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A Flexible Control Architecture for Extended
Autonomy of Robotic Assistants

Christopher King, Xavier Palathingal, Monica Nicolescuiréda Nicolescu

Abstract—A major challenge in deploying robots into the real
world is the design of an architectural framework which can
provide extended, natural and effective interactions withpeople.
Within this framework, key issues that need to be solved rel@
to the robots’ ability to engage in interactions in a natural way,
to deal with multiple users, and to be continually perceptie of
their surroundings. In this paper we propose a robot control
architecture that addresses these issues. Our architectarhas
three main key features. First, it enables the representatin of
complex, sequential and hierarchical robot tasks, typicdy needed
for service applications, in a behavior-based framework. 8cond,
it provides the robot with flexibility in dealing with multip le
users, such as to accommodate multiple user requests and kas
interruptions, over extended periods. Third, through its visual
detection mechanism, the architecture allows the robot todentify
when people are requesting its interaction. We demonstrateur
approach on a Pioneer 3DX mobile robot, performing service
tasks in a real-world environment.

Index Terms—Human-robot interaction, behavioral robotics,
personal robots.

I. INTRODUCTION

Vision-based perception provides the richest information
required for effective human-robot interaction. In parta,
the ability to distinguish between different people and to
identify basic human postures is essential for the succkss o
the interaction. While significant work has been done inghes
areas [2], [21], robust recognition routines are frequetdb
computationally expensive to be run in real time on a robot,
especially when a robot must identify multiple object patte
and in a dynamic, real-world environment. In this paper, we
describe a real-time identification and posture recogmitib
gorithm and we demonstrate its use in interactive experisnen
using a mobile robot.

The contribution of this paper is a framework that addresses
three key issues for human-robot interaction in the context
of service applications: 1) complexity and robustness sk ta
representations, 2) long term interactions with the emvirent
and other agents, and 3) detection and recognition of nheiltip
users.

The remaining of the paper is structured as follows: Sec-
tion Il gives a discussion of related work. Section Il pretse
our interactive framework, Section IV describes our cdntro

MAJOR challenge in designing robots for service o chitecture, Section V discusses our vision-based pgrakp

int as£§|st|vt:a f\pphcatlogstls to ((jenabletna:]ur_al ?nd accessrl] roach and Section VI describes the experimental setip an
intéraction between Tobols and non-technical USers, Wik 1o Finally, Section VII contains our conclusion.

ensuring extended, robust performance in complex, uringrta
dynamic human environments [14]. While significant advance
have been made in increasing the complexity of tasks that Il. RELATED WORK

robots can perform, a limitation that prevents robots from 1o importance of developing robots that can provide
operating outside of the lab is that they lack the percepty@lesy| services has been widely recognized and shown by
abilities to perform in real-world applications. In mosses, he numerous application domains for which robots have been
robots are programmed to execute a single task, which jssigned: agriculture and forestry, mining and constonds],
switched on/off by a programmer. Robots typically perforgypioration and inspection [30], undersea applicatiors, [3
these tasks i‘blmdly", bgmg generally unaware of othergeo cleaning [11], education [26], search and rescue [22], sspac
a_m(_:i robots in the_ environment. In addition, such robots a&&ploration [3], medicine and health [18]. In these apphesc
limited to performing the single task that the programmet hgy,e interaction between humans and robots is mostly a means
requested. We propose a control architecture that inteslac ¢, performing a job, in which the robots are regarded asstool

level of flexibility and perceptual ability that allows rolsoto {4t can be instrumented (i.e., tele-operated) towarcesirtg
overcome traditional limitations and operate in more dyitamg,me desired goals.

settings. Our architecture equips robots with the abilty t e natyre of applications for service and assistive raboti
monitor their surroundings and detect when other Soc'amgerequires a different level of autonomy and interaction, in
require their interaction. Our architecture provides theams |, .1 the robot is regarded as a partner [9] to the human
for long-term autonomy by enabling robots to manage a largee; o significant effort in this area has been shown in
repertoire of tasks over extended periods. Finally, OUteSRS yaqigning entertainment and toy robots [32], [20], in which
is designed for realistic assistive applications, wherdtiple o focus is on designing robots that exhibit social, human-
people are simultaneously competing for the robots assieta e characteristics: expressing or perceiving emotidresng
sociable [8], establishing or maintaining relationshipsd
making friends [1]. For domains such as service or assistive
applications [16], [27], a significant challenge is thatatsnot

E-mail: cjkingxavielmonicgmircea@cse.unr.edu
Computer Science and Engineering Department
University of Nevada, Reno.



