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Abstract—Most approaches for motion analysis and interpretation rely on restrictive parametric models and involve iterative methods

which depend heavily on initial conditions and are subject to instability. Further difficulties are encountered in image regions where

motion is not smooth—typically around motion boundaries. This work addresses the problem of visual motion analysis and

interpretation by formulating it as an inference of motion layers from a noisy and possibly sparse point set in a 4D space. The core of

the method is based on a layered 4D representation of data and a voting scheme for affinity propagation. The inherent problem caused

by the ambiguity of 2D to 3D interpretation is usually handled by adding additional constraints, such as rigidity. However, enforcing

such a global constraint has been problematic in the combined presence of noise and multiple independent motions. By decoupling the

processes of matching, outlier rejection, segmentation, and interpretation, we extract accurate motion layers based on the smoothness

of image motion, then locally enforce rigidity for each layer in order to infer its 3D structure and motion. The proposed framework is

noniterative and consistently handles both smooth moving regions and motion discontinuities without using any prior knowledge of the

motion model.

Index Terms—Motion, image models, scene analysis.
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1 INTRODUCTION

THISwork addresses a difficult and fundamental problem
in computer vision, the analysis and interpretation of

visual motion. An illustration is given in Fig. 1—given
two image frames that contain general motion, the goal is
twofold:

. to analyze the image changes in order to establish
correspondences between pixels across frames, as a
dense velocity field, and to group them into motion
regions separated by motion boundaries, and

. to interpret these changes in order to recover the
scene 3D structure and 3D motion.

This formulation that divides the visual process into
motion analysis and interpretation is inspired from various
perceptual studies [1], [2], which show that establishing
correspondences is a low-level process that takes place prior
to interpretation, where matches are established between
elementary tokens, based on built-in affinity measures. The
tokens involved in matching are not complex structures,
but, rather, primitive image elements, such as points,
fragments of edges, or blobs. In this study, we only focus
on analysis from point tokens.

1.1 Motion Analysis

The examination of some simple configurations in motion
indicates that the visual system incorporates a certain affinity

measure between tokens, which can be roughly considered
as a measure of similarity. This affinity is involved in both
processes of matching and region grouping. Indeed, estab-
lishing a correspondence between two tokens implies that
their mutual affinity (or preference to each other) is greater
than the affinity to other tokens. In grouping, to determine
that a token belongs to a certain region is equivalent to
establishing that it has a stronger affinity to the tokens in that
region than to tokens in other regions.

In order to solve the problem of motion analysis, a
successful computational framework must define a way to
express the affinities between tokens while also taking into
account and handling the difficulties inherent to this
process, such as the aperture problem and the presence of
regions lacking texture. To this purpose, additional con-
straints need to be introduced. More specifically, any such
constraint must satisfy two requirements: 1) define a
practical measure of affinities between tokens so that they
can be matched and grouped successfully and 2) allow the
computation of motion (pixel velocities) where local
measurements could not provide a complete solution—this
being the case of one velocity component missing due to the
aperture problem or the case of unreliable motion due to
lack of texture. In this context, the constraints are needed in
order to generate a dense output from a sparse and/or
noisy input.

Several types of constraints have been commonly
considered in the literature:

. constant velocity over an area of the image (valid for
pure translation),

. constant velocity over small time intervals,

. velocity consistent with 2D rigid motion (valid for
rotation and translation of objects in the image plane),

. velocity consistent with 3D rigid motion, and

. smooth velocity within image areas that represent
distinct objects.
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Methods that are based on assumptions of constant
velocity or rigid motion are not sufficient for analyzing the
two-dimensional motion that arises from the projection of
arbitrary three-dimensional surfaces undergoing general
motion in space. Therefore, it is the last constraint—
smoothness of image motion—that is used in this work.

Our computational framework addresses the problem of
visual motion analysis from a perceptual organization
perspective, where saliency is used as an affinity measure.
An essential property is that corresponding pixels in the
two images form coherent perceptual structures in the
4D space of image coordinates and pixel velocities, while
erroneous matches generate outlier tokens. More precisely,
each potential match is seen as a token characterized by
four attributes—the image coordinates ðx; yÞ in the first
image and the velocity with the components ðvx; vyÞ. Tokens
are encapsulated as ðx; y; vx; vyÞ points in the 4D space, this
being a natural way of expressing the spatial separation of
tokens according to both velocities and image coordinates.
In general, for each pixel ðx; yÞ, there can be several
candidate velocities, so each 4D point ðx; y; vx; vyÞ represents
a potential match.

Within this representation, smoothness of motion is
embedded in the concept of surface saliency exhibited by
the data. A computational methodology that successfully
enforces the smoothness constraint in a consistent and
unified manner, while preserving discontinuities is tensor
voting [3]. This technique also benefits from the fact that it
is noniterative and it does not depend on critical thresholds.
By letting the tokens communicate their mutual affinity
through voting, noisy matches are eliminated as they
receive little support and distinct moving regions are
extracted as smooth salient surface layers, in the 4D space.

1.2 Handling Uncertainty along Motion Boundaries

However, further difficulty in motion analysis is caused by
the presence of motion boundaries themselves. The very
source of information used for segmentation—pixel veloci-
ties—is mostly unreliable exactly at the motion boundaries,
where the segmentation takes place. The example in Fig. 2,

showing a truck moving from left to right over a static
background, is used to illustrate the problem. From Area A
that appears in the first image, only half is visible in the
second image, the other half being occluded by the moving
region. At the opposite side, Area B is still visible in the
second image, but is now split into two regions, with new,
unoccluded pixels in between. Even where no occlusion
takes place, such as at the upper boundary, Area C is also
split in the second image due to the motion between
regions.

