
4-D Voting for Matching, Densification and Segmentation into Motion Layers

Mircea Nicolescu and Gérard Medioni
Integrated Media Systems Center
University of Southern California

Los Angeles, CA 90089-0273
{mnicoles, medioni}@iris.usc.edu

Abstract*

We present a novel approach for grouping from
motion, based on a 4-D Tensor Voting computational
framework. From sparse point tokens in two frames we
recover the dense velocity field, motion boundaries and
regions, in a non-iterative process that does not involve
initialization or search in a parametric space, and
therefore does not suffer from local optima or poor
convergence problems. We encode the image position and
potential velocity for each token into a 4-D tensor. A
voting process then enforces the smoothness of motion
while preserving motion discontinuities, selecting the
correct velocity for each input point, as the most salient
token. By performing an additional dense voting step we
infer velocities at every pixel location, which are then
used to determine motion boundaries and regions. We
demonstrate our contribution with synthetic and real
images, by analyzing several difficult cases – opaque and
transparent motion, rigid and non-rigid motion.

1 Introduction

Given two or more image frames, the goal of the

problem of grouping from motion is to determine three
types of information – a dense velocity field, motion
boundaries, and regions. From a computational point of
view, the analysis can be decomposed in three processes –
matching, densification and segmentation. The matching
process identifies the elements (tokens) in successive
views that represent the same physical entity, thus
producing a possibly sparse velocity field. The
densification process infers velocity vectors at every

* This research has been funded in part by the Integrated Media Systems
Center, a National Science Foundation Engineering Research Center,
Cooperative Agreement No. EEC-9529152, and by National Science
Foundation Grant 9811883.

image location, and the segmentation process groups
tokens into regions separated by motion boundaries.

In this work we focus on the problem of motion
analysis from sparse sets of point tokens in two frames.
Two examples of such input are shown in Fig. 1 and Fig.
2. If the frames in each pair are presented in a properly
timed succession, a certain motion of image regions is
perceived from one frame to the other. However, while in
one case the regions can be detected even without motion,
only from monocular cues (here, different densities of
points), in the other case no monocular information is
available. This example shows that analysis is possible
even from motion cues only. Another interesting aspect is
the fact that the human vision system not only establishes
point correspondences, but also perceives regions in
motion, although the input consists of sparse points only.

Optical flow techniques [1] rely on local, raw estimates
of the flow field to produce a partition of the image.
However, the flow estimates are very poor at motion
boundaries and cannot be obtained in uniform areas. Past
approaches have also used Markov Random Fields [2] or
regularization techniques to handle discontinuities [3].

Significant improvements have been achieved by using
layered representations [4][5]. The difficulties range from
a severe restriction in motion representation (as rigid or
planar), to over-fitting and instability due to high-order
parameterizations.

A computational framework that successfully enforces
the smoothness constraint in a unified manner, while
preserving smoothness discontinuities is Tensor Voting
[6]. The first to propose using Tensor Voting for motion
analysis were Gaucher and Medioni [7]. They employ

Fig. 1. Translating circle Fig. 2. Translating disk

mircea
Proceedings of the International Conference on Pattern Recognition, vol. III, pages 303-308, Quebec City, Canada, August 2002.

successive steps of voting, first to determine the boundary
points as tokens with maximal motion uncertainty, then to
locally refine velocities on each side of the boundary.
However, their voting communication is essentially a 2-D
process that does not inhibit neighboring elements with
different velocities from influencing each other.

In this paper we propose a novel approach based on a
layered 4-D representation of data, and a voting scheme
for token communication. Our methodology is formulated
as a 4-D Tensor Voting computational framework.

In the next section we give an overview of our method.
In Section 3 we present the voting framework and we
discuss how the voting concepts are generalized and
extended to the 4-D case. In Sections 4, 5 and 6 we
describe our approach for matching, densification and
segmentation. Section 7 presents our experimental results,
while Section 8 summarizes our contribution.

2 Overview of the method

In any method that seeks to solve the motion analysis

problem, each token is characterized by four attributes –
its image coordinates (x,y) and its velocity with the
components (vx,vy). We encapsulate them into a (x,y,vx,vy)
tuple in the 4-D space, this being a natural way of
expressing the spatial separation of tokens according to
both velocities and image coordinates. In general, there
may be several candidate velocities for each point (x,y), so
each tuple (x,y,vx,vy) represents a potential match.