60 JOURNAL OF PHYSICAL AGENTS, VOL. 3 NO. 2 MAY 2009

only can express but also understand this wide range oflsogiastures from different people. Currently, the robot aisges
cues. In this context, awareness of the world [10], [33] serveach posture with a different task (robot service) that the
to achieve better interaction between humans and robots. ugers would like to request from the robot. Each task has an
date, the issue of awareness for human-robot interactien lasociated priority, which is eithéyw, regular or high. When
mostly been addressed as enhancing a human’s awareness pdsture is detected, the robot starts performing the cervi
the robot’s activities [12]. With social interactions betag associated with that posture, unless the robot was already
more prevalent in the robot domain, it is important thagéngaged in a task of higher or equal level of priority. In this
the focus shifts toward increasing the robot's awareness sifuation, the robot adds the new request to a queue of tasks,
the world and humans around it. The approach we propcased continues with its previous task execution. Howeves, if

in this paper provides new capabilities that allow robots taigher-level request is received, the robot switches tanthe
perform in highly interactive environments, with numeroutask, and moves the currently executing task to the queue.
users, and multiple requests. We are able to achieve tfilse robot processes the tasks from the queue based on their
interaction without resorting to complex hybrid architgets priority and incoming order. Our architecture provides the
found in previous systems [6], [7]. Our system allows foflexibility of using different priority queue strategies will be

the representation and execution of hierarchical tasksiddy demonstrated in the experimental results. This prioutizesk-

for hybrid systems) within the framework of behavior-baseslwitching process is typical for the types of decisions peop
systems, using a unique representation throughout theeenthake in their daily activities, and is also expected to odéour
architecture. With our proposed architecture, a robot can pthe service robot domain. While people perform this agtivit
vide service over extended periods (limited mostly by bgtteswitching with great ease, the difficulty for the robots is to
power requirements), with no intervention or help from thkeep track of the status of the tasks when they are intemypte
human designer. such that the task could be resumed from the same point at
a later time. This poses a significant challenge for the cbntr
architecture and the corresponding task representatiotisis
paper, we propose a behavior-based control architectinehw

The problem we address in this work is aimed at increasifigrough its representations lends itself naturally to vecing
a robot's autonomy over extended periods, and providingfiom interrupted tasks, without the need to explicitly stany
with the skills needed in typical service or assistive aggilon additional state information. This architecture is detseui in
domains. the next section.

A service or personal robot will most likely have to perform
in the presence of multiple users. This imposes constraimts
the robot’s behavior, as it will have to adjust its execution
accommodate several users who may solicit its attentiofoand The architecture we propose in this paper is aimed at
services during overlapping intervals. A typical exampfe @roviding an appropriate infrastructure for executing pter,
such a situation is making a request to a robot while it i$ stdequential and hierarchical tasks, similar to what robaghin
working on another, previously assigned task. The robodsieéhave to perform in real-world applications. We base our
to handle such situations appropriately: First, it shoutd kapproach on the Behavior-Based Control (BBC) paradigm,
detect the new call and interrupt its current activity toeige one of the most popular approaches to embedded and robotic
the request, it should then make appropriate action reggrdsystem control. The contributions of the proposed control
which task to pursue next. The situation may further berchitecture are that) It enables the use of both command
complicated by different levels of authority existent beeém arbitration and fusion within a single control representation
users, or by various priorities of the requested tasks. and that2) it allows the encoding and robust execution of

Our framework for enabling this functionality consists ofequential and hierarchical tasks. Historically, the twaomac-
two computational modules forisual detectionand control, tion selection mechanisms afbitration andfusionhave been
linked into a unified control architecture. The role of theual mostly employed separately in robot control [28], thus fing
detectiormodule is to identify, at any time, if any known userghe range of tasks that robots can execute. By recogniziag th
are attempting to interact with the robot. This module eelieability of arbitration to encode temporal sequences and the
on postures of people that the robot is trained to recogmize @bility of fusionto combine concurrently running behaviors,
described in Section V). If any person/posture is detedtésl, we merge the strengths and features of both within a unique
information is transmitted to theontrol module which takes task representation. For behavior representation we use a
appropriate decision on what the robot should do next. If tleehema-based approach, similar to the work in [4]. Thise#hoi
posture is only detected for a brief time, this representasa c is essential for the purpose of our work because schemas with
in which the person was merely a passer by. However, if tEBC provide a continuous encoding of behavioral responses
posture persists in the robot’s visual field, this is an intlan and a uniform output in the form of vectors generated using
that a person is trying to get the robot’s attention. The jbb a potential fields approach.
the control module is to decide on the appropriate action to Our controllers (Fig. 1) are built from two components:
take in these circumstances. behavior primitives(BPs) andfusion primitives(FP), which

As previously mentioned, in our system the robot is trainddrough the combination processes described below result
to recognize models of human users, consisting of differeint controllers in the form ofbehavior networkg25]. The

IIl. I NTERACTIVE FRAMEWORK

IV. CONTROL ARCHITECTURE



KING ET AL.: A FLEXIBLE CONTROL ARCHITECTURE FOR EXTENDED AOUONOMY OF ROBOTIC ASSISTANTS 61

behavior primitivegperform a set of actions under given (relof BPs. This vector, which we call behavior applicability
evant) environmental conditions. These primitives are mheacondition (BAC), contains for each behavior & or a 0,

to express the basic, general capabilities of the robot aed n depending on whether the behavior is active or not. For angive
not be oriented to accomplishing a broad range of tasks.s&t of n primitive behaviorstheoretically there could bg"
fusion primitive encapsulates a set of multiple concurrentlgombinations representing whether théehaviors are active
running primitive behaviors through linear combinatiortled or not, based on their pre-conditions. Practically, thisiber is
motor commands. Each primitive behavior component bringsuch smaller, due to the fact that some behaviors are tegger
its own contribution to the overall motor command. Thedey similar environmental conditions (such as the presefiice o
contributions are weighted and fused through vector amditi an obstacle, for example), and thus some combinations are
For example, arobstacle avoidancéehavior could have a impossible to achieve. For each possible BAC, fasion
higher impact thameaching a targetif the obstacles in the primitive has a different set of fusion weights, which are used
field are significantly dangerous to the robot. Alternatiyelfor behavior combination. The sets of weights for the midtip

in a time constrained task, the robot could give a highpossible BACs are stored in a table, as shown in Figure 2. The
contribution to getting to the destination than to obstacléndex of each row in the table is the decimal equivalent of the
along the way. These weights affect the magnitude of tmebit BAC value.

individual vectors coming from each behavior, thus geriegat

different modalities of execution for the task.

