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Abstract. A major challenge in deploying service robots into the real
world is to design a framework that provides effective, long-term interac-
tions with people. This includes interacting with people in a natural way,
dealing with multiple users, and being continually aware of the surround-
ings. This paper proposes a robot control architecture that addresses
these issues. First, it enables the representation of complex, sequential,
and hierarchical robot tasks, in a behavior-based framework. Second, it
provides a robot with the flexibility to deal with multiple requests and
interruptions, over extended periods. Third, it uses a visual awareness
mechanism to recognize users and to identify their need for robot inter-
action. We demonstrate our approach on a Pioneer 3DX mobile robot,
performing service tasks in a real-world environment.

1 Introduction

A major challenge in designing robots for service or assistive applications is to
enable a natural interaction between robots and non-technical users, while ensur-
ing long-term, robust performance [1]. Robots have traditionally been developed
to operate in controlled environments and are programmed to perform tasks in
a highly structured and sequential manner. These robots are usually “blind” to
other agents in the environment and adapt poorly to changing conditions. The
limitations that generally prevent these robots from operating in more realistic
domains are their lack of awareness, flexibility, and long-term autonomy.

We propose a control architecture that introduces a level of flexibility and
perceptual ability that allows robots to overcome traditional limitations and op-
erate in more dynamic settings. Our architecture equips robots with the visual-
awareness necessary for them to monitor their surroundings and detect when
other social agents have the need for their interaction. Our architecture also pro-
vides the means for long-term autonomy by enabling robots to manage a large
repertoire of tasks over extended periods. Additionally, our system is designed
for realistic assistive applications, where multiple people are simultaneously com-
peting for the robot’s assistance.

The contribution of this paper is a framework that addresses three key issues
for human-robot interaction in the context of service applications: 1) complexity
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and robustness of task representations, 2) long term interactions with multiple
users, and 3) awareness of the environment and other agents.

The remainder of the paper is structured as follows: Section 2 presents our
interactive framework, Section 3 describes our control architecture, Section 4
discusses our vision-based perceptual approach and Section 5 describes the ex-
perimental setup and results. We present our conclusions in Section 6.

2 Interactive Framework

This work is aimed at creating a framework that provides robots with the ability
to operate in typical service or assistive application environment. This requires
robots to be directed easily by non-technical operators, and function in the
presence of multiple users.

Vision-based perception can provide a wealth of information regarding the
robot’s environment and of other agents within the environment. In the case
of human-human interaction, one person can frequently identify the needs of
another simply by observing them. Ideally, a service robot should make similar
deductions. To this end, a posture-based control paradigm is used. As will be
described in Section 4, robots are trained to recognize various postures, which are
associated with different tasks. These associations can have a logical relationship
(e.g. if a person is observed with an object, the robot should approach the human
and accept the object), or may be more symbolic (e.g. if a person is observed
with raised hands, a predefined series of actions are performed. In either case, a
non-technical user should be able to easily learn how to interact with and receive
services from the robot.

A service robot will likely have to perform in the presence of multiple users,
where one user may solicit a service while the robot is engaged in another task.
To respond accordingly, the robot should interrupt its current activity, detect
the new request, and determine appropriate action. Our framework enables this
functionality using linked awareness and control modules. The awareness module
identifies known users and postures. This information is relayed to the control
module, which determines the robot’s action. Currently, each posture is associ-
ated with a task (robot service) that can have low, regular or high priority. When
a posture is detected, the robot will perform the associated task, only if the pri-
ority of the new task exceeds that of any current activity. The task with the
lower priority will be suspended and stored to a priority-based queue. Lower-
priority tasks will be resumed when higher-priority tasks are completed. Our
architecture provides the flexibility of using different priority queue strategies.

