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Abstract. Detecting regions of interest in video sequences is one of the
most important tasks of most high level video processing applications. In
this paper a novel approach based on Support Vector Data Description
(SVDD) is presented which detects foreground regions in videos with
quasi-stationary backgrounds. The SVDD is a technique used in analyt-
ically describing the data from a set of population samples. The training
of Support Vector Machines (SVM’s) in general, and SVDD in particu-
lar requires a Lagrange optimization which is computationally intensive.
We propose to use a genetic approach to solve the Lagrange optimiza-
tion problem more efficiently. The Genetic Algorithm (GA) starts with
an initial guess and solves the optimization problem iteratively. We ex-
pect to get accurate results, moreover, with less cost than the traditional
Sequential Minimal Optimization (SMO) technique.

1 Introduction

Stationary cameras are used in most visual surveillance systems. However, the
background of the video may not be completely static, because of inherent
changes in the background itself (fluctuations in monitors and lights, waving
flags and/or trees, water surfaces, etc.). In these types of backgrounds a single
background frame is not useful to detect moving regions.

A Mixture of Gaussians (MoG) modeling technique was proposed in [1] to
address the multi-modality of the underlying background. Recently, a recursive
filter formulation for MoG training is proposed by Lee in [2]. In [3], El Gammal
et al. proposed a non-parametric Kernel Density Estimation (KDE) method
for pixel-wise background modeling without making any assumption about its
probability distribution. In order to adapt the model a sliding window is used
in [4]. However, the model convergence is problematic in situations when the
illumination suddenly changes. In methods that explicitly model the background,
the foreground is detected by comparing each pixel model with a heuristically
selected, global threshold [3], or locally trained thresholds [5].

In this paper a single-class classification approach is used to label pixels in
video sequences into foreground and background classes using Support Vector



Data Description (SVDD) [6]. The SVDD is a technique which is used in describ-
ing the data analytically from a set of population samples [7]. This technique
uses a generalized support vector learning scheme for novelty detection, when
samples from outliers are not accessible by measurement [8]. Such samples in
video surveillance applications are the foreground regions. These regions are not
accessible in the training stage of the system.

To train the SVDD system Lagrange optimization, a quadratic programming
(QP) optimization problem, must be solved. The most common technique to
solve the QP problem is Sequential Minimal Optimization (SMO), proposed by
Platt in [9]. However, the complexity of the SMO algorithm increases with the
difference between the number of samples and their dimensionality.

Lessmaan et.al [10] proposed a model selection for Support Vector Machines
(SVM) using a genetic algorithm (GA) approach. However, this technique deals
with the models used to expand the SVM and addresses the classification accu-
racy. Liu et.al proposed a weighted SVM with a GA based parameter selection
in [11]. Their method finds reliable weights for those samples with better sup-
port and finds the SVM parameters using a GA. However, these methods do not
explicitly employ GA’s as a tool for training the SVM.

The main contribution of this paper is to propose an evolutionary computing
approach to solve the optimization problem in training of the SVDD. Our method
encodes the description of samples as the genetic structure of individuals for a
GA. This chromosome is then used to generate an evolving population using the
proposed algorithm. The surviving genes of the fittest individual represents the
support vectors of the sample set.

The rest of the paper is organized as follows. In section 2 we present a review
of the SVDD. Section 3 and section 4 describe the GA approach and our proposed
method, respectively. In section 5 experimental results of the proposed algorithm
are provided and discussed. Finally, section 6 concludes this paper and gives
future directions for this research.

2 Support vector data description

Data domain description concerns the characteristics of a data set [7] whose
boundary can be used to detect novel samples (outliers). A normal data descrip-
tion gives a closed boundary around the data which can be represented by a
hyper-sphere (i.e. F (R, a)). The volume of this hyper-sphere with center a and
radius R should be minimized while containing all the training samples xi. As
proposed in [7] the extension to more complex distributions is straightforward
using kernels.