One-Level Behavior Network Fusion Primitive

.an

behavior applicability
condition (BAC)

met/not met
status sent to all
successor FPs at the
same level of hierarchy

Sample Behavior Network

Fig. 2. Representation of a fusion primitive: Sensory inpativates a
corresponding set of stored weights (BAC) to fuse the ugierl behavior
primitives (BP).

PickUp(Mail)
G G

Visit(MainOffice)

The weights from the corresponding BAC modulate the
magnitude of control vector output by the individual primi-
tives, thus influencing the resulting command from fusiod an
consequently the way the robot interacts with the world. At
Fig. 1. Top: Representation of a generic behavior networi bf fusion ~€ach time step, eachbehavior primitive BP; provides a re-
primitives. Bottom: a sample behavior network. The linksween fusion sponse output vectef, which represents a desired heading for
primitives represent task-specific precondition-postition dependencies. the robot. Theusion primitive’soutput is a linear combination
of the vectorgv! - - - v ], according to the BAC superposition
weightsW* = [w! - - wl]:

n

A. Fusion Primitives
n
Eachfusion primitive(Figure 2) has a representation of the Vvt — sz_sv; (1)
. . . ks 171
goals it achieves, expressed as abstracted environmeatitsd.s p
The state of the goals is continuously monitored and update
from sensory data. The componedmthavior primitivesre-
ceives information from the sensors, which is first used

detect if the behavior is active or not, given its precowdisi. Th ltivle BAC  diff : _ tal sit
For example, in ambstacle-avoidancbehavior, the presence.. € mullipie S represent di e“ren .e”"”o,f‘me” a siiua
ps, since different behaviors are “applicable” in eaeec

or absence of an obstacle is abstracted from the ran e—f'n%ﬁ% . . o
! ge-n e weights of behaviors within each BAC encode the mode

information. If an obstacle is present, the preconditiomit ¢ forming th ¢ task ai the situati d th
and the behavior is active. Otherwise, the behavior remaiis P€OrMING the current task given the situation and, thus

Inactive. Th?acuve./nOt activestatus of all behgwor PriMItVES  1gpeed could easily be incorporated into our formulationwei@r speed
is encoded in a-dimensional vector, where is the number is marginalized over time by the slow drive of our robots.

(‘Ne consider heading to be the most important consideration
{8r behavior fusion in 2D navigatidn Consequently, we
normalize command vectors to unit length.
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within each BAC, the weights of the applicable behaviors are
constant. For example, for target reachingtask, the robot
could behave under the influence adrridor-follow, target-
follow and avoid-obstaclebehaviors if in the presence of
obstacle, but would behave only under the influenceaajet-
follow if in an open space.

Inferring the fusion weights is a challenging task that vaoul
normally require time-consuming fine-tuning. In a previous
work, we developed a method that allows weights to be learne
through human-provided demonstration [23]. A controller,
using weights evolved in this manner, was shown to be
sufficiently robust to handle complex environments. Ushig t y
method, we trained a single controller to drive the robot for— — — '*"
all our experiments. 4

Behavior
Network

B. Hierarchical Task Representations " = ﬁ__;" g, e

With fusion primitives alone, a controller can only en-
code flat representationsof tasks involving sequencing of
fusion primitives. While such an architecture is expressiv_ o _ _ _
and flexible, it does not have the modulariy needed whé % 1 gererc herena e epvesentton, Thasibetueer
new, more complex tasks would have to be created froffsicondition dependencies.
already existing ones. The best solution would be to specify
new task using abstractions of these existing moduleserrath
than combining their underlying behaviors into a largett fla In this architecture, using the links as task-specific atitn
network. We enable this higher-level of representation Igpnditions enables the reusability of behaviors and roneti
grouping fusion primitives intdehavior network$19], [25]. reconfiguration of robot tasks. The behavior network regmes
Behavior networks can be nested, allowing for the constnct tation has the advantage of being adaptive to environmental
of hierarchical representations of robot tasks. In these nehanges, whether they be favorable (achieving the goals of
works, the links between components represent task-speciPme of the behaviors, without them being actually exe-
precondition-postcondition dependencies. These linksige cuted) or unfavorable (undoing some of the already achieved
a simple and natural way of representing complex sequericegeals). Since the pre and post-conditions of behaviors are
activities and also of hierarchically structured taskg@Fe 3). continuously monitored, the system executes the behavabr t

