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Abstract—We address the problem of perceptual grouping from motion cues by formulating it as a motion layers inference from a

sparse and noisy point set in a 4D space. Our approach is based on a layered 4D representation of data, and a voting scheme for token

communication, within a tensor voting computational framework. Given two sparse sets of point tokens, the image position and

potential velocity of each token are encoded into a 4D tensor. By enforcing the smoothness of motion through a voting process, the

correct velocity is selected for each input point as the most salient token. An additional dense voting step allows for the inference of a

dense representation in terms of pixel velocities, motion regions, and boundaries. Using a 4D space for this tensor voting approach is

essential since it allows for a spatial separation of the points according to both their velocities and image coordinates. Unlike most other

methods that optimize certain objective functions, our approach is noniterative and, therefore, does not suffer from local optima or poor

convergence problems. We demonstrate our method with synthetic and real images, by analyzing several difficult cases—opaque and

transparent motion, rigid and nonrigid motion, curves and surfaces in motion.

Index Terms—Motion analysis, perceptual grouping, tensor voting.

æ

1 INTRODUCTION

Atraditional formulation of the motion analysis problem
is the following: Given two or more image frames, the

goal is to determine three types of information—a dense
velocity field, motion boundaries, and regions. Computation-
ally, the problem can be decomposed in two processes—
matching and motion capture. The matching process identifies
the elements (tokens) in successive views that represent the
same physical entity, thus producing a (possibly sparse)
velocity field. The motion capture process infers velocity
vectors at every image location, thus producing a dense
velocity field, and groups tokens into regions separated by
motion boundaries.

Here, we focus on the problem of matching and motion
capture from sparse sets of point tokens in two frames. Two

examples of such input are shown in Fig. 1 and Fig. 2. If the
frames in each pair are presented in a properly timed

succession, a certain motion of image regions is perceived

from one frame to the other. However, while in one case the
regions can be detected even without motion, only from

monocular cues (here, different densities of points), in the
other case, no monocular information is available. This

example shows that analysis is possible even from motion
cues only.

Another interesting aspect is the fact that the human
vision system not only establishes point correspondences,

but also perceives regions in motion, although the input
consists of sparse points only. This demonstrates that both

processes of matching and motion capture are involved in
motion analysis.

Ullman presents an excellent analysis of the correspon-
dence problem, from both a psychological and a computa-
tional perspective [1]. Here, we are following his conclusion
that correspondence formation is a low-level process which
expresses mutual token affinities, that takes place prior to
any 3D interpretation. Tokens involved in matching are
noncomplex elements, such as points, blobs, edge, and line
fragments. In our approach, we only study the case where
the input consists of identical point tokens.

Barron et al. [2] provide a useful review of the
computational methodologies used in the motion analysis
field. Optical flow techniques—such as differential methods
[3], [4], [5], [6], region-based matching [7], [8], [9], or energy-
based methods [10]—rely on local, raw estimates of the
optical flow field to produce a partition of the image.
However, the flow estimates are very poor at motion
boundaries and cannot be obtained in uniform areas.

Past approaches have investigated the use of Markov
Random Fields (MRF) in handling discontinuities in the
optical flow [11], [12], [13], [14]. While these methods give
some good results, they rely heavily on a proper spatial
segmentation early in the algorithm, which will not be
realistic in many cases. Another research direction uses
regularization techniques, which preserve discontinuities
by weakening the smoothing in areas that exhibit strong
intensity gradients [15], [16]. Here, an incorrect assumption
is also made that the motion boundaries can always be
detected in advance based on intensity only.

Significant improvements have been achieved by using
layered representations and the Expectation-Maximization
algorithm [17], [18], [19], [20], [21], [22]. There are many
advantages of this formalism—mainly because it represents
a natural way to incorporate motion field discontinuities,
and it allows for handling occlusion relationships between
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different regions in the image. While these techniques
provide a basis for much subsequent study, they still suffer
from some major defects—the procedure requires an
initialization step, which is essentially arbitrary, the algo-
rithm is iterative, subject to stability concerns, and the
description of the optical flow is parameterized and does
not permit a general description as would be desirable.
Some methods perform an iterative fitting of data to
parametric models [23], [24]. The difficulties involved in
this estimation process range from a severe restriction in
motion representation (as rigid or planar), to over-fitting
and instability due to high-order parameterizations.

