
JOURNAL OF PHYSICAL AGENTS, VOL. 3 NO. 2 MAY 2009 59

A Flexible Control Architecture for Extended
Autonomy of Robotic Assistants

Christopher King, Xavier Palathingal, Monica Nicolescu, Mircea Nicolescu

Abstract—A major challenge in deploying robots into the real
world is the design of an architectural framework which can
provide extended, natural and effective interactions withpeople.
Within this framework, key issues that need to be solved relate
to the robots’ ability to engage in interactions in a natural way,
to deal with multiple users, and to be continually perceptive of
their surroundings. In this paper we propose a robot control
architecture that addresses these issues. Our architecture has
three main key features. First, it enables the representation of
complex, sequential and hierarchical robot tasks, typically needed
for service applications, in a behavior-based framework. Second,
it provides the robot with flexibility in dealing with multip le
users, such as to accommodate multiple user requests and task
interruptions, over extended periods. Third, through its visual
detection mechanism, the architecture allows the robot to identify
when people are requesting its interaction. We demonstrateour
approach on a Pioneer 3DX mobile robot, performing service
tasks in a real-world environment.

Index Terms—Human-robot interaction, behavioral robotics,
personal robots.

I. I NTRODUCTION

A MAJOR challenge in designing robots for service or
assistive applications is to enable natural and accessible

interaction between robots and non-technical users, while
ensuring extended, robust performance in complex, uncertain,
dynamic human environments [14]. While significant advances
have been made in increasing the complexity of tasks that
robots can perform, a limitation that prevents robots from
operating outside of the lab is that they lack the perceptual
abilities to perform in real-world applications. In most cases,
robots are programmed to execute a single task, which is
switched on/off by a programmer. Robots typically perform
these tasks “blindly”, being generally unaware of other people
and robots in the environment. In addition, such robots are
limited to performing the single task that the programmer had
requested. We propose a control architecture that introduces a
level of flexibility and perceptual ability that allows robots to
overcome traditional limitations and operate in more dynamic
settings. Our architecture equips robots with the ability to
monitor their surroundings and detect when other social agents
require their interaction. Our architecture provides the means
for long-term autonomy by enabling robots to manage a large
repertoire of tasks over extended periods. Finally, our system
is designed for realistic assistive applications, where multiple
people are simultaneously competing for the robots assistance.

E-mail: cjking|xavier|monica|mircea@cse.unr.edu
Computer Science and Engineering Department
University of Nevada, Reno.

Vision-based perception provides the richest information
required for effective human-robot interaction. In particular,
the ability to distinguish between different people and to
identify basic human postures is essential for the success of
the interaction. While significant work has been done in these
areas [2], [21], robust recognition routines are frequently too
computationally expensive to be run in real time on a robot,
especially when a robot must identify multiple object patterns
and in a dynamic, real-world environment. In this paper, we
describe a real-time identification and posture recognition al-
gorithm and we demonstrate its use in interactive experiments
using a mobile robot.

The contribution of this paper is a framework that addresses
three key issues for human-robot interaction in the context
of service applications: 1) complexity and robustness of task
representations, 2) long term interactions with the environment
and other agents, and 3) detection and recognition of multiple
users.

The remaining of the paper is structured as follows: Sec-
tion II gives a discussion of related work. Section III presents
our interactive framework, Section IV describes our control
architecture, Section V discusses our vision-based perceptual
approach and Section VI describes the experimental setup and
results. Finally, Section VII contains our conclusion.

II. RELATED WORK

The importance of developing robots that can provide
useful services has been widely recognized and shown by
the numerous application domains for which robots have been
designed: agriculture and forestry, mining and construction [5],
exploration and inspection [30], undersea applications [35],
cleaning [11], education [26], search and rescue [22], space
exploration [3], medicine and health [18]. In these approaches,
the interaction between humans and robots is mostly a means
for performing a job, in which the robots are regarded as tools
that can be instrumented (i.e., tele-operated) toward achieving
some desired goals.

The nature of applications for service and assistive robotics
requires a different level of autonomy and interaction, in
which the robot is regarded as a partner [9] to the human
user. A significant effort in this area has been shown in
designing entertainment and toy robots [32], [20], in which
the focus is on designing robots that exhibit social, human-
like characteristics: expressing or perceiving emotions,being
sociable [8], establishing or maintaining relationships,and
making friends [1]. For domains such as service or assistive
applications [16], [27], a significant challenge is that robots not

60 JOURNAL OF PHYSICAL AGENTS, VOL. 3 NO. 2 MAY 2009

only can express but also understand this wide range of social
cues. In this context, awareness of the world [10], [33] serves
to achieve better interaction between humans and robots. To
date, the issue of awareness for human-robot interaction has
mostly been addressed as enhancing a human’s awareness of
the robot’s activities [12]. With social interactions becoming
more prevalent in the robot domain, it is important that
the focus shifts toward increasing the robot’s awareness of
the world and humans around it. The approach we propose
in this paper provides new capabilities that allow robots to
perform in highly interactive environments, with numerous
users, and multiple requests. We are able to achieve this
interaction without resorting to complex hybrid architectures
found in previous systems [6], [7]. Our system allows for
the representation and execution of hierarchical tasks (typical
for hybrid systems) within the framework of behavior-based
systems, using a unique representation throughout the entire
architecture. With our proposed architecture, a robot can pro-
vide service over extended periods (limited mostly by battery
power requirements), with no intervention or help from the
human designer.

III. I NTERACTIVE FRAMEWORK

The problem we address in this work is aimed at increasing
a robot’s autonomy over extended periods, and providing it
with the skills needed in typical service or assistive application
domains.

A service or personal robot will most likely have to perform
in the presence of multiple users. This imposes constraintson
the robot’s behavior, as it will have to adjust its executionto
accommodate several users who may solicit its attention and/or
services during overlapping intervals. A typical example of
such a situation is making a request to a robot while it is still
working on another, previously assigned task. The robot needs
to handle such situations appropriately: First, it should be
detect the new call and interrupt its current activity to receive
the request, it should then make appropriate action regarding
which task to pursue next. The situation may further be
complicated by different levels of authority existent between
users, or by various priorities of the requested tasks.