We use the termmetabehaviorto describe both fusion should be active according to the current environmentéé sta
primitives and nodes of a behavior network in that both hayBus providing the robot a sense of “awareness” about its
similar functions in the network. Each metabehavior encaprogress in the task. With these capabilities, the arctitec
sulates information about the behavior’s preconditiond agnables the robot to keep track of the completed parts of
its goals (postconditions). These conditions are contislyo the task, which allows dealing with task interruptions with
monitored whenever the behavior is active, in order to ensug@ny additional modifications. When a task is interruptes, it
the proper execution of the task. The postconditions of &xecution is suspended, but the behaviors preserve thenturr
behavior network node will be true when the execution @tatus of execution. When the task is resumed, the infoomati
the subnetwork it represents is finished. The only diffeeengmplicitly stored in the behavior network controller enesl
between a behavior network node and a fusion primitive is tH@€e robot to continue the task from the point where it was
it activates underlying metabehaviors, while a fusion jtiim  interrupted. The behaviors’ continuous grounding in senso
activates only its component primitive behaviors. Thusewh information allows the robot to correctly perform the task,
a metabehavior is not active, all subordinate metabetmviéven if the environmental conditions have changed since the
are disabled, and therefore can be regarded as not relevariagk was suspended.
the task. When a behavior network node becomes active, all
its underlying components are enabled, and the subnetwork V- VISION-BASED HUMAN POSTURERECOGNITION
becomes the current “network” that is being executed. WhenThe role of thevisual awarenessmodule is to provide
the execution of the subnetwork finishes, the behavior ndtwdhe robot with the capability of detecting the presence of
node updates its goal status. Since the successor behaviarsans that might be interested in interacting with the tobo
continuously check this status, they will detect the actieent Toward this end, we developed visual capabilities that can
of that goal and the execution continues with the new networ&cognize human postures that are likely to be relevantedo th
node. To perform tasks encoded with this representatian, ttobot-human interaction. The postures are described beholv
robot starts by activating the metabehavior at the topneesi| examples are shown in Fig. 4 (first row).
in the task. The execution of the task’s steps proceeds g Standing Posture— The most obvious posture to rec-
described above. ognize as it is displayed frequently and is often an indigati

Behavior
Primitives
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that a human is on the move or engaging in a task. stabilized by motion-modeling algorithms and the limides
Arms-Up Posture — Humans learn at a young age that theyariability of the shape, color, and texture of background
can attract another’s attention by raising their hand arabatr features precludes the use of standard feature-based back-
should respond accordingly. ground models. Consequently, robotics applications sffyic
Kneeling Posture — Since many robots are significantlyuse foreground-modeling techniques, which use objeatifeat
smaller than humans are, one must crouch or kneel to p#&ssdentify and track the object. Foreground modeling tradi
an object to, or take an object from the robot’s gripper. #Aonally requires an offline acquisition period where value
robot should therefore recognize a crouching human and inethe foreground models are assigned or trained. The robot
able to determine if the human is holding an object. is then switched to a tracking phase, where it searches each
Object Posture — Held-objects were trained independentlyncoming image for a region that is sufficiently similar teth
from the human. This increases model robustness and allawsdel.

the robot to orient itself toward the object. A foreground modeling technique commonly used in robotic
applications models an object as a colored blob. During

Standing Kneeling Arms-up Object acquisition, users must manually select a region of interes
1 in the image. This process can be repeated on the same
object under different lighting conditions and the alguomit
will assign a range of values to represent the region. Sehleg
et al. [29] automates this process by requiring users to stand
directly in front of the robot’s camera for an ’introduction
The system then generates a two-dimensional color histogra
(in red-green chrominance space) describing a rectangular
region on the user’s chest. Though this approach offers some
convenience, it requires users to stand in a specific latatio
during training and the resulting model can only be used to
track colors corresponding to the user’s shirt.

B. Overview of Approach

Our proposed method improves the convenience and speed
of previous techniques, and is particularly suitable fdyatic
applications. Unlike [29], the training stage is fully antated,
by using a background modeling technique to segment the
person from the background. This allows the subject to move
freely during the training stage. We also propose improveme
to Schlegel’'s color modeling approach [29]. Instead of mod-
eling a single region of color within the object, we identify
and model multiple color-regions. Each region is modeled in
three-dimensional RGB color-space, and is represented as a
mixture of Gaussians. For increased robustness, our mtstel a
incorporates shape information without sacrificing speed.

The following sections describe how models are generated
during training, how these models are used to locate anH trac
users and their postures, and presents some implementation

A. Related Work in Visual Identification / Tracking optimiz_ations that_allow for real time operation, even whil
aearchlng for multiple models.

