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Abstract

Detecting regions of interest in video sequences is the
most important task in many high level video processing ap-
plications. In this paper a robust technique based on recur-
sive learning of video background and foreground models is
presented. Our contributions can be described along four
directions. First, a recursive learning scheme is developed
to build pixel models based on their colors. Second, we
generate background and foreground models to enforce the
temporal consistency of detected foregrounds. Third, we ex-
ploit dependencies between pixel colors to insure that the
model is not restricted to using only independent features.
Finally, an adaptive pixel-wise criterion is proposed that
incorporates different spatial situations in the scene1.

1. Introduction

In visual surveillance systems, stationary cameras are
typically used. However, due to camera shake, or inher-
ent changes in the background itself, the background of the
video may not be completely stationary. In these types of
backgrounds, a single background frame is not sufficient
to detect moving regions. Pless et al. [6] evaluated dif-
ferent models for dynamic backgrounds. In [8], a single
3-dimensional Gaussian model for each pixel in the scene
is built. A Mixture of Gaussians technique was proposed
in [7] to address the multi-modality of the underlying back-
ground. The convergence speed of mixture models can be
improved by sacrificing memory as proposed in [4]. How-
ever the problem of specifying the number of Gaussians and
the adaptation in later stages still exists.

In [1], El Gammal et al. proposed a non-parametric ker-
nel density estimation for pixel-wise background modeling

1This work was supported in part by a grant from the University of
Nevada Junior Faculty Research Grant Fund and by NASA under grant #
NCC5-583. This support does not necessarily imply endorsement by the
University of research conclusions.

1. Initialization; Δ, α0, β, κ and th
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2.2. Update θB
t = (1 − βt)θB

t−1 + αt · HΔ

2.3. If θB
t ≥ thij

Update θF
t

2.4. If ln
(
med(θF

t )/med(θB
t )

) ≥ κij

Label pixel as foreground.
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3. Label and store foreground masks.

Figure 1. Our proposed recursive learning al-
gorithm.

without making any assumption on its probability distribu-
tion. Therefore, this method can easily deal with multi-
modality in background pixel distributions without deter-
mining the number of modes in the background. In order
to adapt the model a sliding window is used in [5]. How-
ever the model convergence is critical in situations where
the illumination suddenly changes. In order to update the
background for scene changes Kim et al. in [2] proposed
a layered modeling technique where an additional model,
called cache, is introduced.

In this paper we propose an adaptive learning technique
in a recursive formulation. There are four major contribu-
tions presented in our proposed method. (i) The recursive
formulation of the model accumulates sufficient evidence
for background/foreground models through time. (ii) De-
pendencies between the pixel features are exploited in our
implementation, resulting in more accurate models. (iii) We
build up a model for both background and foreground pix-
els. In the classification, these models are compared and
the pixels are classified as foreground or background based
on the winner model to achieve temporal coherency of the
modeling. (iv) Instead of a global threshold for all the pixels
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in the scene an independent threshold is trained over time to
effectively perform the classification.

The rest of this paper is organized as follows: in Sec-
tion 2 we present the building block of the proposed back-
ground modeling technique and we explain how the model
incorporates the dependencies between features. In Section
3, classification by using a threshold map as well as en-
forcing the spatial consistency of the neighboring models
are discussed. In Section 4 the experimental results of the
proposed method are presented and the performance of this
method is compared with existing techniques. Finally the
conclusion of this paper is drawn in Section 5.

2. Adaptive Background Learning

The formulation discussed here is in one dimension as
the extension to higher dimensions is straightforward. The
proposed method, in pseudo-code, is shown in Figure 1.

2.1. Recursive Model

Let x(t) be the the intensity value of a pixel at time t.
The non-parametric estimation of the background model
that accurately follows its multi-modal distribution can be
reformulated in terms of recursive filtering:

θt(·) = [1 − βt] · θt−1(·) + αt · HΔ [xt; θt−1(·)] (1)

where θt(·) is the model at time t and is updated by the
local kernel H [xt; θt−1(·)] with bandwidth Δ, and αt and
βt are the learning rate and forgetting rate schedules, re-
spectively.

In order to speed up the modeling convergence, in the
proposed method we build a schedule for learning the back-
ground model at each pixel based on its history. At early
stages the learning occurs faster (α(t) = 1) and by time
it decreases and converges to the target rate (α(t) → α0).
The forgetting rate schedule is used to account for remov-
ing those values that have occurred long time ago and no
longer exist in the background. These schedules will make
the adaptive learning process converge faster, without com-
promising the stability and memory requirements of the sys-
tem. Also training these rates independently for each pixel
based on spatial changes in the scene makes the conver-
gence more effective for different situations. This learning
schedule is shown in equation (2).