Our framework for enabling this functionality consists of
two computational modules forvisual detectionand control,
linked into a unified control architecture. The role of thevisual
detectionmodule is to identify, at any time, if any known users
are attempting to interact with the robot. This module relies
on postures of people that the robot is trained to recognize (as
described in Section V). If any person/posture is detected,this
information is transmitted to thecontrol module, which takes
appropriate decision on what the robot should do next. If the
posture is only detected for a brief time, this represents a case
in which the person was merely a passer by. However, if the
posture persists in the robot’s visual field, this is an indication
that a person is trying to get the robot’s attention. The job of
the control module is to decide on the appropriate action to
take in these circumstances.

As previously mentioned, in our system the robot is trained
to recognize models of human users, consisting of different

postures from different people. Currently, the robot associates
each posture with a different task (robot service) that the
users would like to request from the robot. Each task has an
associated priority, which is eitherlow, regular or high. When
a posture is detected, the robot starts performing the service
associated with that posture, unless the robot was already
engaged in a task of higher or equal level of priority. In this
situation, the robot adds the new request to a queue of tasks,
and continues with its previous task execution. However, ifa
higher-level request is received, the robot switches to thenew
task, and moves the currently executing task to the queue.
The robot processes the tasks from the queue based on their
priority and incoming order. Our architecture provides the
flexibility of using different priority queue strategies, as will be
demonstrated in the experimental results. This prioritized task-
switching process is typical for the types of decisions people
make in their daily activities, and is also expected to occurin
the service robot domain. While people perform this activity
switching with great ease, the difficulty for the robots is to
keep track of the status of the tasks when they are interrupted,
such that the task could be resumed from the same point at
a later time. This poses a significant challenge for the control
architecture and the corresponding task representations.In this
paper, we propose a behavior-based control architecture, which
through its representations lends itself naturally to recovering
from interrupted tasks, without the need to explicitly store any
additional state information. This architecture is described in
the next section.

IV. CONTROL ARCHITECTURE

The architecture we propose in this paper is aimed at
providing an appropriate infrastructure for executing complex,
sequential and hierarchical tasks, similar to what robots might
have to perform in real-world applications. We base our
approach on the Behavior-Based Control (BBC) paradigm,
one of the most popular approaches to embedded and robotic
system control. The contributions of the proposed control
architecture are that1) It enables the use of both command
arbitration and fusion within a single control representation
and that2) it allows the encoding and robust execution of
sequential and hierarchical tasks. Historically, the two main ac-
tion selection mechanisms ofarbitration andfusionhave been
mostly employed separately in robot control [28], thus limiting
the range of tasks that robots can execute. By recognizing the
ability of arbitration to encode temporal sequences and the
ability of fusion to combine concurrently running behaviors,
we merge the strengths and features of both within a unique
task representation. For behavior representation we use a
schema-based approach, similar to the work in [4]. This choice
is essential for the purpose of our work because schemas with
BBC provide a continuous encoding of behavioral responses
and a uniform output in the form of vectors generated using
a potential fields approach.

Our controllers (Fig. 1) are built from two components:
behavior primitives(BPs) andfusion primitives(FP), which
through the combination processes described below result
in controllers in the form ofbehavior networks[25]. The

KING ET AL.: A FLEXIBLE CONTROL ARCHITECTURE FOR EXTENDED AUTONOMY OF ROBOTIC ASSISTANTS 61

behavior primitivesperform a set of actions under given (rel-
evant) environmental conditions. These primitives are meant
to express the basic, general capabilities of the robot and need
not be oriented to accomplishing a broad range of tasks. A
fusion primitiveencapsulates a set of multiple concurrently
running primitive behaviors through linear combination ofthe
motor commands. Each primitive behavior component brings
its own contribution to the overall motor command. These
contributions are weighted and fused through vector addition.
For example, anobstacle avoidancebehavior could have a
higher impact thanreaching a target, if the obstacles in the
field are significantly dangerous to the robot. Alternatively,
in a time constrained task, the robot could give a higher
contribution to getting to the destination than to obstacles
along the way. These weights affect the magnitude of the
individual vectors coming from each behavior, thus generating
different modalities of execution for the task.

Fig. 1. Top: Representation of a generic behavior network, built of fusion
primitives. Bottom: a sample behavior network. The links between fusion
primitives represent task-specific precondition-postcondition dependencies.

A. Fusion Primitives

Eachfusion primitive(Figure 2) has a representation of the
goals it achieves, expressed as abstracted environmental states.
The state of the goals is continuously monitored and updated
from sensory data. The componentbehavior primitivesre-
ceives information from the sensors, which is first used to
detect if the behavior is active or not, given its preconditions.
For example, in anobstacle-avoidancebehavior, the presence
or absence of an obstacle is abstracted from the range-finder
information. If an obstacle is present, the precondition ismet
and the behavior is active. Otherwise, the behavior remains
inactive. Theactive/not activestatus of all behavior primitives
is encoded in an-dimensional vector, wheren is the number

of BPs. This vector, which we call abehavior applicability
condition (BAC), contains for each behavior a1 or a 0,
depending on whether the behavior is active or not. For a given
set of n primitive behaviors, theoretically there could be2n

combinations representing whether then behaviors are active
or not, based on their pre-conditions. Practically, this number is
much smaller, due to the fact that some behaviors are triggered
by similar environmental conditions (such as the presence of
an obstacle, for example), and thus some combinations are
impossible to achieve. For each possible BAC, thefusion
primitive has a different set of fusion weights, which are used
for behavior combination. The sets of weights for the multiple
possible BACs are stored in a table, as shown in Figure 2. The
index of each row in the table is the decimal equivalent of the
n-bit BAC value.

Fig. 2. Representation of a fusion primitive: Sensory inputactivates a
corresponding set of stored weights (BAC) to fuse the underlying behavior
primitives (BP).

The weights from the corresponding BAC modulate the
magnitude of control vector output by the individual primi-
tives, thus influencing the resulting command from fusion and
consequently the way the robot interacts with the world. At
each time stept, eachbehavior primitiveBP i provides a re-
sponse output vectorvt

i , which represents a desired heading for
the robot. Thefusion primitive’soutput is a linear combination
of the vectors[vt

1 · · · v
t
n], according to the BAC superposition

weightsW t = [wt
1 · · ·w

t
n]:

V t
r =

n
∑

i=1

wt
iv

t
i (1)

We consider heading to be the most important consideration
for behavior fusion in 2D navigation1. Consequently, we
normalize command vectors to unit length.