Both matching and densification are based on a
process of communicating the affinity between tokens. In
our representation, this affinity is expressed as the token
preference for being incorporated into a smooth surface
layer in the 4-D space. A necessary condition is to enforce
strong support between tokens in the same layer, and
weak support across layers, or at isolated tokens.

In our Tensor Voting framework, the affinities between
tokens are embedded in the concept of surface saliency
exhibited by the data. By letting the tokens propagate
their information through voting, wrong matches are
eliminated as they receive little support, and distinct
moving regions are extracted as salient smooth layers.

3 Tensor voting

3.1 Overview

The use of a voting process for feature inference from

sparse and noisy data was formalized into a unified tensor
framework by Medioni, Lee and Tang [6]. The input data
is encoded as tensors, then support information (including
proximity and smoothness of continuity) is propagated by

voting. The only free parameter is the scale of analysis,
which is indeed an inherent property of visual perception.

In the 2-D case, the salient features to be extracted are
points and curves. Each token is encoded as a second
order symmetric 2-D tensor, geometrically equivalent to
an ellipse. It is described by a 2×2 eigensystem, where
eigenvectors e1 and e2 give the ellipse orientation and
eigenvalues λ1 and λ2 are the ellipse size. The tensor is
represented as a matrix TT eeeeS 222111 ⋅+⋅= λλ .

An input token that represents a curve element is
encoded as a stick tensor, where e2 represents the curve
tangent and e1 the curve normal, while λ1=1 and λ2=0.
An input point element is encoded as a ball tensor, with
no preferred orientation, while λ1=1 and λ2=1.

The communication between tokens is performed
through a voting process, where each token casts a vote at
each site in its neighborhood. The size and shape of this
neighborhood, and the vote strength and orientation are
encapsulated in predefined voting fields (kernels), one for
each feature type – there is a stick voting field and a ball
voting field in the 2-D case. The fields are generated
based only on the scale factor σ. Vote orientation
corresponds to the smoothest local curve continuation
from voter to recipient, while vote strength)(dVS

r
 decays

with distance || d
r

 between them, and with curvature ρ:

 +−

=
2

22||

)(σ
ρd

edVS

r

r
 (1)

Fig. 3(a) shows how votes are generated to build the 2-
D stick field. A tensor P where curve information is
locally known (illustrated by curve normal

PN
r

) casts a

vote at its neighbor Q. The vote orientation is chosen so
that it ensures a smooth curve continuation through a
circular arc from voter P to recipient Q. To propagate the

curve normal N
r

 thus obtained, the vote)(dVstick

r
 sent

from P to Q is encoded as a tensor according to:

T
stick NNdVSdV

rrrr
⋅=)()((2)

Fig. 3(b) shows the 2-D stick field, with its color-coded
strength. When the voter is a ball tensor, with no
information known locally, the vote is generated by

(b) 2-D stick field (a) vote generation

Q

Q’

Q”

P

N
r

PN
r

Fig. 3. Voting in 2-D

(c) 2-D ball field

rotating a stick vote in the 2-D plane and integrating all
contributions. The 2-D ball field is shown in Fig. 3(c).

At each receiving site, the collected votes are combined
through simple tensor addition, producing generic 2-D
tensors. During voting, tokens that lie on a smooth curve
reinforce each other, and the tensors deform according to
the prevailing orientation. Each tensor encodes the local
orientation of geometric features (given by the tensor
orientation), and their saliency (given by the tensor shape
and size). For a generic 2-D tensor, its curve saliency is
given by (λ1-λ2), the curve normal orientation by e1, while
its point saliency is given by λ2. Therefore, the voting
process infers curves and junctions simultaneously, while
also identifying outlier noise (tokens that receive very
little support). The 3-D case is similar, where salient
features are points, curves and surfaces [6].

3.2 Extension to 4-D

The issues to be addressed here are the tensorial

representation of the features in the 4-D space, the
generation of voting fields, and the data structures used
for vote collection. Table 1 shows all the geometric
features that appear in a 4-D space and their
representation as elementary 4-D tensors, where n and t
represent normal and tangent vectors, respectively. Note
that a surface in the 4-D space can be characterized by
two normal vectors, or by two tangent vectors. From a
generic 4-D tensor that results after voting, the geometric
features are extracted as shown in Table 2.