α(t) =
(

1 − α0

h(t)
+ α0

)
(2)

Function h(t) is a monotonically increasing function,
used instead of t, to make the updating process adaptive
to different situations. Once the system detects a sudden

change, the function h(t) resets to 1 and the learning rate
jumps to its original large value. In the current implemen-
tation we assume that the forgetting rate is a portion of the
learning rate; β(t) = k · α(t), where k ≤ 1.

For each pixel, all the intensities have the same probabil-
ity of being foreground. However, as time passes, the back-
ground model is updated, resulting in larger model values
(θB) at some intensities in which the likelihood of having
a foreground decreases. Also because the foreground mod-
els tend to be consistent over time, once a pixel is detected
as foreground, the likelihood of having the same intensity
value for that pixel in the next frame becomes higher. So
the foreground models are updated with larger rate at those
intensity values:

θF
t = (1 − βF

t ) · θF
t−1 + αF

t · HΔ

[
xF

t ; θF
t−1

]
(3)

2.2. Capturing Feature Dependencies

To extend the modeling in higher dimensions and using
color and spatial information, we can consider each pixel as
a 5 dimensional feature vector in R5, as f (R, G, B, x, y).
The kernel H in this space is a multivariate kernel HΔ. In
this case, instead of using a diagonal matrix HΔ, we use
a full multivariate kernel. The kernel bandwidth matrix Δ
is a symmetric positive definite d × d matrix. Once each
pixel is labeled as background, having accumulated enough
evidence, its features are used to update the bandwidth ma-
trix. Let’s assume that we have N pixels, x1,x2, · · · ,xN ,
labeled as background. We build a 3 × N − 1 matrix
X =

{
xi − xi−1|i = 2, · · · , N ;xi = [ri, gibi]T

}
of suc-

cessive deviations. The bandwidth matrix is a updated by:

Δd×d =

⎡
⎣ Σ 0 0

0 1 0
0 0 1

⎤
⎦ ; Σ = X · XT (4)

3. Foreground/Background Classification

For each pixel at time t, we have a function θB(t) for
the background model and θF (t) for the foreground. For
simplicity, assume the one dimensional case again, where
θX(t) is the background/foreground model whose domain
is [0, 255]. From equation (3), each model ranges between
0 to 1 and its value shows the amount of evidence accumu-
lated in the updating process. The classification step uses a

MAP criterion, ln
(

θB(t)
θF (t) ≥ κ

)
, to label the pixel as fore-

ground if this criterion is satisfied.
Because not all the pixels in the scene follow the same

changes, the decision threshold κ should be adaptive and in-
dependent for each pixel and has to be driven from the his-
tory of that pixel. Figure 2 explains this issue, where Figure
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(a) Arbitrary frame (b) Threshold map

Figure 2. Adaptive classification criteria
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(a) Water surface
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(b) Lights turned off

0 50 100 150
0

0.2

0.4

0.6

0.8

1

time

M
od

el
in

g 
er

ro
r

Scheduled learning rate
Constant learning rate
Constant window size

(c) Lights turned on

Figure 3. Convergence and recovery speed

2(a) shows an arbitrary frame of a video sequence contain-
ing water surface. We expect that for pixels with more fluc-
tuations, such as water surface, the value κ needs to be small
in short term. This can be observed in Figure 2(b), where
darker parts refer to smaller values for κ and brighter ones
show larger values. As mentioned in Section 2 and Fig-
ure 1, we have two set of thresholds, th and κ. Thresholds
thij , for each pixel (i, j), should adapt to a value T, where∫

θB≥T
θB

t (x)dx ≥ 0.95. For the competitive thresholds,
κij , we use a measurement from changes in the intensity at
its pixel position, (i, j):

κij =
1

255

255∑
0

(θB
ij − mean(θB

ij))
2 (5)

4. Experimental Results and Comparison

In this section, we present the results of the proposed
method on difficult situations and compare its performance
with existing techniques quantitative and qualitatively.

Convergence speed. Our first experiment compares the
convergence and recovery speed of our proposed sched-

(a) (b) (c)

Figure 4. Water surface: (a) Arbitrary frame,
Foreground masks detected: by KDE (b), and
our method (c).