The multiple BACs represent different environmental situa-
tions, since different behaviors are “applicable” in each case.
The weights of behaviors within each BAC encode the mode
of performing the current task given the situation and, thus

1Speed could easily be incorporated into our formulation. However speed
is marginalized over time by the slow drive of our robots.

62 JOURNAL OF PHYSICAL AGENTS, VOL. 3 NO. 2 MAY 2009

within each BAC, the weights of the applicable behaviors are
constant. For example, for atarget reachingtask, the robot
could behave under the influence ofcorridor-follow, target-
follow and avoid-obstaclebehaviors if in the presence of
obstacle, but would behave only under the influence oftarget-
follow if in an open space.

Inferring the fusion weights is a challenging task that would
normally require time-consuming fine-tuning. In a previous
work, we developed a method that allows weights to be learned
through human-provided demonstration [23]. A controller,
using weights evolved in this manner, was shown to be
sufficiently robust to handle complex environments. Using this
method, we trained a single controller to drive the robot for
all our experiments.

B. Hierarchical Task Representations

With fusion primitives alone, a controller can only en-
code flat representationsof tasks involving sequencing of
fusion primitives. While such an architecture is expressive
and flexible, it does not have the modularity needed when
new, more complex tasks would have to be created from
already existing ones. The best solution would be to specifya
new task using abstractions of these existing modules, rather
than combining their underlying behaviors into a larger, flat
network. We enable this higher-level of representation by
grouping fusion primitives intobehavior networks[19], [25].
Behavior networks can be nested, allowing for the construction
of hierarchical representations of robot tasks. In these net-
works, the links between components represent task-specific
precondition-postcondition dependencies. These links provide
a simple and natural way of representing complex sequences of
activities and also of hierarchically structured tasks (Figure 3).

We use the termmetabehaviorto describe both fusion
primitives and nodes of a behavior network in that both have
similar functions in the network. Each metabehavior encap-
sulates information about the behavior’s preconditions and
its goals (postconditions). These conditions are continuously
monitored whenever the behavior is active, in order to ensure
the proper execution of the task. The postconditions of a
behavior network node will be true when the execution of
the subnetwork it represents is finished. The only difference
between a behavior network node and a fusion primitive is that
it activates underlying metabehaviors, while a fusion primitive
activates only its component primitive behaviors. Thus, when
a metabehavior is not active, all subordinate metabehaviors
are disabled, and therefore can be regarded as not relevant to
the task. When a behavior network node becomes active, all
its underlying components are enabled, and the subnetwork
becomes the current “network” that is being executed. When
the execution of the subnetwork finishes, the behavior network
node updates its goal status. Since the successor behaviors
continuously check this status, they will detect the achievement
of that goal and the execution continues with the new network
node. To perform tasks encoded with this representation, the
robot starts by activating the metabehavior at the topmost level
in the task. The execution of the task’s steps proceeds as
described above.

Fig. 3. A generic hierarchical task representation. The links between
fusion primitives in the behavior network represent task-specific precondition-
postcondition dependencies.

In this architecture, using the links as task-specific activation
conditions enables the reusability of behaviors and run-time
reconfiguration of robot tasks. The behavior network represen-
tation has the advantage of being adaptive to environmental
changes, whether they be favorable (achieving the goals of
some of the behaviors, without them being actually exe-
cuted) or unfavorable (undoing some of the already achieved
goals). Since the pre and post-conditions of behaviors are
continuously monitored, the system executes the behavior that
should be active according to the current environmental state,
thus providing the robot a sense of “awareness” about its
progress in the task. With these capabilities, the architecture
enables the robot to keep track of the completed parts of
the task, which allows dealing with task interruptions without
any additional modifications. When a task is interrupted, its
execution is suspended, but the behaviors preserve the current
status of execution. When the task is resumed, the information
implicitly stored in the behavior network controller enables
the robot to continue the task from the point where it was
interrupted. The behaviors’ continuous grounding in sensory
information allows the robot to correctly perform the task,
even if the environmental conditions have changed since the
task was suspended.

V. V ISION-BASED HUMAN POSTURERECOGNITION

The role of thevisual awarenessmodule is to provide
the robot with the capability of detecting the presence of
humans that might be interested in interacting with the robot.
Toward this end, we developed visual capabilities that can
recognize human postures that are likely to be relevant to the
robot-human interaction. The postures are described belowand
examples are shown in Fig. 4 (first row).
The Standing Posture− The most obvious posture to rec-
ognize as it is displayed frequently and is often an indication

KING ET AL.: A FLEXIBLE CONTROL ARCHITECTURE FOR EXTENDED AUTONOMY OF ROBOTIC ASSISTANTS 63

that a human is on the move or engaging in a task.
Arms-Up Posture − Humans learn at a young age that they
can attract another’s attention by raising their hand and a robot
should respond accordingly.
Kneeling Posture − Since many robots are significantly
smaller than humans are, one must crouch or kneel to pass
an object to, or take an object from the robot’s gripper. A
robot should therefore recognize a crouching human and be
able to determine if the human is holding an object.
Object Posture − Held-objects were trained independently
from the human. This increases model robustness and allows
the robot to orient itself toward the object.

Standing Kneeling Arms-up Object

Fig. 4. Set of postures. First row: original images. Second row: detected
foreground. Third row: shape model. Fourth row: color model.

A. Related Work in Visual Identification / Tracking

The identification and tracking of objects in a video feed
is reasonably easy when a relatively static background can
be maintained. In the simplest case, background pixels are
modeled using a single video-frame, or they can be repre-
sented using Gaussian [31] or non-parametric distributions
[13]. Models can be adaptive to slowly changing conditions
[13], [24], [34], and even robust to smooth and linear camera
movements [17]. In all these cases, pixels in subsequent frames
are compared to the background model. If the pixel features
(e.g., color, texture, motion) are inconsistent with the model,
they are grouped and segmented as foreground.

