
Investigating How and When Perceptual Organization Cues
Improve Boundary Detection in Natural Images

Leandro A. Loss, George Bebis, Mircea Nicolescu
Computer Vision Laboratory
University of Nevada, Reno

loss,bebis,mircea@cse.unr.edu

Alexei Skurikhin
Space and Remote Sensing Sciences

Los Alamos National Laboratory
alexei@lanl.gov

Abstract

Boundary detection in natural images represents an im-
portant but also challenging problem in computer vision.
Motivated by studies in psychophysics claiming that hu-
mans use multiple cues for segmentation, several promising
methods have been proposed which perform boundary de-
tection by optimally combining local image measurements
such as color, texture, and brightness. Very interesting re-
sults have been reported by applying these methods on chal-
lenging datasets such as the Berkeley segmentation bench-
mark. Although combining different cues for boundary de-
tection has been shown to outperform methods using a sin-
gle cue, results can be further improved by integrating per-
ceptual organization cues with the boundary detection pro-
cess. The main goal of this study is to investigate how and
when perceptual organization cues improve boundary de-
tection in natural images. In this context, we investigate the
idea of integrating with segmentation the Iterative Multi-
Scale Tensor Voting (IMSTV), a variant of Tensor Voting
(TV) that performs perceptual grouping by analyzing infor-
mation at multiple-scales and removing background clutter
in an iterative fashion, preserving salient, organized struc-
tures. The key idea is to use IMSTV to post-process the
boundary posterior probability (PB) map produced by seg-
mentation algorithms. Detailed analysis of our experimen-
tal results reveals how and when perceptual organization
cues are likely to improve or degrade boundary detection.
In particular, we show that using perceptual grouping as a
post-processing step improves boundary detection in 84%
of the grayscale test images in the Berkeley segmentation
dataset.

1. Introduction

High quality image segmentation is known to be an es-
sential part of a broad range of computer vision appli-
cations including target detection and object recognition.
A considerable number of segmentation methods rely on

good boundary detection. Although many different bound-
ary detection methods have been proposed in the literature
over the last thirty years, the lack of standard benchmarks
has made it difficult to assess their applicability and effi-
ciency in real problems. Recently, the Berkeley segmen-
tation dataset [7] has become an important benchmark for
testing modern boundary detection algorithms. It contains
a large number of challenging images along with ground
truth segmentations (i.e., human labeled images) for assess-
ing accuracy and robustness. Several methods have been
evaluated on this dataset and results along with ranking in-
formation for each of them are publicly available 1.

Traditionally, boundary detection has been performed
using a single cue such as brightness or texture. Motivated
by studies in psychophysics, Martin et al. [7] have recently
proposed a new algorithm that optimally combines infor-
mation from multiple cues. The main idea is to combine
local measurements based on color, texture and brightness
using a classifier that was trained using human segmented
images. The output of the classifier is the probability that
a given pixel lies on a boundary. By applying the classi-
fier at each image location and orientation, they obtain a PB
map which is then thresholded to obtain a set of boundaries.
Very promising segmentation results have been reported on
the Berkeley benchmark using this approach.

Comparing human performance to any of the methods
that have reported segmentation results on the Berkeley
dataset, however, still shows a significant performance gap.
Given that ground truth was obtained in an unconstrained
way, it is likely that humans used many other aspects of hu-
man perception to obtain segmentations that extrapolate the
scope of modern algorithms. For example, humans might
have used high-level image understanding and object recog-
nition skills to produce more meaningful segmentations
while most computer applications depend on image seg-
mentation and boundary detection to achieve some image
understanding or object recognition. Therefore, it would

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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be unlikely that single-aspect segmentation algorithms (i.e.,
employing only photometric information) would be capable
of achieving close to human performance.

A weakness of the method proposed by Martin et al. [7]
is that no perceptual organization cues were employed in the
segmentation process. Although they admit explicitly that
perceptual organization cues were ignored intentionally in
their approach, they also note that the PB map produced
by their method could become an integral part to any per-
ceptual organization algorithm that operates on natural im-
ages, either by grouping regions or edge segments. In a later
study by the same group [15], mid-level cues (e.g., continu-
ity) were considered for improving boundary detection.