An example of using basis set methods (in the form of
steerable flow fields) is the work of Fleet et al. [25]. The
results are good, but the use of a gradient descent solution
is heavily dependent on initial conditions and parameters
governing movement in the coefficient space.

Shi and Malik [26] have approached the problem of
motion segmentation in terms of recursive partitioning of
the spatio-temporal space through normalized cuts within a
weighted graph, but no prescription is offered for deciding
when the space has been adequately partitioned.

Wu et al. [27] have applied wavelet techniques to the
problem of optical flow determination. While their results
are fairly adequate, motion discontinuities are modeled
poorly due to oversmoothing. The presence of iteration in
finding the solution also leaves open the possibility of
instability.

Little et al. [28] developed a parallel algorithm for
computing the optical flow by using a local voting scheme
based on similarity of planar patches. However, their
methodology cannot prevent motion boundary blurring
due to oversmoothing and is restricted to short-range
motion only.

From a computational point of view, one of the most

powerful and most often used constraints is the smoothness

of motion. Usually, previous techniques encounter tradi-

tional difficulties in image regions where motion is not

smooth (i.e., around motion boundaries). To compute the

velocity field, knowledge of the boundaries is required so

that the smoothness constraint can be relaxed around the

discontinuities. But, the boundaries cannot be computed

without first having determined the pixel velocities. This

“chicken-and-egg” problem has lead to numerous incon-

sistent methods, with ad hoc criteria introduced to account

for motion discontinuities.

A computational framework that successfully enforces

the smoothness constraint in a unified manner, while

preserving discontinuities is tensor voting [29]. This

approach also benefits from the fact that it is noniterative

and it does not depend on critical thresholds. The first to

propose using tensor voting to determine the velocity field

were Gaucher and Medioni [30]. They employ successive

steps of voting, first to determine the boundary points as

the tokens with maximal motion uncertainty, and then to

locally refine velocities near the boundaries by allowing

communication only between tokens placed on the same

side of the boundary. However, in their approach, the

voting communication between tokens is essentially a

2D process that does not inhibit neighboring elements with

different velocities from influencing each other.

In this paper, we propose a novel approach based on a

layered 4D representation of data and a voting scheme for token

communication. Our methodology is formulated as a

4D tensor voting computational framework. The position

ðx yÞ and potential velocity ðvx vyÞ of each token are

encoded as a 4D tuple. By letting the tokens propagate

their information through voting, distinct moving regions

emerge as smooth surface layers in this 4D space of image

coordinates and pixel velocities.
In the next section, we examine the voting framework by

first giving an overview of the tensor voting formalism,
then we discuss how the voting concepts are generalized
and extended to the 4D case. In Section 3, we present our
approach for the problem of matching and motion capture.
Section 4 describes our experimental results, while Section 5
summarizes our contribution and provides further research
directions.

2 VOTING FRAMEWORK

2.1 Tensor Voting Overview

The use of a voting process for feature inference from sparse
and noisy data was introduced by Guy and Medioni [31]
and then formalized into a unified tensor framework [29].
This methodology is noniterative and robust to considerable
amounts of outlier noise. The only free parameter is the
scale of analysis, which is indeed an inherent property of
visual perception. The input data is encoded as tensors,
then support information (including proximity and smooth-
ness of continuity) is propagated by voting within a
neighborhood.