Despite the success of background modeling techniques,
they are unsuitable for use on a mobile robot in an uncontrolled
environment. Camera movement is usually too complex to be

stabilized by motion-modeling algorithms and the limitless
variability of the shape, color, and texture of background
features precludes the use of standard feature-based back-
ground models. Consequently, robotics applications typically
use foreground-modeling techniques, which use object features
to identify and track the object. Foreground modeling tradi-
tionally requires an offline acquisition period where values
in the foreground models are assigned or trained. The robot
is then switched to a tracking phase, where it searches each
incoming image for a region that is sufficiently similar to the
model.

A foreground modeling technique commonly used in robotic
applications models an object as a colored blob. During
acquisition, users must manually select a region of interest
in the image. This process can be repeated on the same
object under different lighting conditions and the algorithm
will assign a range of values to represent the region. Schlegel
et al. [29] automates this process by requiring users to stand
directly in front of the robot’s camera for an ’introduction’.
The system then generates a two-dimensional color histogram
(in red-green chrominance space) describing a rectangular
region on the user’s chest. Though this approach offers some
convenience, it requires users to stand in a specific location
during training and the resulting model can only be used to
track colors corresponding to the user’s shirt.

B. Overview of Approach

Our proposed method improves the convenience and speed
of previous techniques, and is particularly suitable for robotic
applications. Unlike [29], the training stage is fully automated,
by using a background modeling technique to segment the
person from the background. This allows the subject to move
freely during the training stage. We also propose improvements
to Schlegel’s color modeling approach [29]. Instead of mod-
eling a single region of color within the object, we identify
and model multiple color-regions. Each region is modeled in
three-dimensional RGB color-space, and is represented as a
mixture of Gaussians. For increased robustness, our model also
incorporates shape information without sacrificing speed.

The following sections describe how models are generated
during training, how these models are used to locate and track
users and their postures, and presents some implementation
optimizations that allow for real time operation, even while
searching for multiple models.

C. Training

Each posture from each person is separately trained during
an off-line acquisition process from a stationary robot. Cur-
rently, training requires users to interact with a GUI. However,
it would be relatively straight forward to automate the process
in the future. Training requires a minimum of 5 seconds per
posture and continues until the model stabilizes.

Before the object can be modeled, it must be segmented
from the image. Segmentation is accomplished using an
adaptive background modeling technique similar to the one
described in [24]. Each pixel of the background is modeled as
a Gaussian distribution in the RGB color space, with the mean

64 JOURNAL OF PHYSICAL AGENTS, VOL. 3 NO. 2 MAY 2009

(µr,µg,µb) and standard deviation (σr,σg,σb). For each new
pixel (xr,xg,xb), the Gaussians are updated using a learning
rateα, as follows:

µi = αxi + (1 − α)µi (2)

σ2
i = max(σ2

min, α(xi − µi)
2 + (1 − α)σ2

i) (3)

wherei = r, g, b.

The σ2
min term is introduced to prevent the variance from

decreasing below a minimum value when the background
remains constant for a long period.

Object segmentation is accomplished by comparing new
pixels to the background model. A pixel is labeled as part
of the foreground object if, for any value:

(xi − µi)
2 > (2σi)

2 (4)
wherei = r, g, b.

Segmented pixels are grouped together as connected-
components to form a blob corresponding to the target object.
Examples of a segmented image are shown in Fig. 4 (second
row). As described in the next sub-sections, the segmented
objects from each frame are combined to produce shape and
color models.

1) Modeling Shape:Despite the fact that a human sil-
houette can be highly variable, there is enough regularity to
warrant the inclusion of a shape-based model. The segmented
foreground region from each frame is first normalized in terms
of position and height, then quantized into a 32×w array of
square blocks, wherew is a function of the object’s height to
width ratio.

A map is then generated that contains (for each block) the
likelihood of that block being a part of the foreground. Given
N training frames, the probability at each blocki is:

pshape(i) =
1

N

N
∑

k=1

fgk(i) (5)

where fgk(i) is 1 if block i belongs to the foreground in
framek, and 0 if it belongs to the background.

High values in this map thus correspond to regions that are
likely to be foreground and low values correspond to likely
background regions. An illustration is provided in Fig. 4 (third
row), where bright red regions correspond to foreground, blue
regions correspond to background and black regions do not
strongly correspond to either region.

2) Modeling Color: A common characteristic of human
figures is that color remains relatively constant in the horizon-
tal direction, while demonstrating more variability vertically.
Variability usually occurs at the transitions between the hair
and face, face and shirt, shirt and pants, and pants and shoes.
It should also be noted that the relative size and location of
these regions remain reasonably consistent even as a human
moves.

To exploit the natural grouping of colors, our approach
divides a target object into a vertical stack of horizontal
color bands. We use 32 bands to represent our models. This

number was selected because it provides sufficient resolution
for representing the object, and because it allows for certain
optimizations on a 32-bit system. Each band is modeled
separately using a mixture of Gaussians.

During training, the foreground region is normalized in
terms of height and quantized into the 32 bands. The pixel-
values corresponding to each band are then accumulated into
a histogram in RGB color space. At the end of the training
period, the histogram is modeled as a mixture of Gaussians.

To produce a more robust representation of the object,
adjacent bands are merged if their color distributions are
sufficiently similar. Grouping begins with the most similar
bands and continues with progressively less similar bands until
the model is reduced to between one and six regions. Fig. 4
(forth row) shows the color distribution of each object. Colors
are arranged so that the most dominant values are shown on
the left and the least dominant on the right. The red lines
delineate the regions after merging.

The resulting model contains information about the color
composition, vertical location, and size of the prominent
regions of color within an object and can be used for the
detection and tracking of the object in a video sequence.

D. Detection and Tracking

Since humans tend to assume an upright posture, they
will usually occupy a larger proportion of an image in the
vertical direction than they will in the horizontal direction.
This property simplifies an object search because it allows
promising x-axis locations to be identified before considering
y-axis locations.