Our goal in this paper is to investigate how and when
perceptual organization cues are likely to improve bound-
ary detection in natural images. In this context, we pro-
pose integrating the IMSTV, a variant of TV that performs
perceptual grouping by analyzing information at multiple-
scales and removing background clutter in an iterative fash-
ion, preserving salient, organized structures. The key idea
is to use IMSTV to post-process the PB map produced by
segmentation algorithms. IMSTV produces a new PB map
by integrating perceptual organization cues which is then
used to obtain the final boundaries. It should be mentioned
that although we have adopted IMSTV in this study, other
perceptual grouping algorithms might also be appropriate
for post-processing the results of segmentation.

For evaluation purposes, we have experimented with
grayscale images considering five different segmenta-
tion methods from the Berkeley segmentation benchmark:
Brightness Gradient (BG), Gradient Magnitude (GM),
Multi-Scale Gradient Magnitude (MGM), Texture Gradient
(TG), and Brightness/Texture Gradients (BTG) [7]. These
methods were chosen among others because they are among
the top performers in the benchmark. Nevertheless, the pro-
posed framework is general enough to accommodate any
other segmentation method. Detailed analysis of our exper-
imental results provides useful insight revealing how and
when perceptual organization cues are likely to improve or
degrade boundary detection results. Overall, IMSTV ap-
pears to be a valuable post-processing tool which improves
the results of boundary detection.

2. Boundary Detection Methods

In this section, we briefly review the five boundary de-
tection methods integrated with IMSTV: BG, GM, MGM,
TG, and BTG. The first four methods perform boundary de-
tection using a single cue while the last method combines
information from two different cues using the method of
Martin et al. [7]. Each method produces a PB map which is
used as input to IMSTV. IMSTV outputs a new PB map by
incorporating perceptual organization cues. A PB map can
be visualized as an image whose pixel intensity encodes the

probability that a pixel lies on a boundary. The higher the
pixel intensity, the higher the probability that the pixel lies
on a boundary. Thresholding the PB map yields a set of
boundaries in an image.

A common characteristic to all five methods is their re-
liance on image photometric information to build a PB map.
The GM method computes image gradient magnitudes at
each pixel to produce the PB map. The gradients are esti-
mated using a pair of Gaussian derivative filters at a unique,
learned, optimal scale. Learning was performed using 200
training images from the Berkeley segmentation dataset.
The MGM method computes image gradient magnitudes
at two different scales to produce the PB map. The gra-
dients are estimated at each pixel using pairs of Gaussian
derivative filters at two, also learned, optimal scales. The
BG method uses local brightness gradients to obtain the PB
map. The gradients are estimated using a χ2 difference in
the distribution of pixel luminance values of two half discs
centered at a given pixel and divided in half at the assumed
boundary orientation.

The TG method uses local texture gradients to produce
the PB map. The gradients are estimated using a χ2 differ-
ence in the distribution of textons of two half discs centered
at a given pixel and divided in half at the assumed bound-
ary orientation. Textons are computed by clustering the re-
sponses of a bank of filters using K-means. The bank of
filters was composed of standard even- and odd-symmetric
quadrature pair elongated linear filters. The BTG method
combines local brightness and texture gradients to obtain
the PB. BTG has demonstrated one of the best performances
to date on the Berkeley segmentation benchmark. Addi-
tional information about each of these methods can be found
in [7].

Fig. 1(b-e) show the PB map computed by these meth-
ods for the image in Fig. 1(a). The ground truth obtained
by five human subjects is shown in Fig. 1(f). All five meth-
ods above have been previously evaluated on the Berke-
ley dataset and represent some of the top performers to
date. The PB maps, specific results and ranking informa-
tion for each method are publicly available from the Berke-
ley benchmark website.

3. Perceptual Organization and Boundary De-
tection

Perceptual organization can be defined as the ability to
detect organized structures or patterns in the presence of
missing and noisy information. Local contour character-
istics, such as continuity, symmetry, convexity and paral-
lelism, are representative examples of perceptual organiza-
tion cues which can be used to reveal important information
about the global organization of structures in an image. The
importance of perceptual organization cues in human per-
ception has been known for over 90 years by psychologists
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Figure 1. The PB map computed by the methods tested in our
study: (a) original image, (b) GM PB map, (c) MGM PB map,
(d) TG PB map, (e) BGT PB map, (f) ground truth.