In the 2D case, the salient features to be extracted are
points and curves. Each token is encoded as a second order
symmetric 2D tensor, which is geometrically equivalent to
an ellipse. It is described by a 2� 2 eigensystem, where the
eigenvectors e1 and e2 give the ellipse orientation and the
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Fig. 1. Translating circle. Fig. 2. Translating disk.



eigenvalues �1 and �2ð�1 � �2Þ give the ellipse size. The
tensor is internally represented as a matrix S:

S ¼ �1 � e1e
T
1 þ �2 � e2e

T
2 : ð1Þ

An input token that represents a curve element is
encoded as a stick tensor, where e2 is the curve tangent and
e1 the curve normal, while �1 ¼ 1 and �2 ¼ 0. An input token
that represents a point element is encoded as a ball tensor,
with no preferred orientation, while �1 ¼ 1 and �2 ¼ 1.

The communication between tokens is performed
through a voting process, where each token casts a vote at
each site in its neighborhood. The size and shape of this
neighborhood, and the vote strength and orientation are
encapsulated in predefined voting fields (kernels), one for
each feature type—there is a stick voting field and a ball
voting field in the 2D case. The fields are generated based
on a single parameter—the scale factor �. Vote orientation
corresponds to the best (smoothest) local curve continuation
from voter to recipient, while vote strength V Sð~ddÞ decays
with distance j~ddj between them and with curvature �:

V Sð~ddÞ ¼ eÿ
j~ddj2þ�2

�2

ÿ �
: ð2Þ

Fig. 3a shows how votes are generated to build the
2D stick field. A tensor P where curve information is locally
known (illustrated by curve normal ~NNP ) casts a vote at its
neighbor Q. The vote orientation is chosen so that it ensures
a smooth curve continuation (through a circular arc) from
voter P to recipient Q. To propagate the curve normal ~NN
thus obtained, the vote Vstickð~ddÞ sent from P to Q is encoded
as a tensor according to (3), where ~dd ¼ Qÿ P .

Vstickð~ddÞ ¼ V Sð~ddÞ � ~NN ~NNT : ð3Þ

Note that vote strength at both Q0 and Q00 is smaller than
at Q—because Q0 is farther, and Q00 requires a higher

curvature than Q. Fig. 3b shows the 2D stick field, with its
color-coded strength. When the voter is a ball tensor with
no information known locally, the vote is generated by
rotating a stick vote in the 2D plane and integrating all
contributions according to (4). The corresponding 2D ball
field is shown in Fig. 3c.

Vballð~ddÞ ¼
Z 2�

0

R�Vstick Rÿ1
�
~dd

� �
RT
� d�: ð4Þ

At each receiving site, the collected votes are combined
through simple tensor addition (sum of matrices V ð~ddÞ), thus
producing generic 2D tensors. During voting, tokens that lie
on a smooth curve reinforce each other, and the tensors
deform according to the prevailing orientation. Each tensor
encodes the local orientation of geometric features (given by
the tensor orientation) and confidence of this knowledge
(also called saliency, given by the tensor shape and size).
For a generic 2D tensor, its curve saliency is given by ð�1 ÿ
�2Þ and the curve normal orientation by e1, while its point
saliency is given by �2. After voting, each resulting tensor S
in general form is decomposed into a stick and a ball
component, each being weighted by the corresponding
saliency:

S ¼ ð�1 ÿ �2Þe1e
T
1 þ �2 e1e

T
1 þ e2e

T
2

ÿ �
: ð5Þ

Therefore, the voting process infers curves and junctions
(points) simultaneously, while also identifying outlier noise
(tokens that receive very little support).

In the 3D case, the salient features are points, curves and
surfaces [29]. A point element corresponds to a ball tensor,
with �1 ¼ �2 ¼ �3 ¼ 1 and no preferred orientation, a curve
element is represented by a plate tensor, where two
eigenvalues codominate (�1 ¼ 1, �2 ¼ 1, �3 ¼ 0) and the
eigenvector e3 gives the curve tangent, and a surface
element is represented by a stick tensor, where one
eigenvalue dominates (�1 ¼ 1, �2 ¼ 0, �3 ¼ 0), and the
surface normal is given by e1.

2.2 Tensor Voting in 4D

The tensor voting framework is general enough to be
extended to any dimension readily, except for some
implementation changes, mainly for efficiency purposes.
The issues to be addressed here are the tensorial representa-
tion of the features in the 4D space, the generation of voting
fields, and the data structures used for vote collection.