Fig. 4. Set of postures. First row: original images. Secand: rdetected
foreground. Third row: shape model. Fourth row: color model

The identification and tracking of objects in a video fee
is reasonably easy when a relatively static background can
be maintained. In the simplest case, background pixels &re Training
modeled using a single video-frame, or they can be repre-Each posture from each person is separately trained during
sented using Gaussian [31] or non-parametric distribatioan off-line acquisition process from a stationary robotr-Cu
[13]. Models can be adaptive to slowly changing conditiom®ntly, training requires users to interact with a GUI. Hoesre
[13], [24], [34], and even robust to smooth and linear cameitawould be relatively straight forward to automate the s
movements [17]. In all these cases, pixels in subsequantfa in the future. Training requires a minimum of 5 seconds per
are compared to the background model. If the pixel featurpssture and continues until the model stabilizes.
(e.g., color, texture, motion) are inconsistent with thedelp  Before the object can be modeled, it must be segmented
they are grouped and segmented as foreground. from the image. Segmentation is accomplished using an
Despite the success of background modeling techniquasgaptive background modeling technique similar to the one
they are unsuitable for use on a mobile robot in an uncoetlolldescribed in [24]. Each pixel of the background is modeled as
environment. Camera movement is usually too complex to beGaussian distribution in the RGB color space, with the mean
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(teropeg,pe) and standard deviatiorvf,04,04). For each new number was selected because it provides sufficient resnluti

pixel (z,,x4,2), the Gaussians are updated using a learnifigr representing the object, and because it allows for werta

rate «, as follows: optimizations on a 32-bit system. Each band is modeled
separately using a mixture of Gaussians.

i = ax; + (1 — o) (2) During training, the foreground region is normalized in
terms of height and quantized into the 32 bands. The pixel-
. values corresponding to each band are then accumulated into

wherei =1, g, b. a histogram in RGB color space. At the end of the training

o ] period, the histogram is modeled as a mixture of Gaussians.

The afm-n term is |ntrc.>d.uced to prevent the variance from |, produce a more robust representation of the object,
decreasing below a minimum value when the backgroun@iacent bands are merged if their color distributions are
remains constant for a long period. _ sufficiently similar. Grouping begins with the most similar

_Object segmentation is accomplished by comparing n§y4nqs and continues with progressively less similar bands u
pixels to the background model. A pixel is labeled as pafie model is reduced to between one and six regions. Fig. 4

o7 = max(o;,, alz; — p)* + (1 — a)oy) ©)

of the foreground object if, for any value: (forth row) shows the color distribution of each object. @sl
) ) are arranged so that the most dominant values are shown on
_ (@5 = pi)” > (203) (4) the left and the least dominant on the right. The red lines
wherei =1, g, b. delineate the regions after merging.

Segmented pixels are grouped together as connectegl Ne resulting model contains information about the color

components to form a blob corresponding to the target abjecPMPosition, vertical location, and size of the prominent
Examples of a segmented image are shown in Fig. 4 (seccf glons of color W'_th'n an Obje.Ct a|_'1d can be used for the
row). As described in the next sub-sections, the segmen gJection and tracking of the object in a video sequence.
objects from each frame are combined to produce shape and

color models. D. Detection and Tracking

h 1) tl:/lodelint? Shr_larEJle:Des.pgle t?he fagt that ahhumaln i”' Since humans tend to assume an upright posture, they
ouette can be highly variable, there is enough regulaoty {, usually occupy a larger proportion of an image in the

¥varrant thde |nc_lu5|]<c3n ofa srr:?pe—ba_siq TOdel' Hhejggr;er\}gﬂical direction than they will in the horizontal diresti.
(;regr(_)tgn re%lorr: 'rOhT (;?c ramet_ls (;@ tnormalze n frmrhis property simplifies an object search because it allows
ot position and height, then quantized 1to 8 ; array o promising x-axis locations to be identified before consiugr
square blocks, where is a function of the object’s height to y-axis locations
width ratio. o . : . . .

A map is then generated that contains (for each block) tngvery pixel in the image is assigned a probability, which

L i ) presents the likelihood that that pixel color is present i
likelihood of that block being a part of the foreground. Give . . : .
N training frames, the probability at each blocis: the foreground object. Pixels with color values matching th

most prominent colors in the target model are assigned high
1 probabilities, while colors not found in the model are assit)
Pshape (i) = Nngk(i) (5) a probability of zero. For a given model, the probability
k=1 that pixel i with color (z,,z,4,2;) belongs to the model is

where fg,(i) is 1 if block i belongs to the foreground in determined using all Gaussians in all bands of the color tode

framek, and O if it belongs to the background.

r

(wr—nr)? | (@g—ng)? | (@p—np)?
- ( 20‘; + g2a2g + b2a2b
e 9 b

High values in this map thus correspond to regions that are ) 1
likely to be fore_ground z_:md Iovx_/ va_Iues cprres_pon_d to_ Iikelypcolor(l) = Nownds (\/%UT) (\/ﬂog) (\/ﬂab)
background regions. An illustration is provided in Fig. Hild bands (6)
row), where bright red regions correspond to foregrounae bl
regions correspond to background and black regions do not
strongly correspond to either region. The resulting probability values are then summed for every

2) Modeling Color: A common characteristic of humancolumn of pixels to form a probability distribution with qeesct
figures is that color remains relatively constant in thezmm to the x-axis. The most prominent local maxima in this
tal direction, while demonstrating more variability vegily. distribution are identified as promising x-axis locatioAg
Variability usually occurs at the transitions between tlér h example of such a probability mapping is shown in Fig. 5(a).
and face, face and shirt, shirt and pants, and pants and.shoeBor each x-axis candidate, a 16-pixel wide column is
It should also be noted that the relative size and location défined, centered at the x-location. Pixels in every row ef th
these regions remain reasonably consistent even as a hue@omn are assigned probability values, which represeat th
moves. likelihood that the pixel's color is present in the corresgimg

To exploit the natural grouping of colors, our approachbject-color-region. Probabilities are determined as in &
divides a target object into a vertical stack of horizontddut with the sum computed over bands in that region. Probabil
color bands. We use 32 bands to represent our models. Tikies are summed for every row, to find the y-axis distribatio
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V1. EXPERIMENTAL SETUP AND RESULTS

We validated our approach with a Pioneer 3DX mobile robot
equipped with a SICK LMS-200 laser rangefinder, two rings
of sonars, and a pan-tilt-zoom (PTZ) camera. For robot cbntr
we use the Player robot device interface [15]. Our validatio
consists of quantitative and qualitative evaluation fentisual
awarenessnd therobot controlmodules.