The 4-D voting fields are obtained as follows. First the
4-D stick field is generated in a similar manner to the 2-D

stick field (see Fig. 3(a)). Then, the other three voting
fields are built by integrating all the contributions
obtained by rotating a 4-D stick field around appropriate
axes. In particular, the 4-D ball field – the only one
directly used here – is generated according to:

∫ ∫ ∫ −=
π

θθθ
2

0

1)()(xvxuxy
T

stickball dddRdRVRdV
rr (3)

where x, y, u, v are the 4-D coordinates axes and R is the
rotation matrix with angles θxy, θxu, θxv.

The data structure used to store the tensors is an
approximate nearest neighbor (ANN) k-d tree [8]. The
space complexity of is O(n), where n is the input size. The
average time complexity of the voting process is O(µn)
where µ is the average number of tokens in the
neighborhood. Therefore, in contrast to other voting
techniques, such as the Hough Transform, both time and
space complexities of the Tensor Voting methodology are
independent of the dimensionality of the desired feature.
The running time for an input of size 700 is about 20
seconds on a Pentium III (600 MHz) processor.

4 Matching

We take as input two frames containing identical point

tokens in a sparse configuration. For illustration purposes,
we give a description of our approach by using a specific
example – the point tokens represent an opaque
translating disk (Fig. 2) against a static background.

Candidate matches are generated as follows: in a pre-
processing step, for each token in the first frame we
simply create a potential match with every point in the
second frame that is located within a neighborhood
(whose size is given by the scale factor) of the first token.
The resulting candidates appear as a cloud of (x,y,vx,vy)
points in the 4-D space. In our translation example we
have 400 input points, and by using the procedure
described above we generate an average of 5.3 candidate
matches per point, among which at most one is correct.
Fig. 4(a) shows the candidate matches. In order to display
4-D results, the last component of each 4-D point has
been dropped – the 3 dimensions shown are x and y (in
the horizontal plane), and vx (the height). The correct
matches can be already perceived as they are grouped in
two parallel layers surrounded by noisy matches.

Since no information is initially known, each potential
match is encoded into a 4-D ball tensor. Then each token
casts votes in a sparse voting process (only at input token
locations). Votes are generated by using the 4-D ball
voting field. During voting there is strong support
between tokens that lie on a smooth surface (layer), while
communication between layers is reduced by the spatial

Feature λ1 λ2 λ3 λ4 e1 e2 e3 e4 Tensor

point 1 1 1 1 Any basis Ball

curve 1 1 1 0 n1 n2 n3 t C-Plate

surface 1 1 0 0 n1 n2 t1 t2 S-Plate

volume 1 0 0 0 n t1 t2 t3 Stick

Table 1. Elementary tensors in 4-D

Table 2. A generic tensor in 4-D

Feature Saliency Normals Tangents

point λ4 none none

curve λ3 - λ4 e1 e2 e3 e4

surface λ2 - λ3 e1 e2 e3 e4

volume λ1 - λ2 e1 e2 e3 e4

separation in the 4-D space of both image coordinates and
pixel velocities.

Wrong matches appear as isolated points, which
receive little or no support, and are rejected as outliers. A
measure of this support is given by the surface saliency
(λ2-λ3). For the translating disk example, matching was
100% accurate - all 400 matches have been recovered
correctly, despite the large amount of approximately
500% noise present. Fig. 4(b) shows the recovered sparse
velocity field, while Fig. 4(c) shows a 3-D view of the
recovered matches (the height represents the vx velocity
component).

5 Densification

We first need to obtain an estimation of the layer

orientations as accurate as possible. Although local layer
orientations have already been determined as a by-product
during the matching process (after voting, e1 and e2 give
the normals to layers), they may have been corrupted by
the presence of wrong matches. Therefore, we perform an
orientation refinement through another sparse voting
process, but now with the correct matches only. The layer
orientations are then found at each token as e1 and e2.

In order to recover boundaries and regions as
continuous curves and surfaces, we need to first infer
velocities and layer orientations at every image location.

Therefore we must obtain appropriate tensor values at
every pixel (x,y). There may be several tensors with the
same (x,y) but with different (vx,vy), since overlapping

layers are present in the case of transparent motion. For
each pixel (x,y) we try to find the best (vx,vy) locations at
which to place the newly generated tokens. The
candidates considered are all the discrete points (vx,vy)
between the minimum and maximum velocities in the
sparse tokens set, within a neighborhood of the (x,y)
point. At each candidate position (x,y,vx,vy) we
accumulate votes from the sparse tokens, according to the
same Tensor Voting framework that we have used so far.
After voting, the candidate tokens whose surface
saliencies (λ2-λ3) are locally maximal are retained, and
their (vx,vy) coordinates represent the most likely
velocities at (x,y). By following this procedure at every
(x,y) image location we generate a dense velocity field.
Note that in this process, along with velocities we
simultaneously infer layer orientations. Fig. 4(d) shows a
3-D view of the dense set of tokens and their associated
layer orientations (only one normal shown).