Prioritized task switching resembles human decision-making behavior and is
a logical addition to the service robot domain. While people perform this activity
switching with ease, robots are presented with the difficulty of maintaining the
status of current tasks during interruption, such that the task can be resumed
from the same point later. The control architecture proposed in this paper use a
set of representations that allow the robot to naturally recover from interrupted
tasks without the need to explicitly store any additional state information.
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3 Control Architecture

The architecture proposed in this paper is motivated by the Behavior-Based
Control (BBC) paradigm, which is popular in robot control. We propose to use
this paradigm to 1) enable the use of both command arbitration and fusion
within a single representation and 2) allow the encoding and robust execution
of sequential and hierarchical tasks. Historically, the two main action selection
mechanisms of arbitration and fusion have been employed separately in robot
control [2], which limits the range of executable tasks. By recognizing the ability
of arbitration to encode temporal sequences and of fusion to combine concur-
rently running behaviors, we merge the strengths and features of both within a
unique task representation. For behavior representation we use a schema-based
approach, similar to the work in [3].

3.1 Fusion Primitives

Our controllers are built from two components: behavior primitives (BPs) and a
fusion primitive (FP), which through the combination processes described below
result in controllers in the form of behavior networks [4].

The BPs express basic capabilities that allow a robot to react to immediate
environmental conditions. If input received from the robot sensors meets the
preconditions to make a particular BP active, then the BP sends an appropriate
action to the actuators. For example, an obstacle-avoidance BP becomes active
when sensors detect an object that obstructs the robot.

The active/not active status of all BPs is encoded in a n-dimensional vector,
where n is the number of BPs. This vector, which we call a behavior applicability
condition (BAC), contains a 1 (active) or a 0 (not active) for each BP. It is
theoretically possible for n BPs to produce 2n BACs, though many combinations
are never seen, and this number is usually much smaller.

Fig. 1. Fusion primitive.

The FP linearly combines the vectors
produced by all active BPs to produce a
control vector that moves the robot to-
ward the direction of highest urgency. BPs
are combined using a weighting scheme
that modulates the influence each BPs has
on the final vector. The set of weights
used in the BP summation is determined
by the BAC table, as shown in Figure 1.
Each BAC entry represents a different set
of weights and can be indexed using the
n-bit BAC value.

At each timestep t, each BP Bi provides a response output vector vt
i , which

represents a desired heading for the robot. The FP’s output is a linear com-
bination of the vectors [vt
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The multiple BACs represent different environmental situations, since dif-
ferent behaviors are “applicable” in each case. The weights of behaviors within
each BAC encode the mode of performing the current task given the situation.
For example, in a target reaching task, the robot may be influenced by corridor-
follow, target-follow and avoid-obstacle behaviors in the presence of an obstacle,
while only target-follow would be active in an open space. Inferring the fusion
weights is a challenging task requiring time-consuming fine-tuning. We used a
method of learning weights through human-provided demonstration [5].

3.2 Hierarchical Task Representations

]

Fig. 2. Generic hierarchical task.

With fusion primitives alone, a controller can
only encode flat representations of tasks us-
ing sequencing of fusion primitives. This does
not have the modularity needed to allow more
complex tasks to be created from existing
ones. We enable this higher-level of represen-
tation by grouping fusion primitives into be-
havior networks, which can be nested to allow
hierarchical representations of tasks. In these
networks, links between components repre-
sent task-specific precondition-postcondition
dependencies, which provide a simple way to
represent complex activities (Figure 2).

The term metabehavior is used to describe both fusion primitives and nodes
of a behavior network, as both have similar functions in the network. Each
metabehavior encapsulates information about the behavior’s preconditions and
goals (postconditions). These conditions are continuously monitored to ensure
proper task execution. The only difference between a behavior network node and
a fusion primitive is that the network node activates underlying metabehaviors,
while a fusion primitive activates only its component primitive behaviors. When
a behavior network node becomes active, its underlying components are enabled,
and the subnetwork becomes the current “network” to be executed. Upon com-
pletion, the behavior network node updates its goal status accordingly. Successor
behaviors will detect the achievement of the goal and a new network node will
execute. To perform complex tasks, the robot activates the metabehavior at the
task’s topmost level and the activity propagates through the task’s steps.