A. Validation of Visual Awareness

Tracking and distance estimation.We tested the tracking
‘ component using an experiment where the robot was pro-
grammed to pursue a person. Computation of the person’s
distance from the robot was based on the camera calibration
procedure described in [36] and on the assumption that the
floor is flat and the person’s feet are always on the floor.

. . . ) For this trial, the robot accurately pursued a human-target
Fig. 5(b) shows a model, which has been divided into foyfhq aiternated between forward and backward movement

prominent regions. Probability mappings for each regio® afr5ugh a 100 meter-long hallway. Frames from the robot's

superimposed on the image. camera are shown in Table I, where the green rectangle and
As seen in Fig. 5(b), the probability maps tend to bge green outline have been generated by the detection and

high within the areas of their corresponding colors and thgacking module. In order to assess the accuracy of distance

intersection between two probability mappings offer a goasktimation, the computed positions at each displayed frame

estimation of the border between adjacent colors. Thisceffegre shown together with those obtained from the robot'srlase

tively determines the location and vertical size of eachar®g rangefinder (ground truth).

of color within an object. It is worth emphasizing that the experiment illustrates the
In order to determine a final measure of similarity, thability to perform real-time tracking and distance estiiorat

object-shape probability map is incorporated. As desdribéor a moving target while the robot (and its camera) is also

previously, certain blocks of the shape-map will have a highoving.

probability of falling on the figure while other areas of the

map (typically towards margins) will have a low probability TRACKING DI—I;A'I\'EIIZIEElESTIMATION

The shape-based probabilities are used to weight the co O 00 50— 400500550 700 '

based probabilities for each region, in order to producea firp - :

similarity score. ! el

[ -

a) X-axis candidates b) Region probabilities
Fig. 5. Person detection and tracking.

E. Efficiency

It should be noted that although the model describing’3 {83 |73 [ 73 |64 [58 |58 |58 |70
each object can comprise as many as six different co of/ 182 |73 |73 |68 [56 |61 |63 [66
regions, each containing several Gaussian distributions, Top RowFrame numbe2nd row Frame image3rd row: Estimated distances
implementation executes a one-time preprocessing stap tifgters)-4th row Ground truth (laser) distances.
compiles the Gaussians into a 3D array indexed by (R,G,B).

With a single reference to this array, a probability measare Posture recognition — qualitative validation. Fig. 6 shows

be obtained to determine the likelihood that that pixel ig p& the recognition of postures in the presence of multiplegess

an object. If the probability of being present in an objecswalrhe system was trained on postures from 3 users (which
greater than zero, up to 6 additional arrays can be refedenege correctly recognized), while the 2 unknown users are
to determine the probability that the pixel is containedtia t (correctly) ignored. This experiment shows that the apgioa
object’'s sub-regions. These optimizations allow the tiagk can robustly detect and track multiple postures from midtip
to be performed in real-time (20 frames/sec), even when UiSers, while ignoring irrelevant persons in a possibly ctedv
models are involved, and on a modest 1 GHz computenvironment.

Although the probability arrays require more memory thaRosture recognition — quantitative validation. To quantita-
any other data structure, the color-space is sub-sampledtitely estimate the recognition accuracy, we trained thatesy
minimize the demands. The current implementation quasitizen 5 users with 3 postures each. After training, subjectewer
the color-space into 3232x 32 = 32,768 different colors, andasked to display each posture for about 30 seconds, while
requires a total of 64-bits to store the region and sub-regithey moved through the camera’s field of view. Measurement
probability values. This requires about 262 KB of memory pexf correct posture frequency commenced 10 frames after each
model. change in posture and was continued for 200 frames. In this
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TABLE Il
ASSOCIATION BETWEEN USER POSTURES AND TASKS
Posture | Kneeling Arms Up Kneeling
ID with object
User 1
Task Code | T1 T2 T3
(Priority) (Medium) (High) (Medium)
Sequence | Drop object— Visit(Target3)— | Take object—
Visit(Targetl)— | Visit(Targetl)— | Visit(Target3)—
Visit(Target3)— | Visit(Target3)— | Visit(Target2)—
Visit(Target2)— Visit(Target3)—
Visit(Target3)—
User 2
Task Code | T4 T5 T6
(Priority) (High) (Medium) (High)
Sequence | Drop object— Visit(Target2)— | Take object—
: ] Visit(Targetl)— | Visit(Target3)— | Visit(Targetl)—
Fig. 6. Posture recognitior- qualitative validation. Modeled users: red, Visit(Target3)— | Visit(Targetl)— | Visit(Target3)—
orange, blue shirt. Unknown users: black, green shirt. Visit(Target2) — Visit(Target2) —