(a) (b)

Figure 5. Shopping mall: (a) First frame. (b)
Background model after 50 frames.

uled learning rates with the fixed learning rate and con-
stant window size used in non-parametric density estima-
tion. One sample frame of water surface video is shown
in Figure 2(a). Figure 3(a) shows the convergence speed
of the proposed method where the modeling error is plot-
ted against time. The solid curve shows the model error,
using the proposed scheduled learning. The dashed curve
shows the effect of a constant, large learning rate, which
converges slower than our proposed method and finally the
dotted curve shows the effect of a non-parametric density
estimation, with a constant small window size.

Recovery speed. Figures 3(b) and 3(c) show the com-
parison for the recovery speed of the model from an ex-
pired background to the new one. This happens in the situa-
tion where in an indoor scene, lights go off (Figure 3(b)) or
they go on (Figure 3(c)). As it can be seen in Figure 3(b),
our method recovers the background model fast. The con-
stant, large learning rate recovers much slower, shown by
the dashed curve, and the non-parametric density estima-
tion technique, the dotted curve, is not able to recover even
in a long term. A similar situation, when lights are turned
on, is shown in Figure 3(c).

Irregular motion. By using the water surface video se-
quence, we compare the results of foreground region de-
tection using our method and the method in [1]. For this
comparison the sliding window of size L=150 is used in the
KDE method. The results of the KDE method are shown
in Figure 4(b) and the foreground masks detected by our
proposed technique are shown in Figure 4(c).

Initially non-empty scene. Figure 5, the Shopping mall
sequence, shows the performance of the proposed method
in situations where the first frames do not contain only the
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(a) (b) (c)

Figure 6. Hand-held camera.

Table 1. Quantitative comparison.
Videos MR LB CAM SW WS FT Avg

Proposed 0.92 0.87 0.75 0.72 0.89 0.87 0.84
[3] 0.91 0.71 0.69 0.57 0.85 0.67 0.74
[7] 0.44 0.42 0.48 0.36 0.54 0.66 0.49

background, but some foreground objects as well. In this
situations both traditional parametric and non-parametric
background modeling techniques fail. As it can be observed
in Figure 5(a), the video does not have a clear set of back-
ground frames to be modeled. Our technique starts with
the first frame and incorporates the information from new
frames to build its background and foreground models. The
resulting background model is visualized in Figure 5(b) af-
ter 50 frames, where the objects existing in the first frame
faded to achieve a clear background model.

Hand-held camera. Figure 6, the Room video sequence,
shows an experiment on a video taken with a hand-held
camera. The camera movement is quite noticeable, yet it is
not large enough to classify this video under categories con-
taining global motion. Because the movement of the camera
does not follow a specific pattern and is slow, it is very dif-
ficult to use a global motion filter to detect its background
and foreground regions. One arbitrary frame of such a video
is shown in Figure 6(a). Figures 6(b) and (c) show the result
of proposed background modeling on frames 2 and 247, re-
spectively. It can be seen that the amount of false positives
decreases by time.

Quantitative evaluation.

The performance of our proposed method is evaluated
quantitatively on randomly selected samples from different
video sequences, taken from [3]. The similarity measure be-
tween two regions A and B is defined by, S(A,B) = A∩B

A∪B .
This measure is monotonically increasing with the similar-
ity of the detected masks and the ground truth, with values
between 0 and 1. We calculated the average of similarity
measure of the foreground masks detected by our proposed
method, the Mixtures of Gaussians in [7] and [3]. By com-
paring the average of the similarity measure over different
video sequences in Table 1, we can see that the proposed
method outperforms techniques proposed in [7] and [3],
while there are no parameters to be heuristically selected
in our proposed method.

5. Conclusion and Future Work

As the main contribution of this paper, a recursive learn-
ing scheme for background and foreground modeling is pre-
sented. The adaptive learning and forgetting rates proposed
here make the generated models adapt to gradual and sud-
den changes. Our second contribution is that the decision
criterion for each pixel is trained independently, based on
the pixel model. Because these criteria are data driven,
they are automatically updated and add to the accuracy of
the overall performance. Third, two models are built sep-
arately for foreground and background and the detection
is performed by competitively comparing these models to
achieve temporal coherence. Finally, dependencies between
pixel features are captured using multivariate models. Spa-
tial consistency of models and the extracted foreground re-
gions are enforced using the spatial coherency of pixel val-
ues. The experimental results show that the system con-
verges reasonably fast to the underlying models and is able
to recover fast from each expired model.

One direction of future investigation is to use this work
in non-parametric tracking approaches. Also by optimiz-
ing the learning rate schedules we can improve the result of
foreground object detection.
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