Consequently, the apparent motion around boundaries
cannot be precisely determined by using any similarity
criteria since the areas being compared must have a finite
extent. Moreover, it is not realistic to assume that all the
wrong matches can be later removed as noise. Due to the
similarity of partial areas, wrong correspondences are often
assigned in a consistent manner, resulting in overextended
image regions.

The key observation is that one should not only rely on
motion cues in order to perform motion segmentation.
Examining the original images reveals a multitude of
monocular cues, such as intensity edges, that can aid in
identifying the true object boundaries. In this context, we
formulate the problem of motion analysis as a two-
component process that:

. enforces the smoothness of motion, except at its
discontinuities, and

. enforces the smoothness of such discontinuities,
aided by monocular cues.
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Fig. 1. Motion analysis and interpretation.

Fig. 2. Nonsimilarity at motion boundaries.



The first component is responsible for extracting the
motion layers as salient, smooth surfaces in the 4D space of
image coordinates and pixel velocities through a 4D voting
process. The layers are then refined by a subsequent
2D voting process that integrates motion with monocular
cues (intensity edges) for accurate inference of motion
boundaries.

1.3 Motion Interpretation

Given two views of a static scene, the problem of recovering
the 3D camera and scene structure has been intensively
studied and it is considered well-understood. A set of
matching points—typically corresponding to salient image
features—are first obtained by methods such as cross-
correlation. Assuming that matches are perfect, a simple
Eight Point Algorithm [4] can be used for estimating the
fundamental matrix and, thus, the epipolar geometry of the
cameras is determined. A dense set of matches can then be
established, aided by the epipolar constraint, and, finally,
the scene structure is recovered through triangulation.

The simplistic approach described above performs
reasonably well only in the case when 1) the set of matches
contains no outlier noise and 2) the scene is rigid—i.e.,
without objects having independent motions.

However, the first assumption almost never holds since
image measurements are bound to be imperfect and
matching techniques will never produce accurate corre-
spondences, mainly due to occlusion or lack of texture. In
the presence of incorrect matches, linear methods, such as
the Eight Point Algorithm, are very likely to fail. The
problem can be reliably solved by robust methods, which
involve nonlinear optimization [5], [6] and normalization of
data before fundamental matrix estimation [7].

If the second assumption is also violated by the presence
of multiple independent motions, even the robust methods
may become unstable as the scene is no longer a static one.
Even if the dominant epipolar geometry is recovered (for
example, the one corresponding to the static background),
it is not very clear how to handle misfits—they may be
caused by outlier noise, independent motions, or even
nonrigid motion.

The core inadequacy of most existing methods is that
they attempt to enforce a global constraint—such as the
epipolar one—on a data set which may include, in addition
to noise, independent subsets that are subject to separate
constraints. In this context, it is indeed very difficult to
recover structure from motion and segment the scene into
independently moving objects if these two tasks are
performed simultaneously.

In order to address these difficulties, our approach
decouples the above operations, allowing for explicit and
separate handling of matching, outlier rejection, grouping,
and recovery of camera and scene structure. During
motion analysis, we determine an accurate representation
in terms of dense velocities (equivalent to point corre-
spondences), segmented motion regions, and boundaries
by using only the smoothness of image motion. Next, we
proceed with the extraction of scene and camera
3D geometry, separately on each rigid component of the
scene. Note that our approach follows Ullman’s inter-
pretation of visual motion [1] in that the correspondence

process takes place prior to 3D interpretation. Further-
more, we also perform segmentation before 3D interpreta-
tion based on the smoothness of image motion only.

The main advantage of our approach is that, at the
interpretation stage, noisy matches have already been
rejected and matches have been grouped according to the
distinct moving objects present in the scene. Therefore,
standard methods can be reliably applied on each data
subset in order to determine the 3D camera and scene
structure.

1.4 Method Overview

The first step of the proposed method formulates the motion
analysis problem as an inference of motion layers from a
noisy and possibly sparse point set in a 4D space. In order to
compute adense set ofmatches (equivalent to a velocity field)
and to segment the image into motion regions, we use an
approach based on a layered 4D representation of data and a
voting scheme for communication. First, we establish candi-
date matches through a multiscale, normalized cross-
correlation procedure. Each potential match is encoded as a
ðx; y; vx; vyÞ point in the 4D space of pixel coordinates and
velocities. Within this representation, distinct moving re-
gions in the image correspond to smooth, salient surface layers
in 4D, which are extracted through a 4D voting process.

Although noisy correspondences are rejected as outliers,
there are also wrong matches that are consistent with the
correct ones. This mostly occurs at the motion boundaries,
where the occluding layer is typically overextended toward
the occluded area. In a subsequent stage, the correct motion
boundaries are inferred by adding monocular information
from the original images. First, we define zones of
boundary uncertainty along the margins of layers. Within
these zones, we create a 2D saliency map that combines the
following information: the position and overall orientation
of the layer boundary and the strength and orientation of
the intensity edges from the images. The smoothness and
continuity of the boundary is then enforced through a
2D voting process, allowing the true boundaries to be
extracted as the most salient curves within these zones of
uncertainty.