The identification of postures triggers the robot to visitesies of targets as
outlined in this table. Priority levels dictate which segoes are completed

. L. . first.
scenario, both training and testing was conducted from 2

stationary robot. The robot was not moved between training

and testing periods. Table Il shows the percentage of frani@8] to train the robot's controller. The robot's tasks cishs

in which the algorithm correctly recognized the postures. of a series of target reaching and object transport duties. T
complete a task, a robot must visually locate and drive to

TABLE Il all targets in the correct succession. We selected thesesdut
POSTURE RECOGNITION— QUANTITATIVE VALIDATION .. . . .
because they are similar to what a service delivery robohimig
Userl User2 User3 User4 User5 . .
Standing | 92.5% | 91% | 99.5% | 100% | 100% encounter and because they can be easily achieved by our
Kneeling 97% 98% 99% 100% | 100% current platform, though our approach should work well with
Arms-up 95.5% [ 100% | 100% | 99% 100% other duties or platforms. Each of these tasks has a given

priority and is associated with one of the users’ posture, as
shown in Table Ill. Thevisit targetcomponent of each task is

a metabehavior, whose goals are achieved when the robot is
B. Validation of Robot Control at a specified distance with respect to the target.

We performed the robot control experiments in a classroomIn adfjition o the aboye tasks, the _ropot Is equipped with a
and an office building setup, as shown in Fig. 7. In theé%andermg task (TO), which haslew priority and is executed

experiments two different users interacted with the robot. as I:)ng as thf robot .h?S dno'trr? questts tﬁ Sbe r\tncet.hThe standing
each user, the robot was trained to detect the following p&c_)s.ure 'Sf no a;]ssqma Ied with ‘any §S| ' hu rather serves as
tures:standing arms-up kneeling (with object)andkneeling a trigger from thevisual detectionrmodule that a user is in

(without object) using the method described in Section V. VI¢NY- _ _
In our experiments the two users requested services from the

Postures were trained and then tested for 200 frames. Tapkys percent-
age of frames that contained the correctly identified pestur

robot over an extended duration, in order to demonstrate the
main features of our approach: 1) ability to detect the prese
of multiple people, 2) ability to handle multiple requests,
3) ability to handle task interruptions and 4) extended tobo
autonomy.

The behavior of the robot equipped with these capabilities
follows a natural type of social interaction. Once thetection
and control modules are started, our robot is in complete
control of its own capabilities and decides for itself what
activities it needs to perform. Immediately upon startitigg
robot begins wandering, waiting for any requests for sewic

The robot's set of behavior primitives consists of: lasdrom human users. If the robot detects a user (through his/he
obstacle avoidance, attraction to a goal object, attractio standing posture), the robot briefly interrupts its taskd an
unoccupied space, attraction to walls, rear sonar obstaslews down until the user approaches it at a given distaffice. |
avoidance, tangent wall follow, circular avoid, and pickam@l  within several seconds no new postures are detected (@e., n
drop objects. The behaviors produce a motor command outpeqjuests from the user), the robot resumes its task, igmorin
in the form of a vector in the robot’'s coordinate system. Witthat user for some predefined period, unless the user later
these behaviors we created a set of fusion primitives arkd talisplays a non-standing posture. This later step is neetded i
controllers, which constitute our robot’s repertoire ofvges. order to avoid infinite loops of attending to a passer-by.user
As mentioned previously, we used the method described Immthe case when the user displays a non-standing postere, th

Office building Classroom

Fig. 7. Experimental setup for real-world environment
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TABLE IV
SEQUENCE OF TASK REQUESTS FOR THE FIRST SCENARIO
[ Posture detected | Request | Robot action | Current task [ Task queue |
[ None | None | Robot starts off wandering | TO | NULL |
[ Userlkneeling [ T1 | Switch to T1 [ T1 | TO |
[ None | None | Robot finishes T1, switches to TO | TO | NULL |
[ Userlw/ object | T3 | Switch to T3 | T3 | TO |
[ Userlarms up | T2 | Switch to T2 | T2 | T3, TO |
[ User2kneeling | T4 | No switch, continues with T2 | T2 | T4, T3, 70 |
[ None | None | Robot finishes T2, switches to T4 | T4 | T3, TO |
[ None | None | Robot finishes T4, switches to T3 | T3 | TO |
[ None | None | Robot finishes T3, switches to TO | TO | NULL |
[ User2arms up | T5 | Switch to T5 | T5 | TO |
[ User2w/ object | T6 | Switch to T6 | 76 | T5, TO |
[ Userlkneeling [ T1 | No switch, continues with T6 | 76 | T1, T5, 70 |
[ None | None | Robot finishes T6, switches to T1 | T1 | T5, TO |
[ None | None | Robot finishes T1, switches to T5 | 75 | TO |
[ None | None | Robot finishes T5, switches to TO | TO | NULL |

robot turns and approaches the person (if it has not donedfotask completion. Task lines that are interrupted without
already). If the posture is detected for more than a few s#x;ona marker indicate switches from the current task to a task
this is an indication that a new task has been requested. dfchigher priority. Requests that are not serviced immetiat
avoid multiple detections, the robot ignores a person thdt hafter they are received belong to tasks that are of lower waleq
just requested a new task for a predefined period, and ajwiority with the task currently being executed. The pldiew
ignores requests for tasks that are either in the queue batha the moments of time when these tasks are serviced from the
currently being executed. Currently, the robot produce®ua robot’s task queue.