Table 1 shows all the geometric features that appear in a
4D space and their representation as elementary 4D tensors,
where n and t represent normal and tangent vectors,
respectively. Note that a surface in the 4D space can be
characterized by two normal vectors, or by two tangent
vectors. From a generic 4D tensor that results after voting,
the geometric features can be extracted as shown in Table 2.

The voting fields are a key part of the formalism—they
are responsible for the size and shape of the neighborhood
where the votes are cast and also control how the votes
depend on distance and orientation. The 4D voting fields
are obtained as follows: First, the 4D stick field is generated
in a similar manner to the 2D stick field, as it was explained
in Section 2.1 and illustrated in Fig. 3. Then, the other three
voting fields are built by integrating all the contributions
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Fig. 3. Voting in 2D. (a) Vote generation. (b) Stick field. (c) Ball field.



obtained by rotating a 4D stick field around appropriate
axes. In particular, the 4D ball field—the only one directly
used here—is generated according to:

Vballð~ddÞ ¼Z Z 2�

0

Z
R�xy�xu�xvVstick Rÿ1

�xy�xu�xv
~dd

� �
RT
�xy�xu�xv

d�xyd�xud�xv;

ð6Þ

where x, y, u, v are the 4D coordinates axes, �xy, �xu, �xv are
rotation angles in the specified planes, and the stick field
corresponds to the orientation (1 0 0 0).

In the 2D or 3D case, the data structure used to store the
tensors during vote collection was a simple 2D grid or a
red-black tree. Because we need a data structure that is
gracefully scalable to higher dimensions, the solution used
in our approach is an approximate nearest neighbor (ANN) k-d
tree [32]. Since we use efficient data structures to store the
tensors, the space complexity of the algorithm is OðnÞ,
where n is the input size. The average time complexity of
the voting process is Oð�nÞ, where � is the average number
of tokens in the neighborhood. Therefore, in contrast to
other voting techniques, such as the Hough Transform, both
time and space complexities of the tensor voting methodol-
ogy are independent of the dimensionality of the desired
feature. The running time for an input of size 700 is about
20 seconds on a Pentium III (600 MHz) processor.

3 OUR APPROACH

The main difficulties in visual motion analysis appear at
motion boundaries, where velocity estimates are very poor.
This happens because the problem is typically cast as a
2D process. As a result, along boundaries tokens have a
strong mutual affinity because they are close in the image,
despite the fact that they may belong to different regions,
with different velocities. Accordingly, we believe that the
desirable representation should be based on a layered
description, where regions in motion are represented as
smooth and possibly overlapping layers.

In any method that seeks to solve the motion analysis
problem, each token is characterized by four attributes—its
image coordinates ðx yÞ and its velocity with the compo-
nents ðvx vyÞ. We encapsulate them into a ðx y vx vyÞ tuple in
the 4D space, this being a natural way of expressing the
spatial separation of tokens according to both velocities and
image coordinates. It is especially helpful for eliminating
the problem of uncertainty along motion boundaries,
where, although tokens are close in image space, their
interaction is now inhibited by their separation in velocity

space. In general, there may be several candidate velocities
for each point ðx yÞ, so each tuple ðx y vx vyÞ represents a
(possibly wrong) potential match.

Both matching and motion capture are based on a
process of communicating the affinity between tokens. In
our representation, this affinity is expressed as the token
preference for being incorporated into a smooth surface layer
in the 4D space. A necessary condition is to enforce strong
support between tokens in the same layer, and weak
support across layers, or at isolated tokens.

A suitable computational framework that enforces the
smoothness constraint while preserving discontinuities is
tensor voting, here performed in the 4D space. The affinities
between tokens are embedded in the concept of surface
saliency exhibited by the data. By letting the tokens
propagate their information through voting, wrong matches
are eliminated as they receive little support, and layers are
extracted as salient smooth surfaces. Essentially, the
matching problem is expressed as an outlier rejection
process, while motion capture is performed mainly as a
layer densification process.