The second step interprets the image motion by estimat-
ing the 3D scene structure and camera geometry. A rigidity
test is performed on the matches within each object to
identify potential nonrigid (deforming) objects and, also,
between objects, to merge those that move rigidly together
but have separate image motions due to depth disconti-
nuities. Finally, the epipolar geometry is estimated sepa-
rately for each rigid component by using standard methods
for parameter estimation (such as the normalized Eight
Point Algorithm, LMedS, or RANSAC) and the scene
structure and camera motion are recovered by using the
dense velocity field.

Our early voting-based approach to grouping from
motion that appeared in [8] mainly focused on the use of
motion cues only. The integration of motion and monocular
cues for boundary extraction through voting has been
proposed in conference version in [9]. In this paper, we
provide a full coverage of the framework, extend it to the
problem of interpretation of image motion, and present
many new results.
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1.5 Related Work

Barron et al. [10] provide a detailed review of the comp-
utational methodologies used in motion analysis. Optical
flow techniques—such as differential methods [11], [12],
[13], [14], region-based matching [15], [16], [17], or energy-
based methods [18]—rely on local, raw estimates of the
optical flow field to produce a partition of the image.
However, the flow estimates are very poor at motion
boundaries and cannot be obtained in uniform areas.

Past approaches have investigated the use of Markov
Random Fields (MRF) in handling discontinuities in the
optical flow [19], [20], [21], [22]. While these methods give
some good results, they rely heavily on a proper spatial
segmentation early in the algorithm, which will not be
realistic in many cases. Another research direction uses
regularization techniques which preserve discontinuities by
weakening the smoothing in areas that exhibit strong
intensity gradients [23], [24]. Here, an incorrect assumption
is also made that the motion boundaries can always be
detected in advance, based on intensity only.

Significant improvements have been achieved by using
layered representations and the Expectation-Maximization
algorithm [25], [26], [27], [28], [29], [30]. There are many
advantages of this formalism—mainly because it represents
a natural way to incorporate motion field discontinuities
and it allows for handling occlusion relationships between
regions in the image. While these techniques provide a basis
for much subsequent study, they still suffer from some
major defects—the procedure requires an initialization step,
which is essentially arbitrary, the algorithm is iterative,
subject to stability concerns, and the description of the
optical flow is parameterized and does not permit a general
description as would be desirable. Some methods perform
an iterative fitting of data to parametric models [31], [32].
The difficulties involved in this estimation process range
from a severe restriction in motion representation (as rigid
or planar) to overfitting and instability due to high-order
parameterizations. Black and Anandan [33] address the
issue of multiple motions through a robust estimation
framework based on the Lorentzian estimator and a
Graduated Non Convexity algorithm seeking an optimal
solution. The approach relies on the assumption that the
dominant (background) motion appears throughout a
significant part of the image.

An example of using basis set methods (as steerable flow
fields) is the work of Fleet et al. [34]. The results are good,
but the use of a gradient descent solution is heavily
dependent on initial conditions and parameters governing
movement in the coefficient space.

Shi and Malik [35] have approached the problem of
motion segmentation in terms of recursive partitioning of
the spatio-temporal space through normalized cuts within a
weighted graph. Grouping pixels based on local measure-
ments does not pose initialization issues, but the approach
tends to make early commitments to noisy local measure-
ments. Also, it is difficult to decide where to stop the
recursive partitioning process—a region with homogeneous
motion may be further segmented due to areas with
different intensity patterns.

Wu et al. [36] have applied wavelet techniques to the
problem of optical flow determination. Optical flow is
described as a linear combination of 2D wavelets. A coarse

to fine adjustment is enabled by using different velocity
space resolutions in a hierarchical pyramid. This permits
capturing a wide range of velocity magnitudes without the
instability created by applying coarse to fine adjustment in
the intensity space, which can create poor optical flow
values at low-resolution where image structure is lost.
Instead, full image resolution is used at all levels of the
velocity space pyramid. Based on the optical flow con-
straint, the sum of squared difference is minimized. Poor
flow estimation along motion discontinuities is not expli-
citly addressed. The presence of iteration also leaves open
the possibility of instability.

In order to avoid the computational expense of iterative
minimizations of functionals, Little et al. [37] developed a
parallel algorithm for computing the optical flow by using a
local voting scheme based on similarity of planar patches.
However, motion boundaries are poorly modeled due to
similarity between partial areas in the presence of occlusion.

Tensor voting techniques have been previously applied
to structure estimation from motion or stereo. Lee et al. [38]
use a 3D voting scheme for stereo in order to eliminate false
matches and infer disparity values in regions with low
texture. Tong et al. [39] employ tensor voting to identify
independently moving regions in stereo, as they form
distinct cones in the 4D joint image space. Our work uses a
different 4D representation, where motion layers are
explicitly modeled, and a subsequent 2D voting pass to
estimate curve saliency in order to refine motion bound-
aries, according to monocular cues (intensity edges).

2 THE TENSOR VOTING FRAMEWORK

2.1 Tensor Representation and Voting

The use of a voting process for feature inference from sparse
and noisy data was introduced by Guy and Medioni [40]
and then formalized into a unified tensor framework [3].