An advantage of this architecture is that it is adaptive to both favorable
(inadvertently satisfying a goal) and unfavorable (undoing a goal) changes. Since
the behavior’s pre and post-conditions are continuously monitored, the active
behavior is driven by environmental state, thus providing a sense of “awareness”
about task progress. The representation also allows interruption to occur without
additional modifications. When a task is interrupted, the behaviors preserve the
current status of execution until the robot can return to the task. The behaviors’
continuous grounding in sensory information allows the task to be performed
correctly, even when environmental conditions changed during suspension.
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4 Vision-Based Human Posture Recognition

The role of the visual awareness module is to provide the robot with the ca-
pability of detecting the presence of humans that might be interested in inter-
acting with the robot. Toward this end, we developed visual capabilities that
can recognize human postures that are likely to be relevant to the robot-human
interaction. Postures description and examples are displayed in Table 1 (first
and second column).

Table 1. Set of Postures. Column 1: Posture description. Column 2: Sample video
frame. Column 3: Segmented image. Column 4: Shape model. Column 5: Color model.

Posture Type/Description Image Foreground Shape Color

The Standing Posture
A good posture to recognize. It is
displayed frequently and may indicate
that the human is on the move or en-
gaging in a task.

Kneeling Posture
Given the robot’s size, humans must
crouch or kneel to pass objects to and
from the robot. A robot should there-
fore recognize a crouching human.

Arms-Up Posture
Humans learn at a young age that they
can attract another’s attention by rais-
ing their hand and a robot should re-
spond accordingly.

Object Posture
Held-objects were trained indepen-
dently from the human. This increases
model robustness and allows the robot
to orient itself toward the object.

4.1 Related Work in Visual Identification / Tracking

The identification and tracking of objects in a video feed is reasonably easy when
a relatively static background can be maintained. The background features can
be modeled using intensities, Gaussian distributions, non-parametric distribu-
tions [6], etc., which all allow objects that do not match the stored models to
be segmented as foreground. These techniques can be robust to gradual changes
in the background [6] or even smooth and linear camera movements [7], but are
still unsuitable for use on a mobile robot. Robot camera movements are usually
too complex to be stabilized by motion-modeling algorithms and the limitless
variability of the shape, color, and texture of background features precludes the
use of standard feature-based background models. Consequently, foreground-
modeling techniques are generally the norm for robotics. The most common of
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these approaches models objects as a colored blob. While most of the existing
techniques can be used to detect multiple colored blobs, they usually do not en-
force the relative positioning or relative size of the blobs. For example a person
with a red hat and blue shirt would likely appear to be the same as a person
with a blue hat and red shoes. Also, these methods rarely incorporate shape due
to efficiency constraints. The method we developed improves the convenience of
previous techniques, enforces relative position and size of modeled objects, and
incorporates shape information without sacrificing speed [8].

4.2 Training

For our demonstration, the robot was trained to recognize three different pos-
tures from two different people, as well as a colored box (Table 1 second column).
The training process required a person to present each pose to a static robot
for about fifteen-seconds. During this period, an adaptive background modeling
technique [9] was used to segment the foreground object (Table 1 third column).
Segmented objects were normalized in terms of position and height and were
used to form models of the object’s shape and color.

Although human silhouette can be highly variable, there is enough regularity
to warrant a shape-based model. This was done by dividing the segmented and
normalized foreground object into a matrix of square blocks. A map is then gen-
erated that contains the likelihood that each block is part of the foreground or
background (Table. 1 forth column (Red corresponds to high foreground proba-
bility and blue to low probability)).

Given N training frames, the probability at each block i is:

pshape(i) =
1

N

N
∑

k=1

fgk(i) (2)

fgk(i) equals 1 if block i belongs to foreground in frame k, and 0 otherwise.

Color models were developed to exploit the fact that human figures usually
contain coloration that is less variable in the horizontal direction than in the
vertical direction. Variability usually occurs at the transitions between face and
shirt, shirt and pants, etc. Also, the relative size and location of these regions
remain reasonably consistent even as a human moves. We recorded this natural
grouping by dividing the object into a vertical stack of horizontal color bands,
where the size and position of each band was determined by the object’s colors.
Bands frequently corresponded with the face, shirt, pants, and shoes as seen
in Table 1 (fifth column). The color-values corresponding to each band were
modeled as a mixture of Gaussians in three-dimensional RGB color-space. In
addition to color composition, the model contained information about vertical
location, and size of the regions.

