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Abstract* 
 

We present a novel approach for grouping from 
motion, based on a 4-D Tensor Voting computational 
framework. From sparse point tokens in two frames we 
recover the dense velocity field, motion boundaries and 
regions, in a non-iterative process that does not involve 
initialization or search in a parametric space, and 
therefore does not suffer from local optima or poor 
convergence problems. We encode the image position and 
potential velocity for each token into a 4-D tensor. A 
voting process then enforces the smoothness of motion 
while preserving motion discontinuities, selecting the 
correct velocity for each input point, as the most salient 
token. By performing an additional dense voting step we 
infer velocities at every pixel location, which are then 
used to determine motion boundaries and regions. We 
demonstrate our contribution with synthetic and real 
images, by analyzing several difficult cases – opaque and 
transparent motion, rigid and non-rigid motion. 

 
 

1  Introduction 
 
Given two or more image frames, the goal of the 

problem of grouping from motion is to determine three 
types of information – a dense velocity field, motion 
boundaries, and regions. From a computational point of 
view, the analysis can be decomposed in three processes – 
matching, densification and segmentation. The matching 
process identifies the elements (tokens) in successive 
views that represent the same physical entity, thus 
producing a possibly sparse velocity field. The 
densification process infers velocity vectors at every 

                                                        
* This research has been funded in part by the Integrated Media Systems 
Center, a National Science Foundation Engineering Research Center, 
Cooperative Agreement No. EEC-9529152, and by National Science 
Foundation Grant 9811883. 

image location, and the segmentation process groups 
tokens into regions separated by motion boundaries. 

In this work we focus on the problem of motion 
analysis from sparse sets of point tokens in two frames. 
Two examples of such input are shown in Fig. 1 and Fig. 
2. If the frames in each pair are presented in a properly 
timed succession, a certain motion of image regions is 
perceived from one frame to the other. However, while in 
one case the regions can be detected even without motion, 
only from monocular cues (here, different densities of 
points), in the other case no monocular information is 
available. This example shows that analysis is possible 
even from motion cues only. Another interesting aspect is 
the fact that the human vision system not only establishes 
point correspondences, but also perceives regions in 
motion, although the input consists of sparse points only. 

Optical flow techniques [1] rely on local, raw estimates 
of the flow field to produce a partition of the image. 
However, the flow estimates are very poor at motion 
boundaries and cannot be obtained in uniform areas. Past 
approaches have also used Markov Random Fields [2] or 
regularization techniques to handle discontinuities [3].  

Significant improvements have been achieved by using 
layered representations [4][5]. The difficulties range from 
a severe restriction in motion representation (as rigid or 
planar), to over-fitting and instability due to high-order 
parameterizations.  

A computational framework that successfully enforces 
the smoothness constraint in a unified manner, while 
preserving smoothness discontinuities is Tensor Voting 
[6]. The first to propose using Tensor Voting for motion 
analysis were Gaucher and Medioni [7]. They employ 

Fig. 1. Translating circle Fig. 2. Translating disk 
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successive steps of voting, first to determine the boundary 
points as tokens with maximal motion uncertainty, then to 
locally refine velocities on each side of the boundary. 
However, their voting communication is essentially a 2-D 
process that does not inhibit neighboring elements with 
different velocities from influencing each other. 

In this paper we propose a novel approach based on a 
layered 4-D representation of data, and a voting scheme 
for token communication. Our methodology is formulated 
as a 4-D Tensor Voting computational framework.  

In the next section we give an overview of our method. 
In Section 3 we present the voting framework and we 
discuss how the voting concepts are generalized and 
extended to the 4-D case. In Sections 4, 5 and 6 we 
describe our approach for matching, densification and 
segmentation. Section 7 presents our experimental results, 
while Section 8 summarizes our contribution. 

 
2  Overview of the method 

 
In any method that seeks to solve the motion analysis 

problem, each token is characterized by four attributes – 
its image coordinates (x,y) and its velocity with the 
components (vx,vy). We encapsulate them into a (x,y,vx,vy) 
tuple in the 4-D space, this being a natural way of 
expressing the spatial separation of tokens according to 
both velocities and image coordinates. In general, there 
may be several candidate velocities for each point (x,y), so 
each tuple (x,y,vx,vy) represents a potential match. 