We demonstrate the contribution of this work by
addressing the problems of matching and motion capture.
Given two sparse sets of point tokens, we first use 4D voting
to select the correct match for each input point, as the most
salient token, thus producing a sparse velocity field. By
using the same voting framework during the motion
capture process, we then generate a dense layer representa-
tion in terms of motion boundaries and regions. We
illustrate our method with both synthetic and real images,
by analyzing several cases—opaque and transparent
motion, rigid and nonrigid motion, curves and surfaces in
motion.

3.1 Matching

We take as input two frames containing identical point
tokens, in a sparse configuration. For illustration purposes,
we give a step-by-step description of our approach by using
a specific example—the point tokens represent an opaque
translating disk against a static background. The input
frames are shown in Fig. 4a.

Before proceeding, we need to make a brief comment on
how we display the intermediate results (i.e., those in 4D).
In order to allow for a 3D display, the last component of
each 4D point has been dropped, so that the three
dimensions shown are image coordinates x and y (in the
horizontal plane), and the vx component of image velocity
(the height).

Candidate matches are generated as follows: In a
preprocessing step, for each token in the first frame, we
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TABLE 1
Elementary Tensors in 4D

TABLE 2
A Generic Tensor in 4D



simply create a potential match with every point in the
second frame that is located within a neighborhood (whose
size is given by the scale factor) of the first token. The
resulted candidates appear as a cloud of ðx y vx vyÞ points in
the 4D space. In our translation example, we have 400 input
points and, by using the procedure described above, we
generate an average of 5.3 candidate matches per point,
among which at most one is correct. Fig. 4b shows the
candidate matches. Note that the correct matches can be
already visually perceived as they are grouped in two
parallel layers surrounded by noisy matches.

Since no information is initially known, each potential
match is encoded into a 4D ball tensor—the eigenvalues and
eigenvectors are the following:

�1 ¼ 1 e1 ¼ ð0 0 0 1ÞT ;

�2 ¼ 1 e2 ¼ ð0 0 1 0ÞT ;

�3 ¼ 1 e3 ¼ ð0 1 0 0ÞT ;

�4 ¼ 1 e4 ¼ ð1 0 0 0ÞT :

After encoding, each token casts votes in a sparse voting
process, in the sense that votes are sent only at input token
locations. Votes are generated by using the 4D ball voting
field, where no particular orientation is preferred.

During voting, there is strong support between tokens
that lie on a smooth surface (layer), while communication
between layers is reduced by the spatial separation in the
4D space of both image coordinates and pixel velocities.
Wrong matches appear as isolated points, which receive
little or no support. A measure of this support is given by
the surface saliency.

The next step is to eliminate wrong matches. For each
group of tokens that have common ðx yÞ coordinates but
different ðvx vyÞ velocities, we retain the token with the
strongest surface saliency (that is, with the maximum value
for �2 ÿ �3), while rejecting the others as outliers. For the
translating disk example, a comparison with the ground

truth shows that matching was 100 percent accurate—all
400 matches have been recovered correctly, despite the
large amount of approximately 500 percent noise present.
Fig. 4c shows the recovered sparse velocity field, while
Fig. 4d shows a 3D view of the recovered matches (the
height represents the vx velocity component).

3.2 Motion Capture

We start with a sparse velocity field described by the
ðx y vx vyÞ tuples in the 4D space, that have been produced
by the matching process. In the first stage, we need to obtain
an estimation of the layer orientations as accurate as
possible. Although local layer orientations have already
been determined as a by-product during the matching
process (after voting, the eigenvectors e1 and e2 represent
the normals to layers), they may have been corrupted by the
presence of wrong correspondences.

Therefore, we perform an orientation refinement through
another sparse voting process, but this time with the correct
matches only. To this purpose, every 4D tuple is again
encoded as a ball tensor. After voting, the desired orienta-
tions—as normals to layers—are found at each token as the
first two eigenvectors e1 and e2. We remind the reader that a
surface in 4D is characterized by two normal vectors. In
Fig. 4e, we show a 3D view of the tokens with refined layer
orientations (only one of the normals is shown at each
token).