4.3 Detection and Tracking

Since humans tend to assume an upright posture, they will usually occupy a
larger proportion of an image in the vertical direction than they will in the
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horizontal direction. This property simplifies an object search because it allows
promising x-axis locations to be identified before considering y-axis locations.

For both x-axis and y-axis searches, pixels in the image were assigned a prob-
ability that represented the likelihood that the pixel’s color was present in the
foreground object space. Pixels with color values matching the most prominent
colors in the target model are assigned high probabilities, while colors not found
in the model are assigned a probability of zero. For a given model, the probabil-
ity that pixel i with color (xr ,xg,xb) belongs to the model is determined using
all Gaussians in all bands of the color model:

pcolor(i) =
1

Nbands

∑

bands

e
−

(

(xr−µr)2

2σ2
r

+
(xg−µg)2

2σ2
g

+
(xb−µb)2

2σ2
b

)

(√

2πσr

) (√

2πσg

) (√

2πσb

) (3)

a) X-axis b) Region

Fig. 3. X-axis/Region probabilities.

For the horizontal search, a summa-
tion was made for the resulting probabil-
ity values in each column of pixels. Local
maxima were then recorded as likely po-
sitions along the x-axis (Figure. 3 (a)).

A vertical search was conducted on
the region surrounding every probable x-
axis location using a similar technique.
This would yield locations along the y-
axis that had a high probability of match-
ing the vertical position and coloration of
the associated model (Figure. 3 (b)).

Fig. 4. Detection.

The object-shape probability map is
used for a final measure of similarity. Cer-
tain blocks of the shape-map will have a
high probability of falling on the figure
while other areas will have a low proba-
bility. The shape-based probabilities are
used to weight the color-based probabil-
ities for each region, in order to produce
a final similarity score. Regions corre-
sponding to high scores are considered
foreground (Figure. 4 (b)).

4.4 Efficiency

It should be noted that although every color region is represented by many Gaus-
sians and although the image is searched for each posture of each object, our
implementation allows this to be done quite efficiently. We use a one-time pre-
processing step that compiles the Gaussians into a 3D array indexed by (R,G,B).
With a single reference to this array, a probability measure can be obtained to
determine the likelihood that that a particular pixel is part of an object. This
optimization allows tracking to be performed in real-time (20 frames/sec) on a
modest 1 GHz computer, even when tracking over a dozen models.
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5 Experimental Setup and Results

Fig. 5. Experimental environment

We validated our approach with a Pi-
oneer 3DX mobile robot equipped with
a SICK LMS-200 laser rangefinder, two
rings of sonars, and a pan-tilt-zoom (PTZ)
camera. For robot control we use the
Player robot device interface [10]. We per-
formed the robot control experiments in
a classroom environment (Figure. 5). In
these experiments, two different users in-
teracted with the robot using three different postures: standing, arms-up, kneel-
ing (with object), and kneeling (without object).

The robot’s behavior primitives consist of: laser obstacle avoidance, attrac-
tion to a goal object, attraction to unoccupied space, attraction to walls, rear
sonar obstacle avoidance, tangent wall follow, circular avoid, and pick up and
drop objects. The behaviors produce a motor command output in the form of a
vector in the robot’s coordinate system. Using these behaviors we created a set
of fusion primitives and task controllers, which constitute our robot’s repertoire
of services. The robot’s tasks involve a series of visit-target and object-transport
tasks, representative for a service robot’s potential delivery scenarios. Each of
these tasks has a given priority and is associated with one of the users’ posture,
as shown in Table 2. The visit-target component of each task is a metabehavior,
whose goals are achieved when the robot is a particular distance with respect to
the target.