Every pixel in the image is assigned a probability, which
represents the likelihood that that pixel color is present in
the foreground object. Pixels with color values matching the
most prominent colors in the target model are assigned high
probabilities, while colors not found in the model are assigned
a probability of zero. For a given model, the probability
that pixel i with color (xr,xg,xb) belongs to the model is
determined using all Gaussians in all bands of the color model:

pcolor(i) =
1

Nbands

∑

bands

e
−

(

(xr−µr)2

2σ2
r

+
(xg−µg)2

2σ2
g

+
(xb−µb)2

2σ2
b

)

(√
2πσr

) (√
2πσg

) (√
2πσb

)

(6)

The resulting probability values are then summed for every
column of pixels to form a probability distribution with respect
to the x-axis. The most prominent local maxima in this
distribution are identified as promising x-axis locations.An
example of such a probability mapping is shown in Fig. 5(a).

For each x-axis candidate, a 16-pixel wide column is
defined, centered at the x-location. Pixels in every row of the
column are assigned probability values, which represent the
likelihood that the pixel’s color is present in the corresponding
object-color-region. Probabilities are determined as in Eq. 6,
but with the sum computed over bands in that region. Probabil-
ities are summed for every row, to find the y-axis distribution.

KING ET AL.: A FLEXIBLE CONTROL ARCHITECTURE FOR EXTENDED AUTONOMY OF ROBOTIC ASSISTANTS 65

a) X-axis candidates b) Region probabilities
Fig. 5. Person detection and tracking.

Fig. 5(b) shows a model, which has been divided into four
prominent regions. Probability mappings for each region are
superimposed on the image.

As seen in Fig. 5(b), the probability maps tend to be
high within the areas of their corresponding colors and the
intersection between two probability mappings offer a good
estimation of the border between adjacent colors. This effec-
tively determines the location and vertical size of each region
of color within an object.

In order to determine a final measure of similarity, the
object-shape probability map is incorporated. As described
previously, certain blocks of the shape-map will have a high
probability of falling on the figure while other areas of the
map (typically towards margins) will have a low probability.
The shape-based probabilities are used to weight the color-
based probabilities for each region, in order to produce a final
similarity score.

E. Efficiency

It should be noted that although the model describing
each object can comprise as many as six different color
regions, each containing several Gaussian distributions,our
implementation executes a one-time preprocessing step that
compiles the Gaussians into a 3D array indexed by (R,G,B).
With a single reference to this array, a probability measurecan
be obtained to determine the likelihood that that pixel is part of
an object. If the probability of being present in an object was
greater than zero, up to 6 additional arrays can be referenced
to determine the probability that the pixel is contained in the
object’s sub-regions. These optimizations allow the tracking
to be performed in real-time (20 frames/sec), even when 15
models are involved, and on a modest 1 GHz computer.
Although the probability arrays require more memory than
any other data structure, the color-space is sub-sampled to
minimize the demands. The current implementation quantizes
the color-space into 32×32×32 = 32,768 different colors, and
requires a total of 64-bits to store the region and sub-region
probability values. This requires about 262 KB of memory per
model.

VI. EXPERIMENTAL SETUP AND RESULTS

We validated our approach with a Pioneer 3DX mobile robot
equipped with a SICK LMS-200 laser rangefinder, two rings
of sonars, and a pan-tilt-zoom (PTZ) camera. For robot control
we use the Player robot device interface [15]. Our validation
consists of quantitative and qualitative evaluation for the visual
awarenessand therobot controlmodules.

A. Validation of Visual Awareness

Tracking and distance estimation.We tested the tracking
component using an experiment where the robot was pro-
grammed to pursue a person. Computation of the person’s
distance from the robot was based on the camera calibration
procedure described in [36] and on the assumption that the
floor is flat and the person’s feet are always on the floor.

For this trial, the robot accurately pursued a human-target,
who alternated between forward and backward movement
through a 100 meter-long hallway. Frames from the robot’s
camera are shown in Table I, where the green rectangle and
the green outline have been generated by the detection and
tracking module. In order to assess the accuracy of distance
estimation, the computed positions at each displayed frame
are shown together with those obtained from the robot’s laser
rangefinder (ground truth).

It is worth emphasizing that the experiment illustrates the
ability to perform real-time tracking and distance estimation
for a moving target while the robot (and its camera) is also
moving.

TABLE I
TRACKING DISTANCE ESTIMATION.

100 200 300 400 500 600 700 800 900

7.3 8.3 7.3 7.3 6.4 5.8 5.8 5.8 7.0
7.7 8.2 7.3 7.3 6.8 5.6 6.1 6.3 6.6

Top Row: Frame number.2nd row: Frame image.3rd row: Estimated distances
(meters).4th row: Ground truth (laser) distances.

Posture recognition− qualitative validation. Fig. 6 shows
the recognition of postures in the presence of multiple persons.
The system was trained on postures from 3 users (which
are correctly recognized), while the 2 unknown users are
(correctly) ignored. This experiment shows that the approach
can robustly detect and track multiple postures from multiple
users, while ignoring irrelevant persons in a possibly crowded
environment.
Posture recognition− quantitative validation. To quantita-
tively estimate the recognition accuracy, we trained the system
on 5 users with 3 postures each. After training, subjects were
asked to display each posture for about 30 seconds, while
they moved through the camera’s field of view. Measurement
of correct posture frequency commenced 10 frames after each
change in posture and was continued for 200 frames. In this

66 JOURNAL OF PHYSICAL AGENTS, VOL. 3 NO. 2 MAY 2009

Fig. 6. Posture recognition− qualitative validation. Modeled users: red,
orange, blue shirt. Unknown users: black, green shirt.

scenario, both training and testing was conducted from a
stationary robot. The robot was not moved between training
and testing periods. Table II shows the percentage of frames
in which the algorithm correctly recognized the postures.

TABLE II
POSTURE RECOGNITION− QUANTITATIVE VALIDATION

User1 User2 User3 User4 User5
Standing 92.5% 91% 99.5% 100% 100%
Kneeling 97% 98% 99% 100% 100%
Arms-up 95.5% 100% 100% 99% 100%

Postures were trained and then tested for 200 frames. Table displays percent-
age of frames that contained the correctly identified posture.

B. Validation of Robot Control

We performed the robot control experiments in a classroom
and an office building setup, as shown in Fig. 7. In these
experiments two different users interacted with the robot.For
each user, the robot was trained to detect the following pos-
tures:standing, arms-up, kneeling (with object), andkneeling
(without object), using the method described in Section V.