Input data is encoded as elementary tensors, then support
information (including proximity and smoothness of con-
tinuity) is propagated by voting. Tensors that lie on smooth,
salient features (such as curves or surfaces) strongly
support each other and deform according to the prevailing
orientation, producing generic tensors. Each such tensor
encodes the local orientation of features (given by the tensor
orientation) and their saliency (given by the tensor shape
and size). Features can be then extracted by examining the
tensors resulting after voting.

In 3D, a generic tensor can be visualized as an ellipsoid
(Fig. 3). It is described by a 3� 3 eigensystem, where
eigenvectors e1; e2; e3 give the ellipsoid orientation and
eigenvalues �1; �2; �3 give its shape and size. The tensor is
represented as a matrix S:

S ¼ �1 � e1eT1 þ �2 � e2eT2 þ �3 � e3eT3 : ð1Þ

There are three types of features in 3D—surfaces,
curves, and points—that correspond to three elementary
tensors, also shown in Fig. 3. A surface element can be
intuitively encoded as a stick tensor, where one dimension
dominates (along the surface normal), while the length of
the stick represents the surface saliency (confidence in this
knowledge). A curve element appears as a plate tensor,
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where two dimensions codominate (in the plane of curve

normals). A point element appears as a ball tensor, where

no dimension dominates, showing no preference for any

particular orientation.
Input tokens are encoded as such elementary tensors. A

point element is encoded as a ball tensor, with e1; e2; e3 being

any orthonormal basis, while �1 ¼ �2 ¼ �3 ¼ 1. A curve

element is encoded as a plate tensor, with e1; e2 being normal

to the curve, while �1 ¼ �2 ¼ 1 and �3 ¼ 0. A surface

element is encoded as a stick tensor, with e1 being normal to

the surface, while �1 ¼ 1 and �2 ¼ �3 ¼ 0.
Tokens communicate through a voting process, where

each token casts a vote at each token in its neighborhood.

The size and shape of this neighborhood and the vote

strength and orientation are encapsulated in predefined

voting fields (kernels), one for each feature type—there is a

stick, a plate, and a ball voting field in the 3D case.
At each receiving site, the collected votes are combined

through simple tensor addition, producing generic tensors

that reflect the saliency and orientation of the underlying

smooth features. Local features can be extracted by

examining the properties of a generic tensor, which can be

decomposed in its stick, ball, and plate components:

S ¼ ð�1 � �2Þ � e1eT1 þ ð�2 � �3Þ � ðe1eT1 þ e2e
T
2 Þ

þ �3 � ðe1eT1 þ e2e
T
2 þ e3e

T
3 Þ:

ð2Þ

Each type of feature can be characterized as follows:

. Surface: Saliency is ð�1 � �2Þ, normal orientation is e1.

. Curve: Saliency is ð�2 � �3Þ, normal orientations are
e1; e2.

. Point: Saliency is �3, no preferred orientation.

Therefore, the voting process infers surfaces, curves,

and junctions simultaneously, while also identifying out-

liers (tokens that receive little support). The method is

noniterative and robust to considerable amounts of outlier

noise. It does not depend on critical thresholds because the

only free parameter is the scale factor �, which defines the

voting fields.
Vote generation. For simplicity of illustration, we

describe the vote generation process in the 2D case. Tensors

in 2D are ellipses (represented by 2� 2 eigensystems) and

the features are curves and points, corresponding to stick

and ball tensors.
Vote strength V Sð~ddÞ decays with distance j ~dd j between

voter and recipient and with curvature �:

V Sð~ddÞ ¼ e�
j~ddj2þ�2

�2

� �
: ð3Þ

Vote orientation corresponds to the smoothest local con-

tinuation fromvoter to recipient—seeFig. 4.A tensorPwhere

curve information is locally known (illustrated by curve

normal ~NNP ) casts a vote at its neighborQ. The vote orientation

is chosen so that it ensures a smooth curve continuation

through a circular arc from voter P to recipient Q. To

propagate the curvenormal ~NN thusobtained, thevoteVstickð~ddÞ
sent from P to Q is encoded as a tensor according to:

Vstickð~ddÞ ¼ V Sð~ddÞ � ~NN ~NNT : ð4Þ

Also, note that the vote strength at Q0 and Q00 is smaller
than at Q—because Q0 is farther and Q00 requires a higher
curvature than Q.

Fig. 4b shows the 2D stick field with its color-coded
strength. When the voter is a ball tensor, with no
information known locally, the vote is generated by rotating
a stick vote in the 2D plane and integrating all contribu-
tions, according to (5). The 2D ball field is shown in Fig. 2c.

Vballð~ddÞ ¼
Z2�

0

R� VstickðR�1
�
~ddÞ RT

� d�: ð5Þ

2.2 Extension to 4D

The issues to be addressed here are the tensor representation
of the features in the 4D space and the generation of voting
fields. Table 1 shows all the geometric features that appear
in a 4D space and their representation as elementary
4D tensors, where n and t represent normal and tangent
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Fig 3. Tensor representation in 3D: (a) generic tensor, (b) stick tensor (surface element), (c) plate tensor, and (d) ball tensor (point element).

Fig. 4. Vote generation in 2D: (a) vote orientation, (b) 2D stick field, and

(c) 2D ball field.



vectors, respectively. Note that a surface in the 4D space can
be characterized by two normal vectors or by two tangent
vectors. From a generic 4D tensor that results after voting,
the geometric features can be extracted as shown in Table 2.