Table 2. Task requests. User row: The user # and posture type (Au=Arms Up,
Kn=Kneel, Ob=Object). Request row: The requested task. Action row: The task pushed
to or popped from the queue. Queue row: The queue contents. Current row: The task
currently being executed (’*’ indicates that the task was executed to completion).

User − 1 2 1 2 2 1 − − − − − −
Posture Ob AU Kn Kn Ob AU

Request T0 T3 T5 T1 T4 T6 T2
Priority low med med med high high high

Action push push push push push push pop pop pop pop pop pop
T0 T5 T1 T3 T6 T2 T6 T2 T3 T5 T1 T0

Queue T0 T5, T5, T3,T5, T6,T3, T6,T2, T2,T3, T3,T5, T5, T1, T0
T0 T1, T1, T5,T1, T3,T5, T5,T1, T1, T1, T0

T0 T0 T0 T1,T0 T0 T0 T0

Current T0 T3 T3 T3 T4 T4 T4* T6* T2* T3* T5* T1* T0

In addition to the above tasks, the robot is equipped with a wander task (T0),
which has a low priority and is executed whenever the robot has no requests to
service. The standing posture is not associated with any task, but serves as a
trigger from the visual awareness module that a user is in vicinity.
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In our experiments the two users requested services from the robot over an
extended period, in order to demonstrate the main features of our approach: 1)
awareness to the presence of multiple people during task execution, 2) ability to
handle multiple requests, 3) ability to handle task interruptions and 4) long-term
robot autonomy.

Upon starting, the robot begins wandering, while waiting for requests. If
the robot detects a user (through the standing posture), the robot interrupts
its task and reduces its speed. If within several seconds no new postures are
detected (i.e., no requests from the user), the robot resumes its task, ignoring
that user for some predefined period of time, unless the user later displays a non-
standing posture. This later step is needed to avoid infinite loops of attending to
a passer-by user. When the user displays a non-standing posture for a sufficient
duration, the robot queues the request and provides audible confirmation. The
robot ignores a person for a short period after they issue a request, and ignores
requests for tasks that are in the queue or are currently being executed.

We performed experiments for two different task request scenarios, with each
scenario repeated four times. We use the same sequence of requests for each
scenario to establish a baseline for evaluation, both from the perspective of task
execution (the control module) and posture recognition (the visual awareness
module). We used different priority schemes for each scenario.

Results. In both scenarios, the robot correctly identified the postures (and thus
the requests), made the correct decisions regarding priorities, and correctly exe-
cuted the tasks. All runs took approximately 20 minutes. In scenario 1, the only
error occurred in the fourth run, where the robot detected a request for task
4 instead of task 1. In the third run of scenario 2, the user made the mistake
of requesting task 6 before task 4. However, this being a change in scenario,
the robot correctly identified and serviced the requests. In both scenarios, the
robot processed tasks with highest priority first. For scenario 1, tasks with equal
priority were processed using LIFO (last-in-first-out), and for scenario 2, FIFO
(first-in-first-out) was used. Graphical results are shown for scenario 2 in Fig-
ure. 6. The Red squares mark the time when requests are received and green
squares represent task completion. Task progress is shown by incremented num-
bers. When an interrupted task is resumed, these numbers show that the robot
continues the task from where it left off.
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Fig. 6. Robot task execution and request identification. Red squares: New requests.
Green squares: Task completion. Blue triangles: Subtask completion with ID.
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6 Conclusion

In this paper we propose a framework for developing robot assistants that ad-
dresses two key issues of human-robot interaction: awareness of the environment
and other agents, and long-term interaction with multiple users. Our awareness
mechanism is built on visual capabilities that allow the robot to identify multiple
users, with multiple postures, in real-time, in dynamic environments where both
the robot and human users are moving. Long-term human-robot interaction is
supported by a novel control architecture that allows a robot to accommodate
multiple user requests and task interruptions and it enables the representation
of complex, sequential and hierarchical robot tasks. The architecture provides
the robot with flexibility in dealing with multiple users, such as to accommodate
multiple user requests and task interruptions, over extended periods. We vali-
dated our approach on a Pioneer 3DX mobile robot, performing service tasks in
a real-world environment.
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