Office building Classroom

Fig. 7. Experimental setup for real-world environment

The robot’s set of behavior primitives consists of: laser
obstacle avoidance, attraction to a goal object, attraction to
unoccupied space, attraction to walls, rear sonar obstacle
avoidance, tangent wall follow, circular avoid, and pick upand
drop objects. The behaviors produce a motor command output
in the form of a vector in the robot’s coordinate system. With
these behaviors we created a set of fusion primitives and task
controllers, which constitute our robot’s repertoire of services.
As mentioned previously, we used the method described in

TABLE III
ASSOCIATION BETWEEN USER POSTURES AND TASKS.

Posture Kneeling Arms Up Kneeling
ID with object
User 1
Task Code T1 T2 T3
(Priority) (Medium) (High) (Medium)
Sequence Drop object→ Visit(Target3)→ Take object→

Visit(Target1)→ Visit(Target1)→ Visit(Target3)→
Visit(Target3)→ Visit(Target3)→ Visit(Target2)→
Visit(Target2)→ Visit(Target3)→
Visit(Target3)→

User 2
Task Code T4 T5 T6
(Priority) (High) (Medium) (High)
Sequence Drop object→ Visit(Target2)→ Take object→

Visit(Target1)→ Visit(Target3)→ Visit(Target1)→
Visit(Target3)→ Visit(Target1)→ Visit(Target3)→
Visit(Target2)→ Visit(Target2)→

The identification of postures triggers the robot to visit a series of targets as
outlined in this table. Priority levels dictate which sequences are completed
first.

[23] to train the robot’s controller. The robot’s tasks consist
of a series of target reaching and object transport duties. To
complete a task, a robot must visually locate and drive to
all targets in the correct succession. We selected these duties
because they are similar to what a service delivery robot might
encounter and because they can be easily achieved by our
current platform, though our approach should work well with
other duties or platforms. Each of these tasks has a given
priority and is associated with one of the users’ posture, as
shown in Table III. Thevisit targetcomponent of each task is
a metabehavior, whose goals are achieved when the robot is
at a specified distance with respect to the target.

In addition to the above tasks, the robot is equipped with a
wandering task (T0), which has alow priority and is executed
as long as the robot has no requests to service. The standing
posture is not associated with any task, but rather serves as
a trigger from thevisual detectionmodule that a user is in
vicinity.

In our experiments the two users requested services from the
robot over an extended duration, in order to demonstrate the
main features of our approach: 1) ability to detect the presence
of multiple people, 2) ability to handle multiple requests,
3) ability to handle task interruptions and 4) extended robot
autonomy.

The behavior of the robot equipped with these capabilities
follows a natural type of social interaction. Once thedetection
and control modules are started, our robot is in complete
control of its own capabilities and decides for itself what
activities it needs to perform. Immediately upon starting,the
robot begins wandering, waiting for any requests for services
from human users. If the robot detects a user (through his/her
standing posture), the robot briefly interrupts its task, and
slows down until the user approaches it at a given distance. If
within several seconds no new postures are detected (i.e., no
requests from the user), the robot resumes its task, ignoring
that user for some predefined period, unless the user later
displays a non-standing posture. This later step is needed in
order to avoid infinite loops of attending to a passer-by user.
In the case when the user displays a non-standing posture, the

KING ET AL.: A FLEXIBLE CONTROL ARCHITECTURE FOR EXTENDED AUTONOMY OF ROBOTIC ASSISTANTS 67

TABLE IV
SEQUENCE OF TASK REQUESTS FOR THE FIRST SCENARIO.

Posture detected Request Robot action Current task Task queue
None None Robot starts off wandering T0 NULL

User1kneeling T1 Switch to T1 T1 T0

None None Robot finishes T1, switches to T0 T0 NULL

User1w/ object T3 Switch to T3 T3 T0

User1arms up T2 Switch to T2 T2 T3, T0

User2kneeling T4 No switch, continues with T2 T2 T4, T3, T0

None None Robot finishes T2, switches to T4 T4 T3, T0

None None Robot finishes T4, switches to T3 T3 T0

None None Robot finishes T3, switches to T0 T0 NULL

User2arms up T5 Switch to T5 T5 T0

User2w/ object T6 Switch to T6 T6 T5, T0

User1kneeling T1 No switch, continues with T6 T6 T1, T5, T0

None None Robot finishes T6, switches to T1 T1 T5, T0

None None Robot finishes T1, switches to T5 T5 T0

None None Robot finishes T5, switches to T0 T0 NULL

robot turns and approaches the person (if it has not done so
already). If the posture is detected for more than a few seconds,
this is an indication that a new task has been requested. To
avoid multiple detections, the robot ignores a person that had
just requested a new task for a predefined period, and also
ignores requests for tasks that are either in the queue or that are
currently being executed. Currently, the robot produces various
motor sounds to provide users with feedback that a task request
was received. In future implementations we will include an
auditory recognition module and speech synthesis capabilities,
such that the robot could provide feedback through verbal
communication.

We performed experiments for two different task requests
scenarios, with each scenario repeated four times. We choseto
use the same sequence of requests for each scenario, in orderto
establish a baseline for evaluation, both from the perspective of
task execution (thecontrol module) and from the perspective of
the posture recognition (thevisual detectionmodule). For each
scenario we used a different task priority scheme, as described
below. In tables IV and V we show the sequence of tasks that
were requested during the two scenarios, and we also indicate
the correct robot action response for further validation with
the experimental results.

Results from Scenario 1.Each run took approximately 20
minutes. During the course of the experiment, the robot
correctly identified the postures (and thus the requests) in
every case but one. It took the correct decisions regarding
which tasks to perform (given priorities and incoming order)
and it correctly finished executing all tasks. The only error
occurred in the fourth run, in which the robot detected a
request for task 4 instead of task 1. During this run, the priority
method used was to process tasks with highest priority first;for
tasks of equal priority, a LIFO (last-in-first-out) method was
used. Fig. 8 (a) shows the order in which the robot received
and serviced the requests during the four runs for scenario
1. The moments of time when the requests are received are
indicated by red squares. Green squares indicate the time

of task completion. Task lines that are interrupted without
a marker indicate switches from the current task to a task
of higher priority. Requests that are not serviced immediately
after they are received belong to tasks that are of lower or equal
priority with the task currently being executed. The plots show
the moments of time when these tasks are serviced from the
robot’s task queue.