The voting fields are a key part of the formalism—they
are responsible for the size and shape of the neighborhood
where the votes are cast and also control how the votes
depend on distance and orientation. The 4D voting fields are
obtained as follows: First, the 4D stick field is generated in a
similar manner to the 2D stick field, as explained in
Section 2.1 and illustrated in Fig. 4. Then, the other
three voting fields are built by integrating all the contribu-
tions obtained by rotating a 4D stick field around appro-
priate axes. In particular, the 4D ball field—the only one
directly used here—is generated according to:

Vballð~ddÞ ¼
Z Z2�

0

Z
R�xy�xu�xv VstickðR�1

�xy�xu�xv
~ddÞ RT

�xy�xu�xv
d�xyd�xud�xv;

ð6Þ

where x; y; u; v are the 4D coordinates axes, R is the rotation
matrix with angles �xy; �xu; �xv, and the stick field corre-
sponds to the orientation (1 0 0 0).

The data structure used to store the tensors is an
approximate nearest neighbor (ANN) k-d tree [41]. The space
complexity is OðnÞ, where n is the input size (the total
number of candidate tokens). The average time complexity
of the voting process is Oð�nÞ, where � is the average
number of candidates in the neighborhood. Therefore, in

contrast to other voting techniques such as the Hough
Transform, both the time and space complexities of the
Tensor Voting methodology are independent of the
dimensionality of the desired feature. The running time
for 120� 120 image size and three candidates per pixel is
about 2 minutes on a Pentium 4 (2 GHz) processor.

Scaling. In our application for motion analysis, the
4D representation (which includes the image coordinate
metric and the velocity metric) is not isotropic, while the
voting fields are. Therefore, after computing the set of
candidate matches, we scale their 4D bounding box so that
its size is the same along vx and x and along vy and y. After
voting, the token coordinates are scaled back to the original
space, together with the inferred surface normal at each
tensor.

3 GENERATING CANDIDATE MATCHES

We take as input two image frames that involve general
motion—that is, both the camera and the objects in the
scene may be moving. For illustration purposes, we give a
description of our approach by using a specific example
—the two images in Fig. 5a are taken with a handheld
moving camera, where the candy box and the background
exhibit distinct image motions due to their different
distances from the camera.

For every pixel in the first image, the goal at this stage is
to produce candidate matches in the second image. We use
a normalized cross-correlation procedure, where all peaks
of correlation are retained as candidates. When a peak is
found, its position is also adjusted for subpixel precision
according to the correlation values of its neighbors. Finally,
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TABLE 1
Elementary Tensors in 4D

TABLE 2
A Generic Tensor in 4D

Fig. 5. CANDY BOX sequence—extraction of motion layers: (a) input images, (b) matching candidates, (c) selected velocities, (d) dense layers,
(e) layer velocities, and (f) layer boundaries.



each candidate match is represented as an ðx; y; vx; vyÞ point
in the 4D space of image coordinates and pixel velocities,
with respect to the first image.

Since we want to increase the likelihood of including the
correct match among the candidates, we repeat this process
at multiple scales by using different correlation window
sizes. Small windows have the advantage of capturing fine
detail and are effective close to the motion boundaries, but
produce considerable noise in areas lacking texture or
having small repetitive patterns. Larger windows generate
smoother matches, but their performance degrades in large
areas along motion boundaries. We have experimented with
a large range of window sizes and found that the best results
are obtained by using only two or three different sizes that
should include at least a very small one. Therefore, in all the
examples described in this paper, we used three correlation
windows, with 3� 3, 5� 5, and 7� 7 sizes.

The resulting candidates appear as a cloud of ðx; y; vx; vyÞ
points in the 4D space. Fig. 5b shows the candidate matches.
In order to display 4D data, the last component of each
4D point has been dropped—the three dimensions shown
are x and y (in the horizontal plane) and vx (the height). The
motion layers can already be perceived as their tokens are
grouped in two layers surrounded by noisy matches.

Extracting statistically salient structures from such noisy
data is very difficult for most existing methods. Because our
voting framework is robust to considerable amounts of
noise, we can afford to use the multiple window sizes in
order to extract the motion layers.

4 EXTRACTION OF MOTION LAYERS IN 4D

Selection. Since no information is initially known, each
potential match is encoded into a 4D ball tensor. Then each
token casts votes by using the 4D ball voting field. During
voting, there is strong support between tokens that lie on a
smooth surface (layer), while communication between
layers is reduced by the spatial separation in the 4D space
of both image coordinates and pixel velocities. For each
pixel ðx; yÞ, we retain the candidate match with the highest
surface saliency ð�2 � �3Þ, and we reject the others as wrong
matches. By voting, we also estimate the normals to layers
at each token as e1 and e2. Fig. 5c shows a 3D view of the
recovered matches (the height represents vx).

Outlier rejection. In the selection step, we kept only the
most salient candidate at each pixel. However, there are
pixels where all candidates are wrong, such as in areas
lacking texture. Therefore, now we eliminate all tokens that
have received very little support. Typically, we reject all
tokens with surface saliency less than 10 percent of the
average saliency of the entire set.