To allow the possibility of outliers in the training set, slack variables εi ≥ 0
are introduced. The error function to be minimized is defined as F (R, a) = R2 +
C

∑
i εi, subject to: ‖xi − a‖2 ≤ R2 + εi for all i. Using Lagrange optimization

the above results in:

L =
∑

i

αi(xi · xi)−
∑

i,j

αiαj(xi · xj) ∀αi : 0 ≤ αi ≤ C (1)



When a sample falls in the hyper-sphere then its corresponding Lagrange mul-
tiplier is αi ≥ 0, otherwise it is zero. It can be observed that only data points
with non-zero αi are needed in the description of the data set, therefore they are
called support vectors of the description. To test a new sample y, its distance
to the center of the hyper-sphere is calculated and tested against R. Given the
support vectors xi, a new test sample zt can be classified as known/novel data
using:

‖zt − a‖2 = (zt · zt)− 2
∑

i

αi(zt · xi) +
∑

i,j

αiαj(xi · xj) (2)

where αi are Lagrange multipliers and ||zt−a|| is the distance of the new sample
to the description center. If this distance is larger than R then the sample is
classified as novel.

In order to have a flexible data description, as opposed to the simple hyper-
sphere discussed above, a kernel function K(xi, xj) = Φ(xi) ·Φ(xj) is introduced.
This kernel maps the data into a higher dimensional space, where it is described
by the simple hyper-sphere boundary. Instead of a simple dot product of the
training samples (xi · xj), the dot product is performed using a kernel function.

Several kernels have been proposed in the literature [12]. Among these, the
Gaussian kernel gives a closed data description, K(xi, xj) = exp

(
−‖xi−xj‖2

σ2

)
.

Using the above theory the proposed method generates a SVDD for each pixel
in the scene using its values in the past. These descriptions are then used to label
each pixel in new frames as a known (background) or a novel (foreground) pixel.
In the following section we present the motivations behind using a GA to solve
the SVDD training problem.

3 The Genetic Algorithm approach

The theory behind using a SVDD is to find those sample points whose α Lagrange
multipliers are not zero (support vectors). In order to find support vectors for
a given distribution, an optimization problem should be solved which results in
all non-zero Lagrange multipliers from equation (1).

We propose to use an evolutionary computing method to solve the optimiza-
tion problem in training of the SVDD. An evolutionary algorithm is capable of
adapting to near-optimal solutions efficiently.

For the sake of illustration we assume, without loss of generality, that the
data is in 2-D generated using a normal distribution function. As discussed
in the previous section, the extension to higher dimensions and more complex
distributions is straightforward.

Lagrange multipliers are non-zero only for the support vectors. Support vec-
tors describe the distribution of the data using equation (1). Solving the opti-
mization problem with respect to a (the center of discription) results in a =∑

i αixi. Note that the Lagrange multipliers should be normalized (
∑

i αi = 1).
In our approach the optimization problem is solved in a bottom-up fashion.

We start with random initial values for the α multipliers. Given these multi-
pliers, the corresponding data description is generated. The data description is



1. Generate populatoin: αi’s according to
∑

i
αi = 1

2. For each individual in population:

2.1. a =
∑

αixi

2.2. Ri = ||xi − a||
2.3. R =

∑
αiRi

2.4. Fitness = Percentage of Data covered by: (R,a)
4. Perform selection operation

5. Perform recombination (
∑

i
αi = 1)

3. Perform evaluation (
∑

i
αi = 1)

6. If target rate not reached goto 2.

7. Produce the data description: {αi,xi}∀i:αi 6=0

Fig. 1. The proposed algorithm.

refined to achieve the target description iteratively according to the proposed
evolutionary technique.

4 The proposed method

The proposed evolutionary algorithm is presented in Fig. 1. The algorithm em-
ploys a genetic approach to generate the solution iteratively, where the target
solution is the smallest circle encompassing the data points. The algorithm pro-
duces the best solution as soon as the target rate is reached, or after it is run
for the maximum number of generations. In the following, we discuss the repre-
sentation scheme, encoding of genomes, and selection strategies of the proposed
GA, respectively.

4.1 Representation and encoding

The optimization results of an evolutionary method greatly depend on the rep-
resentation scheme and encoding. A crucial issue in this context is choosing the
individual chromosomes. A chromosome encodes the vital information about an
individual and can be used to evaluate the fitness or the quality of that individual
during evolution.

The goal in our algorithm is to find the best data description for an arbi-
trary distribution of samples. Each individual in the population is represented
by the sample points and their corresponding α multipliers (Fig. 2). It can be ob-
served that a data description is uniquely represented by support vectors xi and
their corresponding coefficients αi. Thus, each individual’s decoded chromosome
represents a data description.