Results from Scenario 2.Each run took approximately 20
minutes. During the course of the experiment, the robot
correctly identified the postures (and thus the requests), took
the correct decisions regarding which tasks to perform (given
priorities and incoming order) and it correctly finished exe-
cuting the tasks. The only difference in execution occurred
in the third run, in which the users requested task 6 before
task 4. However, this being a change in scenario, the robot
correctly identified and serviced the requests. During thisrun,
the priority method used was to process tasks with highest
priority first; for tasks of equal priority, a FIFO (first-in-first-
out) method was used. Fig. 8 (b) shows the order in which
the robot received and serviced the requests during the four
runs for scenario 2. For these experiments we also recorded
the progress of the robot in each task, to demonstrate that
the robot is able to keep track of what parts of each task
have been finalized. As a result, the figure shows that if the
robot is interrupted in the middle of a task, upon resuming
its execution the robot will continue from the point where the
task was interrupted, instead of performing it from the start.
This behavior is shown in the execution of task 3: the task
is interrupted after performing its first two steps; when the
robot resumes the task it only performs the last (third) step
to complete it, showing that it remembered what parts of the
task have already been done.

VII. C ONCLUSION

In this paper we propose a framework for developing
robot assistants that addresses two key issues of human-robot
interaction: the ability to detect and recognize multiple users,

68 JOURNAL OF PHYSICAL AGENTS, VOL. 3 NO. 2 MAY 2009

TABLE V
SEQUENCE OF TASK REQUESTS FOR THE SECOND SCENARIO.

Posture detected Request Robot action Current task Task queue
None None Robot starts off wandering T0 NULL

User1w/ object T3 Switch to T3 T3 T0

User2arms up T5 No switch, continues with T3 T3 T5, T0

User1kneeling T1 No switch, continues with T3 T3 T5, T1, T0

User2kneeling T4 Switch to T4 T4 T3, T5, T1, T0

User2w/ object T6 No switch, continues with T4 T4 T6, T3, T5, T1, T0

User 1arms up T2 No switch, continues with T4 T4 T6, T2, T3, T5, T1, T0

None None Robot finishes T4, switches to T6 T6 T2, T3, T5, T1, T0

None None Robot finishes T6, switches to T2 T2 T3, T5, T1, T0

None None Robot finishes T2, switches to T3 T3 T5, T1, T0

None None Robot finishes T3, switches to T5 T5 T1, T0

None None Robot finishes T5, switches to T1 T1 T0

None None Robot finishes T1, switches to T0 T0 NULL

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1

2

3

4

5

6

7
Task performance (Run 1)

T
as

k
ID

Time [frame number]

T1

T3
T2

T4
T5

T6

T1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1

2

3

4

5

6

7
Task performance (Run 2)

T
as

k
ID

Time [frame number]

T1

T3
T2

T4
T5

T6

T4

0 2000 4000 6000 8000 10000 12000
−1

0

1

2

3

4

5

6

7
Task performance (Run 3)

T
as

k
ID

Time [frame number]

T1

T3
T2

T4
T5
T6

T1

0 2000 4000 6000 8000 10000 12000
−1

0

1

2

3

4

5

6

7
Task performance (Run 4)

T
as

k
ID

Time [frame number]

T1

T3
T2

T4
T5

T6

T1

a) Scenario 1.

0 2000 4000 6000 8000 10000 12000
−1

0

1

2

3

4

5

6

7
Task performance (Run 1)

T
as

k
ID

Time [frame number]

T3

T5

T1

T4

T6

T2
1 2

1 2 3

1 23

12 3

3

12 3

1 234

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−1

0

1

2

3

4

5

6

7
Task performance (Run 2)

T
as

k
ID

Time [frame number]

T3

T5

T1

T4

T6

T2
1 2

1 2 3

123

1 2 3

3

12 3

1 234

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−1

0

1

2

3

4

5

6

7
Task performance (Run 3)

T
as

k
ID

Time [frame number]

T3

T5

T1

T6

T4

T2
1 2

12 3

1 23

1 2 3

3

12 3

1 234

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
−1

0

1

2

3

4

5

6

7
Task performance (Run 4)

T
as

k
ID

Time [frame number]

T3

T5

T1

T4

T6

T2
12

1 2 3

1 23

1 2 3

3

12 3

1 234

b) Scenario 2.
Fig. 8. Robot task execution and request identification for Scenarios 1 (a) and 2 (b). Red squares indicate new requests. Green squares indicate task
completion. Blue triangles indicate subtask completion. Numbers above blue triangles represent subtask ID.

and extended interaction with users and the environment. Our
detection mechanism is built on visual capabilities that allow
the robot to identify multiple users, with multiple postures, in
real-time, in dynamic environments where both the robot and
human users are moving. Extended human-robot interaction is
supported by a novel control architecture which allows a robot
to accommodate multiple user requests and task interruptions
and it enables the representation of complex, sequential and
hierarchical robot tasks. The architecture provides the robot
with flexibility in dealing with multiple users, such as to
accommodate multiple user requests and task interruptions,
over extended periods. We validated our approach on a Pioneer
3DX mobile robot, performing service tasks in a real-world
environment. Our experimental results demonstrate the robot’s
ability to engage in interactions in a natural way, to deal with

multiple users, and to be constantly aware of their surround-
ings, thus advancing service robotics toward deployment of
robots into the real world.

ACKNOWLEDGMENT

This work was supported in part by NSF CAREER Award
IIS-0546876 to Monica Nicolescu and by the ONR Award
N00014-06-1-0611.

REFERENCES

[1] Omron, is this a real cat? a robot cat you can bond with likea real pet.
NeCoRo is Born, News Release, Oct 2001.

[2] A. Agarwal and B. Triggs. Recovering 3d human pose from monocular
images.PAMI, 28(1):44–58, January 2006.

[3] R. Ambrose, H. Aldridge, R. Burridge, W. Bluethman, M. Diftler,
C. Lovchik, D. Magruder, and F. Rehnmark. Robonaut: Nasa’s space
humanoid.IEEE Intelligent Systems Journal, Aug 2000.