Densification. Since the previous step created holes (i.e.,
pixels where no velocity is available), we must infer them
from the neighbors by using a smoothness constraint. For
each pixel ðx; yÞ without an assigned velocity, we try to find
the best ðvx; vyÞ location at which to place a newly generated
token. The candidates considered are all the discrete points
ðvx; vyÞ between the minimum and maximum velocities in
the set, within a neighborhood of the ðx; yÞ point. At each
candidate position ðx; y; vx; vyÞ, we accumulate votes accord-
ing to the same tensor voting framework that we have used

so far. This time, all four voting fields are used, since the
previous voting step produced generic tensors. After voting,
the candidate token with maximal surface saliency ð�2 � �3Þ
is retained and its ðvx; vyÞ coordinates represent the most
likely velocity at ðx; yÞ. By following this procedure at every
ðx; yÞ image location, we generate a dense velocity field. A
3D view of the dense layers is shown in Fig. 5d.

Segmentation. The next step is to group tokens into
regions by again using the smoothness constraint. We start
from an arbitrary point in the image, assign a region label to
it, and try to recursively propagate this label to all its image
neighbors. In order to decide whether the label must be
propagated, we use the smoothness of both velocity and
layer orientation as a grouping criterion. Fig. 5e illustrates
the recovered vx velocities within layers (dark corresponds
to low velocity) and Fig. 5f shows the layer boundaries
superimposed over the first image.

5 BOUNDARY INFERENCE IN 2D

At this stage, the extracted motion layers can still be over or
underextended along the motion boundaries. This situation
typically occurs in areas subject to occlusion, where the
initial correlation procedure may generate wrong matches
that are consistent with the correct ones and, therefore,
could not be rejected as outlier noise.

However, now it is known how many moving objects are
present in the scene and where they are. The margins of the
layers provide a good estimate for the position and overall
orientation of the true motion boundaries. We combine this
knowledge with monocular cues (intensity edges) from the
original images in order to build a boundary saliency map
along the layers margins. Next, we enforce the smoothness
and continuity of the boundary through a 2D voting process
and extract the true boundary as the most salient curve
within the map.

For simplicity of implementation, this procedure is
performed in two successive passes—by separately using
the horizontal and vertical components of the image
gradient. In fact, during the first pass, all edges are found,
with the exception of the ones “perfectly” horizontal. The
second pass is actually used only to detect the remaining
edges. Note that the two steps are interchangeable and their
order is not important.

5.1 The Boundary Saliency Map

In the first pass, we start by finding the points that belong to
the layer boundaries, identified by changes in region labels
along horizontal lines. For each such point ðxc; ycÞ, we
define a horizontal zone of boundary uncertainty, centered at
ðxc; ycÞ. Since the over or underextension of motion layers is
usually within the limits of the correlation window size, we
chose the largest size used in correlation as the zone width.
The zone height is one pixel.

Next, we make use of the monocular cues by computing
the image gradient (from the intensity I in first image) at
each location within the zones of boundary uncertainty:

Gxðx; yÞ ¼ I x; yð Þ � I x� 1; yð Þ;
Gyðx; yÞ ¼ I x; yð Þ � I x; y� 1ð Þ:

ð7Þ
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Since, at this pass, we are looking for nonhorizontal
edges, we initialize our saliency map with the horizontal
component of the gradient:

sal ¼ Gxðx; yÞj j: ð8Þ

This choice is made in order not to be influenced in the
analysis by purely horizontal edges, which will be detected
during the second pass. Diagonal edges that exhibit a
significant horizontal gradient contribute to the saliency
map and they are detected in the first pass.

Finally, we incorporate our estimation of the boundary
position and orientation, as resulted from motion cues, by
introducing a bias toward the current layer boundaries.
Within each zone, we define a weight functionW that is 1 at
xc and decays exponentially by:

W ¼ e
� x�xcð Þ2

�2
W ; ð9Þ

where �W corresponds to a weight of 0.2 at the zone
extremities.

The saliency map is then updated by multiplying each
existing value with the corresponding weight.

5.2 Detecting the Boundary

At this stage, we have a saliency value and an orientation at
each location within the zones of uncertainty. However, in
order to extract the boundaries, we need to examine how
neighboring locations agree upon their information through
a voting process.

We proceed by encapsulating all the existing information
within a 2D tensor framework. Since we have boundary
orientations at each location in the uncertainty zones, we
create a 2D stick tensor, with the orientation (eigenvectors e1
and e2) given by the image gradient and the size taken from
the saliency map:

e1 ¼ ðGxGyÞ ðnormal to edgeÞ
e2 ¼ ð�GyGxÞ ðtangent to edgeÞ
�1 ¼ sal
�2 ¼ 0:

ð10Þ

The tensors then communicate through a 2D voting
process, where each tensor is influenced by the saliency and
orientation of its neighbors. After voting, the curve saliency
values are collected at each tensor as ð�1 � �2Þ and stored
back in the saliency map. Fig. 6a shows the tensors after
voting, with the local curve tangent given by the
eigenvector e2. The curve saliency ð�1 � �2Þ is illustrated
here as the length of the tangent vector. Note that, although
strong texture edges are present in the uncertainty zone, after
voting their saliency is diminished by the overall dominance
of saliency and orientation of the correct object edges.

The true boundaries are extracted as follows: First, the
token with global maximal curve saliency is chosen as a
(starting) boundary point. Given a current boundary
point C, the neighboring uncertainty zones are visited; in
each zone, the next boundary point N is chosen as the one
that maximizes the directional saliency sd ¼ s � cos�, where
s is the curve saliency at N and � is the angle between the
curve tangent at C and the segment CN. Note that this
procedure identifies all edges, except for purely horizontal
ones. After marking the detected boundaries, the entire
process is repeated in a similar fashion in the second pass,
this time using the vertical component of the gradient, in
order to detect any horizontal boundaries that have been
missed during the first pass.