Given a number of training sample points, each evolving individual in the
population can be represented by a vector containing the Lagrange multipliers
αi. The α values are real numbers between 0 and 1. Notice that the size of
each chromosome is equal to the number of training samples. Our GA finds the
combination of Lagrange multipliers that results in the target data description.
Fig. 2 shows the representation and encoding schemes used in the proposed GA.



Fig. 2. Chromosome encoding and representation.

(a)

(b)

Fig. 3. Evolutionary operators: (a) Crossover operation. (b) Mutation operation.

4.2 Selection

In the proposed algorithm three different selection strategies are implemented.
These strategies are roulette wheel selection, rank-based selection and µλ se-
lection. The effect of each strategy on the performance of the trained SVDD is
studied.

Roulette wheel selection. This is a standard selection strategy used in
canonical GA. This strategy explores the solution space more evenly. However,
its convergence to the optimum in non-smooth search spaces is problematic.
Since selection probability is proportional to the fitness the scaling problem is
inevitable in this strategy [13].

Rank-based selection. This selection strategy addresses the problem of
scaling. While being similar to the roulette wheel selection, individuals are se-
lected with respect to their rank instead of their fitness value in this strategy.

µλ selection. This selection strategy also addresses the scaling problem of
canonical GA. µλ is considered to be an elitist selection. In this strategy the best
individual from the current population always survives to the next generation.

4.3 Crossover and mutation

It can be shown that crossover is the most important operator in GA’s using
the schema theorem. The crossover operator uses individuals in the population
based on crossover probability and generates offsprings. The exploration power of
a genetic algorithm relates to the type and probability of its crossover operator.

In our algorithm we used bi-parental crossover. From the selection stage we
have N new individuals for a population size of N . Two parents are picked at
random from the pool of individuals and are used in the crossover operation.
This is done using the result of a biased toss of a coin (crossover probability).



This operator is similar to the crossover used in canonical GA except that
it contains a string of real values. The procedure is summarized the best in Fig.
3(a). From the figure, the normalization condition is violated after the crossover.
To maintain this condition both chromosomes are normalized.

Mutation explores the solution space to find better regions for optimization.
A single point mutation is used in the proposed method. This operator picks
a mutating gene randomly with the mutation probability using a biased coin
toss. Fig. 3(b) depicts our proposed mutation operation. After the mutating
gene is selected a small mutation bias value δ is added or subtracted. Since
mutation violates the normalization of the multipliers the chromosome should
be normalized.

5 Experimental results

We present two groups of experiments. The GA training experiments evaluate
the performance of the proposed GA approach with regard to its selection strate-
gies, population size and other significant parameters. The performance of the
proposed method is compared with state-of-the-art techniques in the literature.
The real data experiments compare the proposed system in detecting foreground
regions in real videos to existing methods.

5.1 GA training experiments

A normal 2-D distribution of 100 data points is used for our experiments. As
mentioned earlier the extension to higher dimensions and more complex distri-
butions is straightforward, using kernels. In the following experiments we used
a population size of 100, 0.5 for probability of crossover, 0.05 for probability of
mutation, 30 runs, suppression parameter of 0.01, mutation bias of 0.01 and 500
generations, unless otherwise stated.

Effect of population size. In this experiment the effect of population size
on the convergence and performance of the proposed approach is evaluated. The
GA is run for 30 runs using the rank-based selection strategy.

Fig. 4 shows the evolution of individuals and a comparison of the fitness
values for population sizes of 20 and 100 individuals. In each graph the solid curve
is the minimum, the dashed curve is the average and dotted curve represents the
maximum fitness values over 30 runs. As it can be seen, the more individuals in
the population, the faster the convergence of the GA. However, increasing the
population size results in more calls to the evaluation function and a decrease
in speed. Our experiments showed that a population size of 50 is best in terms
of speed and accuracy.

Fitness comparison. In this experiment we compare the performance of
each of the three proposed selections strategies in terms of maximum fitness
value. Another measure of performance is the radius of the description. Given
the same fitness value, the smaller the description the better the performance of



(a) (b)

Fig. 4. Fitness values and evolution with: (a) Population size 20. (b) Population size
100.

(a) (b)

Fig. 5. Comparison of different strategies with respect to (a) Fitness. (b) Radius.

the system. This implies if two different descriptors encompass the same number
of sample points the smaller one should be preferred.