In order to attain the very goal of the motion capture
problem—that is, to recover boundaries and regions as
continuous curves and surfaces, respectively—it is necessary
to first infer velocities and layer orientations at every image
location. Therefore, we must obtain appropriate tensor
values at every pixel ðx yÞ. There may be several tensors
with the same ðx yÞ but with different ðvx vyÞ since over-
lapping layers are present in the case of transparent motion.

The densification process is illustrated in Fig. 5. For each
pixel ðx yÞ, we try to find the best ðvx vyÞ locations at which
to place the newly generated tokens. The candidates
considered are all the discrete points ðvx vyÞ between the
minimum and maximum velocities in the sparse tokens set,
within a neighborhood of the ðx yÞ point. At each candidate
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Fig. 4. Translating disk. (a) Input frames. (b) Candidate matches. (c) Sparse velocity field. (d) Recovered vx velocities. (e) Refined velocity field

(sparse). (f) Dense velocity field. (g) Regions. (h) Boundaries.



position ðx y vx vyÞ, we accumulate votes from the sparse
tokens, according to the same tensor voting framework that

we have used so far. After voting, the candidate tokens

whose surface saliencies ð�2 ÿ �3Þ are locally maximal are
retained, and their ðvx vyÞ coordinates represent the most

likely velocities at ðx yÞ. By following this procedure at
every ðx yÞ image location, we generate a dense velocity field.

Note that, in this process, along with velocities, we

simultaneously infer layer orientations, given by eigenvec-
tors e1 and e2. In Fig. 4f, we show a 3D view of the dense set

of tokens and their associated layer orientations.
The next step is to group tokens into regions that

correspond to distinct moving objects, by using again the
smoothness constraint. We start from an arbitrary point in

the image, assign a region label to it and try to recursively

propagate this label to all its image neighbors. In order to
decide whether the label must be propagated, we use the

smoothness of both velocity and layer orientation as a

grouping criterion. Having both pieces of information
available is especially helpful in situations where neighbor-

ing pixels have very similar velocities, and yet they must

belong to different regions. Most methods that are based
only on velocity discontinuities would fail on these cases.

We will show such an example later. After assigning region
labels to every token, for illustration purposes, we perform
a triangularization of each of the regions detected. The
resulting surfaces are presented in Fig. 4g.

Finally, we have implemented a method to extract the
motion boundary for each region as a “partially convex hull.”
We start at some arbitrary point S on the boundary—for
example, the point with the largest x coordinate in the
region. From there, the boundary curve is grown so that at
every current point C, the curve is locally convex. For the
current point C, the next boundary point N is chosen so that
all the points within a neighborhood of C are inside (to the
right of) the boundary found so far, including the segment
CN. The process is controlled by only one parameter—the
scale factor—that gives the size of the neighborhood and,
thus, determines the perceived level of detail (that is, the
departure from the actual convex hull). The resulting
boundary curves are shown in Fig. 4h.

4 RESULTS

The case illustrated so far may be considered too simple
since the only motion involved is translation. However, no
assumption—such as translational, planar, or rigid mo-
tion—has been made. The only criterion used is the
smoothness of image motion. To support this argument,
we show next that our approach also performs very well for
several other configurations.

4.1 Using Motion Cues Only

Expanding disk (Fig. 6). The input consists of two sets of
400 point tokens each, representing an opaque disk in
expansion against a static background. The average number
of candidate matches per point is 6.1. Comparing the
resulting matches with the true motion shows that only one
match among 400 has been incorrectly recovered. This
example demonstrates that, without special handling, our
framework can easily accommodate nonrigid image motion.

Rotating disk—translating background (Fig. 7). The
input consists of two sets of 400 point tokens each,
representing an opaque rotating disk against a translating
background. The average number of candidate matches per
point is 5.8. After processing, only two matches among 400
are wrong. This is a very difficult case even for human
vision, due to the fact that around the left extremity of the
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Fig. 5. Densification.