Finally, within each zone of uncertainty, all pixels
between the old and the new boundary points are
reassigned to the correct region. In addition to changing
the region label, their velocities are recomputed in a
4D voting process similar to densification. However, since
region labels are now available, the votes are collected only
from points within the same layer.

Fig. 6b shows the refined velocities within layers (dark
represents small velocity) and Fig. 6c shows the refined
motion boundary that, indeed, corresponds to the actual
object.

We have also analyzed several other image sequences
and we present the results obtained here. In all experiments
we used three correlation windows, with 3� 3, 5� 5, and
7� 7 sizes, and, for each window, we retained all peaks of
correlation. Therefore, each pixel in the image had at least
three candidate matches, among which at most one was
correct. For both the 4D and 2D voting processes, in all
examples we used the same scale factor, corresponding to
an image neighborhood with a radius of 16 pixels.

FISH sequence (Fig. 7). To quantitatively estimate the
performance of our approach, we created a synthetic
sequence from real images. The silhouette of a fish was
cropped from its image and pasted at different locations
over a second image in order to generate a motion sequence
with ground truth. The average angular error we obtained
is 0:42 degrees � 1:2 degrees for 100 percent field coverage,
which is very low, despite the multitude of texture edges
from the cluttered background that were competing with
the true object edges. This example is also used to show that
we can successfully handle more detailed and nonconvex
motion boundaries.

BARRIER sequence (Fig. 8). We analyzed the motion

from two frames of a sequence showing two cars moving

away from the camera. The analysis is difficult due to the

large ground area with very low texture and because the
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Fig. 6. CANDY BOX sequence—boundary inference: (a) boundary saliency map, (b) refined velocities, and (c) refined boundaries.



two moving objects have relatively small sizes in the image.

Also note that the image motion is not translational—the

front of each car has a lower velocity than its back. This is

visible in the 3D view of the motion layers, which appear as

tilted surfaces. In fact, our framework does not make any

assumption regarding the type of motion—such as transla-

tional, planar, or rigid motion. The only criterion used is the

smoothness of image motion.

6 THREE-DIMENSIONAL INTERPRETATION

So far, we have not made any assumption regarding the
3D motion and the only constraint used has been the
smoothness of image motion. The observed image motion
could have been produced by the 3D motion of objects in
the scene or the camera motion or both. Furthermore, some
of the objects may be subject to nonrigid motion.

For classification, we used an algorithm introduced by

McReynolds and Lowe [42] that verifies the potential

rigidity of a set of minimum six point correspondences

from two views under perspective projection. The rigidity

test is performed on a subset of matches within each object

to identify potential nonrigid objects and also across objects,

to merge those that move rigidly together but have distinct

image motions due to depth discontinuities. It is also worth

mentioning that the rigidity test is actually able to only

guarantee the nonrigidity of a given configuration. Indeed, if

the rigidity test fails, it means that the image motion is not

compatible to a rigid 3D motion and, therefore, the

configuration must be nonrigid. If the test succeeds, it only

asserts that a possible rigid 3D motion exists that is

compatible to the given image motion. However, this

computational approach corresponds to the way human

vision operates—as shown in [1], human perception solves

this inherent ambiguity by always choosing a rigid

interpretation when possible.

The remaining task at this stage is to determine the object

(or camera) motion and the scene structure. Since wrong

matches have been eliminated and correct matches are

already grouped according to the rigidly moving objects in

the scene, standard methods for reconstruction can be

reliably applied. For increased robustness, we chose to use

RANSAC [43] to recover the epipolar geometry for each

rigid object, followed by an estimation of camera motion

and projective scene structure.
The following discussion describes each case, illustrated

with experimental results.
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Fig. 7. FISH sequence: (a) one input image, (b) candidate matches, (c) dense layers, (d) layer velocities, (e) layer boundaries, (f) boundary saliency

map, (g) refined layers, and (h) refined boundaries.

Fig. 8. BARRIER sequence: (a) one input image, (b) candidate matches, (c) dense layers, (d) layer velocities, (e) layer boundaries, (f) boundary

saliency map, (g) refined layers, and (h) refined boundaries.



Multiple rigid motions. This case is illustrated by the
BOOKS example in Fig. 9, where two sets of matches
have been detected, corresponding to the two distinct
objects—the stack of books and the background. The
rigidity test shows that, while each object moves rigidly,
they cannot be merged into a single rigid structure. The
recovered epipolar geometry is illustrated in Fig. 9f, while
the 3D scene structure and motion are shown in Fig. 9g.

The CYLINDERS example, shown in Fig. 10, is adapted
from Ullman [1] and consists of two images of random
points in a sparse configuration, taken from the surfaces of
two transparent coaxial cylinders rotating in opposite
directions. This extremely difficult example clearly illus-
trates the power of our approach, which is able to
determine accurate point correspondences and scene struc-
ture—even from a sparse input, based on motion cues only
(without any monocular cues), and for transparent motion.