Both matching and densification are based on a 
process of communicating the affinity between tokens. In 
our representation, this affinity is expressed as the token 
preference for being incorporated into a smooth surface 
layer in the 4-D space. A necessary condition is to enforce 
strong support between tokens in the same layer, and 
weak support across layers, or at isolated tokens.  

In our Tensor Voting framework, the affinities between 
tokens are embedded in the concept of surface saliency 
exhibited by the data. By letting the tokens propagate 
their information through voting, wrong matches are 
eliminated as they receive little support, and distinct 
moving regions are extracted as salient smooth layers. 

 
3  Tensor voting 

 
3.1  Overview 

 
The use of a voting process for feature inference from 

sparse and noisy data was formalized into a unified tensor 
framework by Medioni, Lee and Tang [6]. The input data 
is encoded as tensors, then support information (including 
proximity and smoothness of continuity) is propagated by 

voting. The only free parameter is the scale of analysis, 
which is indeed an inherent property of visual perception. 

In the 2-D case, the salient features to be extracted are 
points and curves. Each token is encoded as a second 
order symmetric 2-D tensor, geometrically equivalent to 
an ellipse. It is described by a 2×2 eigensystem, where 
eigenvectors e1 and e2 give the ellipse orientation and 
eigenvalues λ1 and λ2 are the ellipse size. The tensor is 
represented as a matrix TT eeeeS 222111 ⋅+⋅= λλ . 

An input token that represents a curve element is 
encoded as a stick tensor, where e2 represents the curve 
tangent and e1 the curve normal, while λ1=1 and λ2=0. 
An input point element is encoded as a ball tensor, with 
no preferred orientation, while λ1=1 and λ2=1. 

The communication between tokens is performed 
through a voting process, where each token casts a vote at 
each site in its neighborhood. The size and shape of this 
neighborhood, and the vote strength and orientation are 
encapsulated in predefined voting fields (kernels), one for 
each feature type – there is a stick voting field and a ball 
voting field in the 2-D case. The fields are generated 
based only on the scale factor σ. Vote orientation 
corresponds to the smoothest local curve continuation 
from voter to recipient, while vote strength )(dVS
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Fig. 3(a) shows how votes are generated to build the 2-
D stick field. A tensor P where curve information is 
locally known (illustrated by curve normal

PN
r

) casts a 

vote at its neighbor Q. The vote orientation is chosen so 
that it ensures a smooth curve continuation through a 
circular arc from voter P to recipient Q. To propagate the 

curve normal N
r

 thus obtained, the vote )(dVstick

r
 sent 

from P to Q is encoded as a tensor according to: 
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Fig. 3(b) shows the 2-D stick field, with its color-coded 
strength. When the voter is a ball tensor, with no 
information known locally, the vote is generated by 

(b) 2-D stick field (a) vote generation 
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Fig. 3. Voting in 2-D 
 

(c) 2-D ball field 



rotating a stick vote in the 2-D plane and integrating all 
contributions. The 2-D ball field is shown in Fig. 3(c). 

At each receiving site, the collected votes are combined 
through simple tensor addition, producing generic 2-D 
tensors. During voting, tokens that lie on a smooth curve 
reinforce each other, and the tensors deform according to 
the prevailing orientation. Each tensor encodes the local 
orientation of geometric features (given by the tensor 
orientation), and their saliency (given by the tensor shape 
and size). For a generic 2-D tensor, its curve saliency is 
given by (λ1-λ2), the curve normal orientation by e1, while 
its point saliency is given by λ2. Therefore, the voting 
process infers curves and junctions simultaneously, while 
also identifying outlier noise (tokens that receive very 
little support). The 3-D case is similar, where salient 
features are points, curves and surfaces [6].  