Fig. 7. Rotating disk—translating background.

Fig. 6. Expanding disk.



disk the two motions (of the disk and the background) are
almost identical. In that part of the image, there are points
on different moving objects that are not separated, even in
the 4D space. In spite of this inherent ambiguity, our
method is still able to accurately recover velocities, regions
and boundaries. The key fact is that we rely not only on the
4D positions, but also on the local layer orientations that are
still different and, therefore, provide a good affinity
measure.

Rotating ellipse (Fig. 8). The input consists of two sets of
100 point tokens each, representing a rotating ellipse. The
average number of candidate matches per point is 5.9. After
processing, all 100 matches have been correctly recovered.
Many methods would fail on this example (used in the
literature to illustrate the aperture effect)—one difficulty is
that at the points where the rotated ellipse “intersects” the
original one the velocity could be wrongly estimated as
zero.

Rotating square (Fig. 9). The input consists of two sets of
100 point tokens each, representing a rotating square. The
average number of candidate matches per point is 5.7. After
processing, all 100 matches have been correctly recovered.
This example is similar to the rotating ellipse and shows
that the presence of nonsmooth curves does not produce
additional difficulty for our methodology.

Translating circle (Fig. 10). The input consists of two sets
of 400 point tokens each, representing a translating circle
against a static background. The average number of

candidate matches per point is six. After processing, all
100 matches have been correctly recovered. This example
shows that we can successfully handle both curves and
surfaces in motion.

4.2 Incorporating Intensity Information

So far, we have only presented cases where no monocular
information (such as intensity) is available, and the entire
analysis has been performed based on motion cues only.
Human vision is able to handle these cases remarkably well,
and their study is fundamental for understanding the
motion analysis process. Nevertheless, they are very
difficult from a computational perspective—most existing
methods cannot handle such examples in a consistent and
unified manner.

To further validate our approach, we have also analyzed
several standard image sequences, where both monocular
and motion cues are available. In order to incorporate
monocular information into our framework, we only
needed to change the preprocessing step where candidate
matches are generated. We ran a simple intensity-based
cross-correlation procedure, and we retained all peaks of
correlation as candidate matches. The rest of our framework
remains unchanged.

Yosemite sequence (Fig. 11). We analyzed the motion
from two frames of the Yosemite sequence (without the sky)
to quantitatively estimate the performance of our approach.
Although this is an artificial fly-through sequence, it uses
real images as texture for the valley model. The average
angular error obtained is 3:74� � 4:3� for 100 percent field
coverage, result which compares favorably to those in the
literature—in Table 3, we show the results of other
methods, as reproduced from [2]. This example also shows
that our method successfully recovers nonplanar motion
layers.

Flower Garden sequence (Fig. 12). For a qualitative
estimation, we also analyzed the motion from two frames of
the Flower Garden sequence. It is worth mentioning that
outliers representing wrong candidates around the tree
boundary are corrected during the densification step. In
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Fig. 8. Rotating ellipse.

Fig. 9. Rotating square.

Fig. 10. Translating circle.

Fig. 11. Yosemite. (a) An input frame. (b) X-velocities. (c) Y-velocities. (d) Motion layer (x-velocities).



order to improve the result, we currently investigate the use

of multiple frames and a more elaborate procedure with

subpixel precision for the densification and segmentation

steps. Since there is no ground truth for this sequence, we

illustrate the error by showing the difference image

between the input frames registered using the computed

motion.

4.3 Handling Reflections and Transparency

Since our framework allows for overlapping motion layers,

it can successfully handle images containing reflections and

transparency. Here, we consider the image Iðx; y; tÞ at time t

as a combination of two patterns A and B, which have

independent motions a and b:

Iðx; y; tÞ ¼ Ata þBtb; ð7Þ

where Ata denotes pattern A transformed by motion ta.

