. 14. Flower Garden

(c) y-velocities(b) x-velocities(a) an input frame

(d) regions

436 M. Nicolescu and G. Medioni

scale values and we found that the method is remarkably robust to varying scale
factors. Fig. 15 shows the number of wrong matches (for an input of 400 points)
obtained for different values of the voting field size. Comparatively, the image size is
200 by 200. Note that when the field is too small, tokens do not communicate any
more.

5 Conclusions and Future Work

We have presented a novel approach for the problem of perceptual grouping from
motion cues, based on a layered 4-D representation of data, and a voting scheme for
token communication. Our methodology is formulated as a 4-D Tensor Voting
computational framework.

The moving regions are conceptually represented by smooth layers in the 4-D
space of image coordinates and pixel velocities. Within this data representation, we
employed a voting scheme for token affinity communication. Token affinities are
expressed by their preference for being incorporated into smooth surfaces, as
statistically salient features. Communication between sites is performed by tensor
voting. From a possibly sparse input consisting of identical point tokens in two
frames, without any a priori knowledge of the motion model we determine a dense
representation in terms of accurate velocities, motion boundaries and regions, by
enforcing the smoothness constraint while preserving motion discontinuities.

Using a 4-D space for our Tensor Voting approach is essential, since it allows for a
spatial separation of the points according to both their velocities and image
coordinates. Consequently, the proposed framework allows tokens from the same
layer to strongly support each other, while inhibiting influence from other layers, or
from isolated tokens.

Despite the high dimensionality, our voting scheme is both time and space
efficient. Its complexity depends on the input size only. Our approach does not
involve initialization or search in a parametric space, and therefore does not suffer
from local optima or poor convergence problems. The only free parameter is scale,
which is an inherent characteristic of human vision, and its setting is not critical.

We demonstrated the contributions of this work by analyzing several cases –
opaque and transparent motion, rigid and non-rigid motion, curves and surfaces in
motion. We showed that our method successfully addresses the difficult problem of

Fig. 15. Scale factor influence

Perceptual Grouping from Motion Cues Using Tensor Voting in 4-D 437

motion analysis from motion cues only, and is also able to incorporate the use of
monocular cues that are present in real images.

We plan to extend our approach for real image sequences by using a more
elaborate procedure for generating the initial candidates, rather than a simple cross-
correlation technique. Other research directions include studying the occlusion
relationships and incorporating information from multiple frames.

Acknowledgements. This research has been funded in part by the Integrated Media
Systems Center, a National Science Foundation Engineering Research Center,
Cooperative Agreement No. EEC-9529152, and by National Science Foundation
Grant 9811883.

References

[1] S. Ullman, “The Interpretation of Visual Motion”, MIT Press, 1979.
[2] J. Barron, D. Fleet, S. Beauchemin, “Performance of Optical Flow Techniques”, IJCV,

1994, 12:1, pp. 43-77.
[3] F. Heitz, P. Bouthemy, “Multimodal Estimation of Discontinuous Optical Flow Using

Markov Random Fields”, PAMI, December 1993, 15: 12, pp. 1217-1232.
[4] S. Ghosal, “A Fast Scalable Algorithm for Discontinuous Optical Flow Estimation”,

PAMI, 1996, 18:2, pp. 181-194.
[5] R. Deriche, P. Kornprobst, G. Aubert, “Optical Flow Estimation while Preserving its

Discontinuities: A Variational Approach”, ACCV, 1995, pp. 290-295.
[6] S. Hsu, P. Anandan, S. Peleg, “Accurate Computation of Optical Flow by Using

Layered Motion Representations”, ICPR, 1994, pp. 743-746.
[7] A. Jepson, M. Black, “Mixture Models for Optical Flow Computation”, CVPR, 1993,

pp. 760-761.
[8] M. Irani, S. Peleg, “Image Sequence Enhancement Using Multiple Motions Analysis”,

CVPR, 1992, pp. 216-221.
[9] J. Wang, E. Adelson, “Representing Moving Images with Layers”, IEEE Trans. On

Image Processing Special Issue: Image Sequence Compression, 1994, 3:5, pp. 625-638.
[10] Y. Weiss, “Smoothness in Layers: Motion Segmentation Using Nonparametric Mixture

Estimation”, CVPR, 1997, pp. 520-526.
[11] J. Little, H. Bulthoff, T. Poggio, “Parallel Optical Flow Using Local Voting”, ICCV,

1988, pp. 454-459.
[12] G. Medioni, M.-S. Lee, C.-K. Tang, “A Computational Framework for Segmentation

and Grouping”, Elsevier Science, 2000.
[13] L. Gaucher, G. Medioni, “Accurate Motion Flow Estimation with Discontinuities”,

ICCV, 1999, pp. 695-702.
[14] G. Guy, G. Medioni, “Inference of Surfaces, 3-D Curves and Junctions from Sparse,

Noisy 3-D Data”, IEEE Trans. PAMI, 1997, 19: 11, pp. 1265-1277.
[15] C.-K. Tang, G. Medioni, M.-S. Lee, “Epipolar Geometry Estimation by Tensor Voting

in 8D”, ICCV, 1999, pp. 502-509.
[16] S. Arya, D. Mount, N. Netanyahu, R Silverman, A. Wu, “An optimal algorithm for

approximate nearest neighbor searching in fixed dimensions”, Journal of the ACM,
1998, 45:6, pp. 891-923.

	1 Introduction
	2 Voting Framework
	2.1 Tensor Voting Overview
	2.2 Tensor Voting in 4-D

	3 Our Approach
	3.1 Matching
	3.2 Motion Capture

	4 Results
	5 Conclusions and Future Work
	Acknowledgements. This research has been funded in part by the Integrated Media Systems Center, a National Science Foundation Engineering Research Center, Cooperative Agreement No. EEC-9529152, and by National Science Foundation Grant 9811883.
	References