6 Segmentation

The next step is to group tokens into regions (Fig.

4(e)), by using again the smoothness constraint. We start
from an arbitrary point in the image, assign a region label
to it, and try to recursively propagate this label to all its
image neighbors. In order to decide whether the label
must be propagated, we use the smoothness of both
velocity and layer orientation as a grouping criterion.
Finally, we have implemented a method to extract the
motion boundary for each region (Fig. 4(f)), as a
“partially convex hull”. The process is controlled by the
scale factor only, that determines the perceived level of
detail (the departure from the actual convex hull).

7 Results

The case illustrated so far may be considered too

simple since the only motion involved is translation.
However, no assumption – such as translational, planar,
or rigid motion – has been made. The only criterion used
is the smoothness of image motion. To support this
argument, we show next that our approach also performs
very well for several other configurations.

7.1 Using motion cues only

Expanding disk (Fig. 5). The input consists of two

sets of 400 points each, representing an opaque disk in
expansion against a static background. After processing,
only 1 match among 400 is wrong. This example
demonstrates that, without special handling, our
framework easily accommodates non-rigid image motion.

Fig. 4. Translating disk

(b) Sparse velocity field

(c) Recovered vx velocities

(d) Dense velocity field

(e) Regions (f) Boundaries

(a) Candidate matches

Rotating disk – translating background (Fig. 6). The
input consists of two sets of 400 points each, representing
an opaque rotating disk against a translating background.
After processing, only 2 matches among 400 are wrong.
This is a very difficult case even for human vision, due to
the fact that around the left extremity of the disk the two
motions are almost identical. In that part of the image
there are points on different moving objects that are not
separated, even in the 4-D space. In spite of this inherent
ambiguity, our method is still able to accurately recover
velocities, regions and boundaries. The key fact is that we
rely not only on the 4-D positions, but also on the local
layer orientations that are still different and therefore
provide a good affinity measure.

7.2 Incorporating intensity information

So far we have only presented cases where no

monocular information (such as intensity) is available,
and the entire analysis has been performed based on
motion cues only. Human vision is able to handle these
cases remarkably well, and their study is fundamental for
understanding the motion analysis process. Nevertheless
they are very difficult from a computational perspective –
most existing methods cannot handle such examples in a
consistent and unified manner.

To further validate our approach we have also
analyzed several standard image sequences, where both
monocular and motion cues are available. In order to
incorporate monocular information into our framework,
we only needed to change the pre-processing step where
candidate matches are generated. We ran a simple
intensity-based cross-correlation procedure, and we
retained all peaks of correlation as candidate matches.
The rest of our framework remains unchanged.

Yosemite sequence (Fig. 7). We analyzed the motion
from two frames of the Yosemite sequence (without the
sky) to quantitatively estimate the performance of our

approach. The average angular error obtained is 3.74° ±
4.3° for 100% field coverage, result which is comparable
with those in the literature [1]. Also note that our method
successfully recovers non-planar motion layers.

Flower Garden sequence (Fig. 8). For a qualitative
estimation, we also analyzed the motion from two frames
of the Flower Garden sequence. It is worth mentioning
that wrong candidates generated due to occlusion are
corrected during the densification step.

7.3 Handling reflections and transparency

Since our framework allows for overlapping motion

layers, it can successfully handle images containing
reflections and transparency. Here we consider the image
I(x,y,t) at time t as a combination of two patterns A and B,
which have independent motions a and b:

tbta BAtyxI +=),,((4)

where Ata denotes pattern A transformed by motion ta.
In order to obtain the dominant motion (assume it is

a), we run a cross-correlation procedure, followed by a
step of voting as described in the Matching section, to
eliminate noisy matches. Next we use a “nulling” method
[9][10], to estimate the remaining motion b. The pattern
component A with velocity a is removed by moving each
frame with a, then subtracting it from the following
frame. The resulting difference images are:

kbab

akbakbkak

a
k

BB

BABA

kyxIkyxID

)(

)()(

),,()1,,(
)1()1()1(

−=

+−+=

−+=
++++ (5)

Assuming that we have three frames, the difference
images are D0 = (Bb - Ba) and D1 = (Bb - Ba)b, which show
a pattern (Bb - Ba) moving with a single motion b. We use
the same method – cross-correlation followed by voting –
to determine motion b from frames D0 and D1.