In order to obtain the dominant motion (assume it is a),
we run a cross-correlation procedure, followed by a step of
voting as described in the Matching section, to eliminate
noisy matches. Next, we use a “nulling” method [33], [34],
to estimate the remaining motion b. The pattern component
A with velocity a is removed from the sequence by moving
each frame with a, then subtracting it from the following
frame. The resulting difference images are:

Dk ¼ Iðx; y; kþ 1Þ ÿ Iaðx; y; kÞ

¼ Aðkþ1Þa þBðkþ1Þb
� �

ÿ Aðkþ1Þa þBkbþa
� �

¼ ðBb ÿBaÞkb:

ð8Þ

Assuming that we have three frames, the difference
images are D0 ¼ ðBb ÿBaÞ and D1 ¼ ðBb ÿBaÞb, which
show a pattern ðBb ÿBaÞ moving with a single motion b.
We use the same method—cross-correlation followed by
voting—to determine motion b from frames D0 and D1.

Finally, we put together the two sets of 4D tokens with

velocities a and b, and run a step of dense voting and

grouping (as described in the Motion Capture section) on

the entire set. This process also fills any holes in the layers,

which may have been produced by the noisy matches

elimination. Note that at this point the motions have been

determined, but without separating the image patterns. In

order to better show our results, based on the known

motions, we recover the two image patterns by solving a

least-squares problem, as described in [34].

Transparent motion sequence (Fig. 13). We analyzed the

motion from three frames captured with a moving camera,

showing a face reflected in a framed picture. We show one

of the input frames in Fig. 13a, and the two separated image

patterns in Fig. 13b and Fig. 13c.

Scale sensitivity. Since the only parameter involved in our

voting framework is the scale factor that defines the voting

fields (kernels), we analyzed how it influences the quality of

the analysis. We ran our algorithm on the expanding disk
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TABLE 3
Yosemite Sequence Results from Barron et al. [2]

Fig. 12. Flower Garden. (a) An input frame. (b) X-velocities. (c) Y-velocities. (d) Difference error. (e) Regions.



example for a large range of scale values and we found that

the method is remarkably robust to varying scale factors.

Fig. 14 shows the number of wrong matches (for an input of

400 points) obtained for different values of the voting field

size (in pixels). Comparatively, the image size is 200 by 200.

Note that, when the field is too small, tokens do not

communicate any more.

5 CONCLUSIONS AND FUTURE WORK

We have presented a novel approach for the problem of

perceptual grouping from motion cues, based on a layered

4D representation of data, and a voting scheme for token

communication. Our methodology is formulated as a

4D tensor voting computational framework.
The moving regions are conceptually represented by

smooth layers in the 4D space of image coordinates and

pixel velocities. Within this data representation, we em-

ployed a voting scheme for token affinity communication.

Token affinities are expressed by their preference for being

incorporated into smooth surfaces, as statistically salient

features. Communication between sites is performed by

tensor voting. From a possibly sparse input consisting of

identical point tokens in two frames, without any a priori

knowledge of the motion model, we determine a dense

representation in terms of accurate velocities, motion

boundaries, and regions by enforcing the smoothness

constraint while preserving motion discontinuities.
Using a 4D space for our tensor voting approach is

essential since it allows for a spatial separation of the points

according to both their velocities and image coordinates.

Consequently, the proposed framework allows tokens from

the same layer to strongly support each other, while

inhibiting influence from other layers, or from isolated

tokens.

Despite the high dimensionality, our voting scheme is
both time and space efficient. It does not involve initializa-
tion or search in a parametric space and, therefore, does not
suffer from local optima or poor convergence problems. The
only free parameter is scale, which is an inherent
characteristic of human vision, and its setting is not critical.

We demonstrated the contributions of this work by
analyzing several cases—opaque and transparent motion,
rigid and nonrigid motion, curves, and surfaces in motion.
We showed that our method successfully addresses the
difficult problem of grouping from motion cues only and is
also able to incorporate the use of monocular cues that are
present in real images.

We plan to extend our approach for real image

sequences by using a more elaborate procedure for

generating the initial candidates, rather than a simple

cross-correlation technique. Other research directions in-

clude studying the occlusion relationships and incorporat-

ing information from multiple frames.
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