 
3.2  Extension to 4-D 

 
The issues to be addressed here are the tensorial 

representation of the features in the 4-D space, the 
generation of voting fields, and the data structures used 
for vote collection. Table 1 shows all the geometric 
features that appear in a 4-D space and their 
representation as elementary 4-D tensors, where n and t 
represent normal and tangent vectors, respectively. Note 
that a surface in the 4-D space can be characterized by 
two normal vectors, or by two tangent vectors. From a 
generic 4-D tensor that results after voting, the geometric 
features are extracted as shown in Table 2. 

The 4-D voting fields are obtained as follows. First the 
4-D stick field is generated in a similar manner to the 2-D 

stick field (see Fig. 3(a)). Then, the other three voting 
fields are built by integrating all the contributions 
obtained by rotating a 4-D stick field around appropriate 
axes. In particular, the 4-D ball field – the only one 
directly used here – is generated according to: 
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where x, y, u, v are the 4-D coordinates axes and R is the 
rotation matrix with angles θxy, θxu, θxv. 

The data structure used to store the tensors is an 
approximate nearest neighbor (ANN) k-d tree [8]. The 
space complexity of is O(n), where n is the input size. The 
average time complexity of the voting process is O(µn) 
where µ is the average number of tokens in the 
neighborhood. Therefore, in contrast to other voting 
techniques, such as the Hough Transform, both time and 
space complexities of the Tensor Voting methodology are 
independent of the dimensionality of the desired feature. 
The running time for an input of size 700 is about 20 
seconds on a Pentium III (600 MHz) processor. 

 
4  Matching 

 
We take as input two frames containing identical point 

tokens in a sparse configuration. For illustration purposes, 
we give a description of our approach by using a specific 
example – the point tokens represent an opaque 
translating disk (Fig. 2) against a static background.  

Candidate matches are generated as follows: in a pre-
processing step, for each token in the first frame we 
simply create a potential match with every point in the 
second frame that is located within a neighborhood 
(whose size is given by the scale factor) of the first token. 
The resulting candidates appear as a cloud of (x,y,vx,vy) 
points in the 4-D space. In our translation example we 
have 400 input points, and by using the procedure 
described above we generate an average of 5.3 candidate 
matches per point, among which at most one is correct. 
Fig. 4(a) shows the candidate matches. In order to display 
4-D results, the last component of each 4-D point has 
been dropped – the 3 dimensions shown are x and y (in 
the horizontal plane), and vx (the height). The correct 
matches can be already perceived as they are grouped in 
two parallel layers surrounded by noisy matches. 

Since no information is initially known, each potential 
match is encoded into a 4-D ball tensor. Then each token 
casts votes in a sparse voting process (only at input token 
locations). Votes are generated by using the 4-D ball 
voting field. During voting there is strong support 
between tokens that lie on a smooth surface (layer), while 
communication between layers is reduced by the spatial 

Feature λ1  λ2  λ3  λ4 e1  e2  e3  e4 Tensor 

point 1   1   1   1 Any basis Ball 

curve 1   1   1   0 n1  n2  n3  t C-Plate 

surface 1   1   0   0 n1  n2  t1   t2 S-Plate 

volume 1   0   0   0 n   t1   t2   t3 Stick 

 
Table 1. Elementary tensors in 4-D 

Table 2. A generic tensor in 4-D 

Feature Saliency Normals Tangents 

point λ4 none none 

curve λ3 - λ4 e1  e2  e3 e4 

surface λ2 - λ3 e1  e2 e3  e4 

volume λ1 - λ2 e1 e2  e3  e4 

 



separation in the 4-D space of both image coordinates and 
pixel velocities.  

Wrong matches appear as isolated points, which 
receive little or no support, and are rejected as outliers. A 
measure of this support is given by the surface saliency 
(λ2-λ3). For the translating disk example, matching was 
100% accurate - all 400 matches have been recovered 
correctly, despite the large amount of approximately 
500% noise present. Fig. 4(b) shows the recovered sparse 
velocity field, while Fig. 4(c) shows a 3-D view of the 
recovered matches (the height represents the vx velocity 
component). 