Fig. 5. Expanding disk

Fig. 6. Rotating disk – translating background

Finally, we put together the two sets of 4-D tokens
with velocities a and b, and run a step of dense voting and
grouping (as described in Sections 5 and 6) on the entire
set. This process also fills any holes in the layers, which
may have been produced by the noisy matches
elimination. Note that the entire procedure recovers the
motions without separating the patterns.

Transparent motion sequence (Fig. 9). We analyzed
the motion from three frames captured with a moving
camera, showing a face reflected in a framed picture. In
order to show the accuracy of our results, we compute two
“temporal average” images after registering the input
frames using the two recovered motions (Fig. 9(b) and
(c)). In each of these, the registered pattern is sharp, while
the other one is blurred due to the image motion.

8 Conclusions

We have presented a novel approach for the problem of

perceptual grouping from motion cues, based on a layered
4-D representation of data, and a voting scheme for token
communication. Our methodology is formulated as a 4-D
Tensor Voting computational framework.

Using a 4-D space for our approach is essential, since
it allows for a spatial separation of the points according to
both velocities and image coordinates. Consequently, the
proposed framework allows tokens from the same layer to
strongly support each other, while inhibiting influence
from other layers or from isolated tokens.

Despite the high dimensionality, our voting scheme is
both time and space efficient. It is non-iterative and the
only free parameter is scale, which is an inherent
characteristic of human vision.

We demonstrated the contributions of this work by
analyzing several cases – opaque and transparent motion,
rigid and non-rigid motion. We showed that our method
successfully addresses the difficult problem of grouping

from motion cues only, and is also able to incorporate the
use of monocular cues that are present in real images.

We plan to extend our approach for real image
sequences by using a more elaborate procedure for
generating the initial candidates, rather than a simple
cross-correlation technique. Other research directions
include studying the occlusion relationships and
incorporating information from multiple frames.

References

[1] J. Barron, D. Fleet, S. Beauchemin, “Performance of
Optical Flow Techniques”, IJCV, 1994, 12:1, pp. 43-77.
[2] F. Heitz, P. Bouthemy, “Multimodal Estimation of
Discontinuous Optical Flow Using Markov Random Fields”,
PAMI, December 1993, 15: 12, pp. 1217-1232.
[3] S. Ghosal, “A Fast Scalable Algorithm for Discontinuous
Optical Flow Estimation”, PAMI, 1996, 18:2, pp. 181-194.
[4] S. Hsu, P. Anandan, S. Peleg, “Accurate Computation of
Optical Flow by Using Layered Motion Representations”, ICPR,
1994, pp. 743-746.
[5] Y. Weiss, “Smoothness in Layers: Motion Segmentation
Using Nonparametric Mixture Estimation”, CVPR, 1997, pp.
520-526.
[6] G. Medioni, Mi-Suen Lee, Chi-Keung Tang, “A
Computational Framework for Segmentation and Grouping”,
Elsevier Science, 2000.
[7] L. Gaucher, G. Medioni, “Accurate Motion Flow
Estimation with Discontinuities”, ICCV, 1999, pp. 695-702.
[8] S. Arya, D. Mount, N. Netanyahu, R Silverman, A. Wu,
“An Optimal Algorithm for Approximate Nearest Neighbor
Searching in Fixed Dimensions”, Journal of the ACM, 1998,
45:6, pp. 891-923.
[9] J. Bergen, P. Burt, R. Hingorani, S. Peleg, “A Three-Frame
Algorithm for Estimating Two-Component Image Motion”,
IEEE Trans. PAMI, 1992, 14:9, pp. 886-896.
[10] R. Szeliski, S. Avidan, P. Anandan, “Layer Extraction from
Multiple Images Containing Reflections and Transparency”,
CVPR, 2000, pp. 246-253.

Fig. 9. Transparent motion

(c) registered
foreground

(b) registered
background

(a) an input frame

Fig. 8. Flower Garden

(c) x-velocities

(a) an input frame

(d) y-velocities

(b) regions

(c) x-velocities

(a) an input frame

(d) y-velocities

(b) motion layer (x-velocities)

Fig. 7. Yosemite