motorsou_nds to provide users with fe(_adback tha_t a_task BEEqUISesuIts from Scenario 2.Each run took approximately 20
was received. In future implementations we will include an

: . . . .. minutes. During the course of the experiment, the robot
auditory recognition module and speech synthesis cafiabjli . o
such that the robot could provide feedback through verbC(?rrectly |dent|f|¢d the postu_res (af‘d thus the requesiok .t
o e correct decisions regarding which tasks to performefyiv
communication. oo ) i . g
priorities and incoming order) and it correctly finished exe
We performed experiments for two different task requesgsiting the tasks. The only difference in execution occurred
scenarios, with each scenario repeated four times. We ¢hose the third run, in which the users requested task 6 before
use the same sequence of requests for each scenario, in@rdg{sk 4. However, this being a change in scenario, the robot
establish a baseline for evaluation, both from the persmeof  correctly identified and serviced the requests. During tthig
task execution (theontrol modulg and from the perspective of the priority method used was to process tasks with highest
the posture recognition (thesual detectionmodule). For each priority first; for tasks of equal priority, a FIFO (first-ifiest-
scenario we used a different task priority scheme, as destri out) method was used. Fig. 8 (b) shows the order in which
below. In tables IV and V we show the sequence of tasks thak robot received and serviced the requests during the four
were requested during the two scenarios, and we also irdicains for scenario 2. For these experiments we also recorded
the correct robot action response for further validatiothwi the progress of the robot in each task, to demonstrate that
the experimental results. the robot is able to keep track of what parts of each task
) ) have been finalized. As a result, the figure shows that if the
Results from Scenario 1.Each run took approximately 20t s interrupted in the middle of a task, upon resuming
minutes. During the course of the experiment, the robgk execution the robot will continue from the point where th
correctly identified the postures (and thus the requests) ¢y \as interrupted, instead of performing it from thetstar
every case but one. It took the correct decisions regardififlis pehavior is shown in the execution of task 3: the task
which tasks to perform (given priorities and incoming o)defs interrupted after performing its first two steps; when the
and it correctly finished executing all tasks. The only errQppat resumes the task it only performs the last (third) step

occurred in the fourth run, in which the robot detected @ complete it, showing that it remembered what parts of the
request for task 4 instead of task 1. During this run, therityio <k have already been done.

method used was to process tasks with highest priority fost;
tasks of equal priority, a LIFO (last-in-first-out) methochsv
used. Fig. 8 (a) shows the order in which the robot received
and serviced the requests during the four runs for scenaridn this paper we propose a framework for developing
1. The moments of time when the requests are received apbot assistants that addresses two key issues of human-rob
indicated by red squares. Green squares indicate the timgraction: the ability to detect and recognize multipters,

VIl. CONCLUSION
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TABLE V
SEQUENCE OF TASK REQUESTS FOR THE SECOND SCENARIO
[ Posture detected | Request | Robot action | Current task [ Task queue |
[ None | None | Robot starts off wandering | TO | NULL |
[ Userlw/ object | T3 | Switch to T3 | T3 | TO |
[ User2arms up | T5 | No switch, continues with T3 | T3 | T5, TO |
[ Userlkneeling [ T1 | No switch, continues with T3 | T3 | T5, T1, 70 |
[ User2kneeling | T4 | Switch to T4 | T4 | T3, T5,T1, 70 |
[ User2w/ object | T6 | No switch, continues with T4 | T4 | T6, T3, 15, T1, TO |
[ User 1arms up | T2 | No switch, continues with T4 | T4 | 76, T2, 73,75, T1, 10 |
[ None | None | Robot finishes T4, switches to T6 | T6 | T2, T3, 75, T1, 70 |
[ None | None | Robot finishes T6, switches to T2 | T2 | T3, T5, T1, 70 |
[ None | None | Robot finishes T2, switches to T3 | T3 | T5, T1, 70 |
[ None | None | Robot finishes T3, switches to T5 | T5 | T1, TO |
[ None | None | Robot finishes T5, switches to T1 [ T1 | TO |
[ None | None | Robot finishes T1, switches to TO | TO | NULL |

Task performance (Run 1)

Task performance (Run 2)

Task performance (Run 1)

Task performance (Run 2)
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a) Scenario 1. b) Scenario 2.
Fig. 8. Robot task execution and request identification foerarios 1 (a) and 2 (b). Red squares indicate new requestenGquares indicate task

completion. Blue triangles indicate subtask completionm¥ers above blue triangles represent subtask ID.

and extended interaction with users and the environment. Quultiple users, and to be constantly aware of their surreund
detection mechanism is built on visual capabilities th&dval ings, thus advancing service robotics toward deployment of
the robot to identify multiple users, with multiple postsrén robots into the real world.

real-time, in dynamic environments where both the robot and

human users are moving. Extended human-robot interaction i ACKNOWLEDGMENT
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