 
5  Densification 

 
We first need to obtain an estimation of the layer 

orientations as accurate as possible. Although local layer 
orientations have already been determined as a by-product 
during the matching process (after voting, e1 and e2 give 
the normals to layers), they may have been corrupted by 
the presence of wrong matches. Therefore, we perform an 
orientation refinement through another sparse voting 
process, but now with the correct matches only. The layer 
orientations are then found at each token as e1 and e2. 

In order to recover boundaries and regions as 
continuous curves and surfaces, we need to first infer 
velocities and layer orientations at every image location.  

Therefore we must obtain appropriate tensor values at 
every pixel (x,y). There may be several tensors with the 
same (x,y) but with different (vx,vy), since overlapping 

layers are present in the case of transparent motion. For 
each pixel (x,y) we try to find the best (vx,vy) locations at 
which to place the newly generated tokens. The 
candidates considered are all the discrete points (vx,vy) 
between the minimum and maximum velocities in the 
sparse tokens set, within a neighborhood of the (x,y) 
point. At each candidate position (x,y,vx,vy) we 
accumulate votes from the sparse tokens, according to the 
same Tensor Voting framework that we have used so far. 
After voting, the candidate tokens whose surface 
saliencies (λ2-λ3) are locally maximal are retained, and 
their (vx,vy) coordinates represent the most likely 
velocities at (x,y). By following this procedure at every 
(x,y) image location we generate a dense velocity field. 
Note that in this process, along with velocities we 
simultaneously infer layer orientations. Fig. 4(d) shows a 
3-D view of the dense set of tokens and their associated 
layer orientations (only one normal shown). 

 
6  Segmentation 

 
The next step is to group tokens into regions (Fig. 

4(e)), by using again the smoothness constraint. We start 
from an arbitrary point in the image, assign a region label 
to it, and try to recursively propagate this label to all its 
image neighbors. In order to decide whether the label 
must be propagated, we use the smoothness of both 
velocity and layer orientation as a grouping criterion. 
Finally, we have implemented a method to extract the 
motion boundary for each region (Fig. 4(f)), as a 
“partially convex hull”. The process is controlled by the 
scale factor only, that determines the perceived level of 
detail (the departure from the actual convex hull).  

 
7  Results 

 
The case illustrated so far may be considered too 

simple since the only motion involved is translation. 
However, no assumption – such as translational, planar, 
or rigid motion – has been made. The only criterion used 
is the smoothness of image motion. To support this 
argument, we show next that our approach also performs 
very well for several other configurations.  

 
7.1  Using motion cues only 

 
Expanding disk (Fig. 5). The input consists of two 

sets of 400 points each, representing an opaque disk in 
expansion against a static background. After processing, 
only 1 match among 400 is wrong. This example 
demonstrates that, without special handling, our 
framework easily accommodates non-rigid image motion. 

Fig. 4. Translating disk 

(b) Sparse velocity field 

(c) Recovered vx velocities 
 

(d) Dense velocity field 

(e) Regions (f) Boundaries 

(a) Candidate matches 



Rotating disk – translating background (Fig. 6). The 
input consists of two sets of 400 points each, representing 
an opaque rotating disk against a translating background. 
After processing, only 2 matches among 400 are wrong. 
This is a very difficult case even for human vision, due to 
the fact that around the left extremity of the disk the two 
motions are almost identical. In that part of the image 
there are points on different moving objects that are not 
separated, even in the 4-D space. In spite of this inherent 
ambiguity, our method is still able to accurately recover 
velocities, regions and boundaries. The key fact is that we 
rely not only on the 4-D positions, but also on the local 
layer orientations that are still different and therefore 
provide a good affinity measure. 

 
7.2  Incorporating intensity information 

 
So far we have only presented cases where no 

monocular information (such as intensity) is available, 
and the entire analysis has been performed based on 
motion cues only. Human vision is able to handle these 
cases remarkably well, and their study is fundamental for 
understanding the motion analysis process. Nevertheless 
they are very difficult from a computational perspective – 
most existing methods cannot handle such examples in a 
consistent and unified manner. 