In the CAR example, shown in Fig. 11, the sign and the

background correspond to a rigid configuration and can be

merged, while the car exhibits an independent motion.
Single rigid motion. This is the stereo case, illustrated by

the CANDY BOX example in Fig. 12, where the scene is
static and the camera is moving. Due to the depth disparity
between the box and the background, their image motions
do not satisfy the smoothness constraint together and, thus,

they have been segmented as two separate objects. How-
ever, the rigidity test shows that the two objects form a rigid
configuration and, therefore, are labeled as a single object.
The epipolar geometry estimation and scene reconstruction
are then performed on the entire set of matches. Along with
the 3D structure, Fig. 12c also shows the two recovered
camera positions.

Nonrigid motion. The FLAG example, shown in Fig. 13,
is a synthetic sequence where sparse random dots from the
surface of a waving flag are displayed in two frames. The
configuration is recognized as nonrigid and, therefore, no
reconstruction is attempted. However, since the image
motion is smooth, our framework is still able to determine
correct correspondences, extract motion layers, segment
nonrigid objects, and label them as such.

7 EXPERIMENTAL COMPARISON

7.1 Motion Segmentation

We use two different image pairs for quantitative estima-
tion of motion segmentation—the TENNIS sequence
(Fig. 14) and the COASTGUARD sequence (Fig. 15). For
those two image pairs, the edge-based motion segmentation
[44], [45], graph cuts [35], and tensor voting approaches are
compared. In the illustrations, pixels correctly assigned to
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Fig. 9. BOOKS sequence: (a) input images, (b) candidate matches, (c) dense layers, (d) layer velocities, (e) layer boundaries, (f) epipolar lines, and

(g) 3D structure and motion.

Fig. 10. CYLINDERS sequence: (a) input images, (b) candidate matches, (c) velocities, (d) dense layers, and (e) 3D structure.



the foreground are shown in a darker shade of gray. The
error rate results (representing the percentage of pixels
assigned to erroneous motion regions) are presented in
Table 3.

For the TENNIS sequence, all methods produce quite

similar quantitative results, with the voting approach

having a slightly better error rate. From a qualitative

perspective, the tensor voting method appears to be the

best as it is the only one able to correctly segment the ball.

Also note the incorrect segmentation of the upper arm due

to the articulated motion, a limitation that affects all three

methods considered here.
For the COASTGUARD sequence, the quantitative

results are again quite similar, but the graph cuts and
voting-based methods produce a qualitatively better out-
put, being able to recover the thin mast and the boat’s fore
and aft sections.

Furthermore, we applied the graph cuts technique to the
CYLINDERS sequence described in Section 6. The results

are shown in Fig. 16, which illustrates the recovered motion
layers for the graph cuts and voting methods (without
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Fig. 11. CAR sequence: (a) input images, (b) candidate matches, (c) dense layers, (d) layer velocities, (e) layer boundaries, (f) epipolar lines, and

(g) 3D structure and motion.

Fig. 12. CANDY BOX sequence: (a) input images, (b) epipolar lines, and (c) 3D structure and motion.

Fig. 13. FLAG sequence: (a) input images, (b) candidate matches,
(c) velocities, (d) dense layers ðvxÞ, and (e) dense layers ðvyÞ.



densification, for a fair comparison). This challenging

example suggests that the voting-based method is better

suited for the case of transparent motion and sparse data. It

is also worth mentioning that our method does not assume

any motion models or particular shapes for image regions,

so that it can consistently provide good results over a wide

range of configurations.

7.2 Motion Interpretation

We also analyzed a standard sequence (the TEDDY

example—Fig. 17) with ground truth available to provide

a quantitative estimate for the performance of our approach

as compared to stereo methods. As shown in Table 4

(partially reproduced from [46]), our voting-based ap-

proach has the smallest error rate (percentage of pixels

with a disparity error greater than 1) among the techniques

mentioned.

8 CONCLUSIONS AND FUTURE WORK

We have presented a novel approach that decouples

grouping and interpretation of visual motion, allowing for

explicit and separate handling of matching, outlier rejection,

grouping, and recovery of camera and scene structure. The

proposed framework is able to handle data sets containing

large amounts of outlier noise, as well as multiple

independently moving objects, or nonrigid objects.
Our methodology for extracting motion layers is based

on a layered 4D representation of data and a voting scheme for

token communication. Monocular cues—represented by

intensity edges in the original images—are subsequently

used to refine the layer boundaries through a 2D voting

process. The boundary saliency map proves to be an appro-

priate representation for this problem. It encodes the

position, orientation, and strength of both the layer
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Fig. 14. TENNIS sequence: (a) one input image, (b) edge-based segmentation, (c) graph cuts, and (d) tensor voting.

Fig. 15. COASTGUARD sequence: (a) one input image, (b) edge-based segmentation, (c) graph cuts, and (d) tensor voting.

TABLE 3
TENNIS and COASTGUARD Sequences—Results

Fig. 16. CYLINDERS sequence: (a) graph cuts—layers and (b) tensor

voting—layers.

TABLE 4
TEDDY Sequence—Results

Fig. 17. TEDDY sequence: (a) one input image, (b) ground truth

disparity map, and (c) tensor voting disparity map.



boundaries and image edges, all contributing to accurate

inference of the motion boundaries.
The proposed method allows for structure inference

without using any prior knowledge of the motion model,
based on the smoothness of motion only, while consistently
handling both smooth moving regions and motion dis-
continuities. The method is also computationally robust,
being noniterative, and does not depend on critical thresh-
olds, the only free parameter being the scale of analysis. We
plan to extend our approach by incorporating information
from multiple frames and to study the possibility of using
an adaptive scale of analysis in the voting process.
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