The comparison of different selection strategies with respect to the fitness of
individuals is shown in Fig. 5(a). In this experiment the population size of 100 is
used for all GAs. Among the three selection strategies, the µλ selection converges
faster to the target rate of 90% (dashed curve). The Rank based selection reaches
the target rate in about 300 generations (solid curve). However, notice that the
canonical GA fell in the local optima and never reached the target rate of 90%
fitness (dotted curve).

Fig. 5(b) compares the description radius found by each of the three GAs.
From the figure, the µλ selection based GA converges to the actual solution
faster than the other two methods. Rank-based selection finds the best solution
in about 300 generations. However, after comparing the radius found by these
methods it is clear that µλ finds a better description than the rank-based selec-
tion. Notice that canonical GA was not able to find the optimal solution in the
allowed number of generation and fell into one of the local optima.



Fig. 6. Comparison of training the SVDD using the proposed GA and the SMO.

Table 1. Comparison of False Reject Rate for different classifiers.

Method GA-SVDD SMO-SVDD MoG KDE KNN

FRR 0.0833 0.1067 0.1400 0.1667 0.1333

Comparison of the GA and the SMO. In this section we compare the
results of training the SVDD by using the proposed GA and the SMO method.

The data set in this experiment is a banana shaped distribution of 200 data
points in two dimensions. The distribution of data points can be seen in Fig.
6 along with the decision boundaries trained by using the GA and the SMO
techniques. The GA is set to train the classifier and preserve only 8 support
vectors. The SMO is used to achieve the same number of support vectors after
training the SVDD. The classification boundary of the SVDD by using the pro-
posed GA are represented by the dashed curve. The solid curve is the decision
boundary for the SVDD trained by the SMO method. As seen, the GA gives
better generalization compared to the SMO.

Quantitative comparison. We define the False Reject Rate (FRR) for a
quantitative evaluation. By definition, FRR is the percentage of missed targets:
FRR = #Missed targets

#Samples .
Table 1 shows a quantitative comparison between the proposed GA-based

SVDD method and other techniques such as SVDD trained by SMO, Mixture of
Gaussians (MoG), Kernel Density Estimation (KDE) and K-Nearest Neighbors
(KNN). The FRR for SVDD is smaller than that of the other three which proves
the superiority of this classifier for novelty detection.

5.2 Real videos

The foreground detection results of our method on real video sequences are shown
and compared with existing statistical modeling techniques in this section.

Comparison in the presence of irregular motion. By using the water
surface video sequence, we compare the results of foreground region detection
using our proposed method with a typical KDE [5] and MoG [1]. Fig. 7(b),
(c), and (d) show the results of the MoG, the KDE, and the proposed SVDD



(a) (b) (c) (d)

(e) (f) (g)

Fig. 7. Real videos: (a) Water surface sequence. (b) MoG. (c) KDE. (d) SVDD. (e)
Handshake sequence. (f) KDE (g) SVDD.

(a) (b)

(c) (d)

Fig. 8. Foreground detection results.

technique, respectively. As it can be seen, the proposed method gives a better
detection.

Comparison in case of low contrast videos. Figure 7(e)-(g) shows the
result of foreground detection using the proposed method in the hand shake video
sequence and compares this result with that of the KDE method. As it can be
seen from Fig. 7(f) and 7(g), the proposed method achieves better detection
rates compared to the KDE technique.

Other difficult scenarios. Fig. 8(a)-(d) shows results of the proposed fore-
ground detection algorithm in very difficult situations. Our system accurately
detects the foreground regions in all of these situations robustly.

6 Conclusion and future work

Support Vector Data Description (SVDD) is an elegant technique to describe a
single class of known samples, used in novelty detection. The main contribution
of this work is to design an evolutionary computing algorithm (i.e. GA) to solve
the optimization problem in training of the SVDD. The proposed SVDD is used
in detecting foreground regions in videos with quasi-stationary backgrounds. The
technique shows robust performance and fast convergence speed.



One future direction of this work is an incremental version of the proposed
SVDD. This can be done by injecting new incoming data samples into the chro-
mosome which replace the non-support vectors. The incremental SVDD will
be adaptive to temporal changes in the sample set. The kernel and the classi-
fier parameters can be encoded into the genetic materials as well. This unified
framework evolves the data descriptor and the sample classifier together, thus,
making the system automatic with respect to its parameters.
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