KING ET AL.: A FLEXIBLE CONTROL ARCHITECTURE FOR EXTENDED AUTONOMY OF ROBOTIC ASSISTANTS 69

[4] R. C. Arkin. Motor schema based navigation for a mobile robot: An
approach to programming by behavior. InIEEE Conference on Robotics
and Automation, 1987, pages 264–271, 1987.

[5] R. Barea, L. Boquete, M. Mazo, E. Lpez, and L. M. Bergasa. Elec-
trooculgraphic guidance of a wheelchair using eye movements codifica-
tion. In International Conference on Field and Service Robots, Helsinki,
Finland, June 2001.

[6] R. Bischoff and V. Graefe. Hermesa versatile personal robotic assistant.
Proceedings of the IEEE, pages 1759–1779, Nov 2004.

[7] M. Boada, R. Barber, and M. Salichs. Visual approach skill for a mobile
robot using learning and fusion of simple skills.Proceedings of the
IEEE, pages 157–170, 2002.

[8] C. Breazeal. Toward sociable robots.Robotics and Autonomous Systems,
42(3–4):167–175, 2003.

[9] C. Breazeal, A. Brooks, J. Gray, G. Hoffman, C. Kidd, H. Lee,
J. Lieberman, A. Lockerd, , and D. Mulanda. Tutelage and collaboration
for humanoid robots.International Journal of Humanoid Robotics, 1(2),
2004.

[10] C. Breazeal, A. Edsinger, , P. Fitzpatrick, and B. Scassellati. Active
vision for sociable robots.IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, 31(5):443–453, 2001.

[11] C. Contest. First international cleaning robot contest, lausanne, switzer-
land, Oct 2002.

[12] J. Drury, J. Scholtz, and H. Yanco. Awareness in human-robot interac-
tion. In Proc., IEEE Conf. on Systems, Man and Cybernetics, 2003.

[13] A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis. Background
and foreground modeling using nonparametric kernel density estimation
for visual surveillance.Proceedings of the IEEE, 90:1151–1163, 2002.

[14] T. Fong, I. Nourbakhsh, and K. Dautenhahn. A survey of socially
interactive robots. Robotics and Autonomous Systems, 42:143–166,
2003.

[15] B. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. InProc., the 11th
International Conference on Advanced Robotics, pages 317–323, 2003.

[16] H. Httenrauch, A. Green, M. Norman, L. Oestreicher, andK. S. Eklund.
Involving users in the design of a mobile office robot.IEEE Transactions
on Systems, Man and Cybernetics, Part C, 34(2):113–124, 2004.

[17] J. Kang, I. Cohen, and G. Medioni. Continuous tracking within and
across camera streams. InComputer Vision and Pattern Recognition,
pages 267–272, 2003.

[18] H. Krebs, B. Volpe, M. Aisen, and N. Hogan. Increasing productivity
and quality of care: robot-aided neurorehabilitation.Journal of Reha-
bilitation Research and Development, 37(6), 2000.

[19] P. Maes. How to do the right thing.Connection Science Journal, Special
Issue on Hybrid Systems, 1(3):291–323, 1990.

[20] F. Michaud and S. Caron. Roball, the rolling robot.Autonomous Robots,
12(2):211–222, 2002.

[21] G. Mori and J. Malik. Estimating human body configurations using
shape context matching. InECCV02, page III: 666, 2002.

[22] R. Murphy. Human-robot interaction in rescue robotics. IEEE Systems,
Man and Cybernetics Part C: Applications and Reviews, special issue
on Human-Robot Interaction, 34(2), May 2004.

[23] M. Nicolescu, C. Jenkins, and A. Olenderski. Learning behavior fusion
estimation from demonstration. InIEEE Intl. Symp. on Robot and
Human Interactive Communication, (RO-MAN 2006), pages 340–345,
Hatfield, United Kingdom, Sep 2006.

[24] M. Nicolescu, G. Medioni, and M.-S. Lee. Segmentation,tracking
and interpretation using panoramic video. InIEEE Workshop on
Omnidirectional Vision, pages 169–174, 2000.

[25] M. N. Nicolescu and M. J. Matarić. A hierarchical architecture for
behavior-based robots. InProc., First Intl. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, pages 227–233, Bologna, Italy, July
2002.

[26] I. Nourbaksh. An affective mobile robot educator with afull-time job.
Artificial Intelligence, 114(1–2):95–124, 1999.

[27] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. Towards
robotic assistants in nursing homes: Challenges and results. Special issue
on Socially Interactive Robots, Robotics and Autonomous Systems, 42(3-
4):271–281, 2003.

[28] P. Pirjanian. Behavior coordination mechanisms - state-of-the-art. Tech
Report IRIS-99-375, Institute for Robotics and Intelligent Systems,
University of Southern California, Los Angeles, California, 1999.

[29] C. Schlegel, J. Illmann, H. Jaberg, M. Schuster, and R. Worz. Vision-
based person tracking with a mobile robot. InBritish Machine Vision
Conference, pages 418–427, 1998.

[30] K. U. Scholl, V. Kepplin, K. Berns, and R. Dillmann. Autonomous
sewer inspection: Sensorbased navigation. InInternational Conference
on Field and Service Robots, Helsinki, Finland, June 2001.

[31] C. Stauffer and W. Grimson. Learning patterns of activity using real-
time tracking. IEEE Transactions on PAMI, pages 747–757, 2000.

[32] T. Tashima. Interactive pet robot with emotion mode. InProceedings
of the 16th Annual Conference of the Robot Society of Japan, 1998.

[33] A. Thomaz, G. Hoffman, and C. Breazeal. Experiments in so-
cially guided machine learning: Understading human intentof re-
ward/punishment. InHuman-Robot Interaction Conference, 2006.

[34] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower:
Principles and practice of background maintenance. InIntl. Conf. on
Computer Vision, pages 255–261, 1999.

[35] J. Yuh, T. Ura, and G. Bekey.Underwater Robots. Kluwer Press, 1996.
[36] Z. Zhang. Flexible camera calibration by viewing a plane from unknown

orientations. InIntl. Conf. on Computer Vision, pages 666–673, 1999.