To further validate our approach we have also 
analyzed several standard image sequences, where both 
monocular and motion cues are available. In order to 
incorporate monocular information into our framework, 
we only needed to change the pre-processing step where 
candidate matches are generated. We ran a simple 
intensity-based cross-correlation procedure, and we 
retained all peaks of correlation as candidate matches. 
The rest of our framework remains unchanged. 

Yosemite sequence (Fig. 7). We analyzed the motion 
from two frames of the Yosemite sequence (without the 
sky) to quantitatively estimate the performance of our 

approach. The average angular error obtained is 3.74° ± 
4.3° for 100% field coverage, result which is comparable 
with those in the literature [1]. Also note that our method 
successfully recovers non-planar motion layers. 

Flower Garden sequence (Fig. 8). For a qualitative 
estimation, we also analyzed the motion from two frames 
of the Flower Garden sequence. It is worth mentioning 
that wrong candidates generated due to occlusion are 
corrected during the densification step. 

 
7.3  Handling reflections and transparency 

 
Since our framework allows for overlapping motion 

layers, it can successfully handle images containing 
reflections and transparency. Here we consider the image 
I(x,y,t) at time t as a combination of two patterns A and B, 
which have independent motions a and b: 

tbta BAtyxI +=),,(  (4) 

where Ata denotes pattern A transformed by motion ta. 
In order to obtain the dominant motion (assume it is 

a), we run a cross-correlation procedure, followed by a 
step of voting as described in the Matching section, to 
eliminate noisy matches. Next we use a “nulling” method 
[9][10], to estimate the remaining motion b. The pattern 
component A with velocity a is removed by moving each 
frame with a, then subtracting it from the following 
frame. The resulting difference images are: 
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Assuming that we have three frames, the difference 
images are D0 = (Bb - Ba) and D1 = (Bb - Ba)b, which show 
a pattern (Bb - Ba) moving with a single motion b. We use 
the same method – cross-correlation followed by voting – 
to determine motion b from frames D0 and D1. 

Fig. 5. Expanding disk 

Fig. 6. Rotating disk – translating background 
 



Finally, we put together the two sets of 4-D tokens 
with velocities a and b, and run a step of dense voting and 
grouping (as described in Sections 5 and 6) on the entire 
set. This process also fills any holes in the layers, which 
may have been produced by the noisy matches 
elimination. Note that the entire procedure recovers the 
motions without separating the patterns.  

Transparent motion sequence (Fig. 9). We analyzed 
the motion from three frames captured with a moving 
camera, showing a face reflected in a framed picture. In 
order to show the accuracy of our results, we compute two 
“temporal average” images after registering the input 
frames using the two recovered motions (Fig. 9(b) and 
(c)). In each of these, the registered pattern is sharp, while 
the other one is blurred due to the image motion. 

 
8  Conclusions 

 
We have presented a novel approach for the problem of 

perceptual grouping from motion cues, based on a layered 
4-D representation of data, and a voting scheme for token 
communication. Our methodology is formulated as a 4-D 
Tensor Voting computational framework. 

Using a 4-D space for our approach is essential, since 
it allows for a spatial separation of the points according to 
both velocities and image coordinates. Consequently, the 
proposed framework allows tokens from the same layer to 
strongly support each other, while inhibiting influence 
from other layers or from isolated tokens.  

Despite the high dimensionality, our voting scheme is 
both time and space efficient. It is non-iterative and the 
only free parameter is scale, which is an inherent 
characteristic of human vision. 

We demonstrated the contributions of this work by 
analyzing several cases – opaque and transparent motion, 
rigid and non-rigid motion. We showed that our method 
successfully addresses the difficult problem of grouping 

from motion cues only, and is also able to incorporate the 
use of monocular cues that are present in real images. 

We plan to extend our approach for real image 
sequences by using a more elaborate procedure for 
generating the initial candidates, rather than a simple 
cross-correlation technique. Other research directions 
include studying the occlusion relationships and 
incorporating information from multiple frames. 
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