[10, 11]. A recent study, summarizing the role of percep-
tual organization in image segmentation and boundary de-
tection, can be found in [3].

Many boundary detection and segmentation methods
have taken advantage of perceptual organization cues, im-
plementing and combining them in different ways. Rep-
resentative examples of this diversity can be found in
[13, 4, 12, 1, 14, 8, 5]. Among these methods, TV repre-
sents a general framework which was formalized in [8] and
was shown to work well in many practical applications. TV
uses a voting process to infer salient structures from noisy
and sparse data. It works by representing input data as ten-
sors and interrelating them through voting fields built from
a saliency function that incorporates the Gestalt principles
of proximity and good continuation. In this study, we have
chosen IMSTV [5], a TV variant scheme, in order to in-
vestigate the idea of integrating segmentation with percep-
tual grouping to improve boundary detection. IMSTV was
shown to deal better than traditional TV with clutter and ob-
jects appearing in different scales in natural images [5, 6].
Instead of our choice, other perceptual grouping schemes
might be used for the same purpose.

In IMSTV, like in TV, edge segments are encoded as ten-
sors and communicate to one another through vote casting.
The votes are also tensors, whose length and direction are
computed through an expression that includes the percep-
tual cues of proximity and good continuation [8]. The vot-
ing process deforms the original tensors revealing salient
and organized structures due to the local perceptual agree-
ment of all segments of the same structure with each other,
as shown in Fig. 2. Conversely, clutter or noisy segments

are also revealed by not agreeing perceptually within their
neighborhood.

(a) (b) (c)
Figure 2. Tensor voting process: (a) input points, (b) tensor encod-
ing, (c) deformation of tensors reveals the salient curve.

IMSTV is different from TV in that it performs figure-
ground segmentation by analyzing saliency information at
multiple scales and removing low-saliency segments in an
iterative fashion. In contrast to traditional TV that uses
hard thresholding and single-scale analysis, IMSTV re-
moves noisy segments conservatively according to their be-
havior across a range of scales. Then, it applies re-voting
on the remaining segments to estimate their saliency more
reliably. These improvements were shown to better handle
low signal-to-noise ratio images, as shown in the example
provided in Fig. 3. It should be mentioned that IMSTV can
be implemented efficiently without having to recompute the
votes at each scale and each iteration. The idea is updating
the votes in each iteration instead of recomputing them from
scratch.

Figure 3. Examples produced by IMSTV on low signal-to-noise
ratio images (from [5]).

4. Improving Boundary Detection in Natural
Images

In this section, we investigate under what conditions one
would expect perceptual organization to improve boundary
detection. As mentioned earlier, it is well known that per-
ceptual organization cues play an important role in human
perception. Therefore, would it be reasonable to expect that
perceptual organization cues would always improve bound-
ary detection results produced by a machine? The answer
to this question depends on how we evaluate boundary de-
tection results and, in particular, what kind of ground truth
information is used to evaluate performance.



To the best of our knowledge, there is no widely accepted
benchmark containing ground truth information specifically
obtained for the purpose of evaluating perceptual organi-
zation algorithms. Although perceptual organization cues
have been employed with relative success in the literature
(e.g., see [14, 6]), the results of these studies were never
thoroughly compared to human performance specifically
addressing perceptual organization cues. Existing bench-
marks, such as the Berkeley segmentation benchmark, con-
tain human segmented data. However, it is very unlikely
that humans produced these segmentations using perceptual
organization cues alone. A more plausible scenario is that
they used both perceptual organization and higher-level pro-
cesses such as object recognition and image understanding.
Therefore, these benchmarks might not be the most appro-
priate in evaluating algorithms employing perceptual orga-
nization cues. Nevertheless, in the absence of a more appro-
priate dataset, we will be using the Berkeley benchmark in
our study. However, we should keep in mind the above is-
sues when it comes to evaluating boundary detection results
using photometric or perceptual organization cues.

Without intending to exceed or even get close to human
performance, we believe that boundary detection methods
using photometric cues (i.e., [7]) can be improved by incor-
porating perceptual organization cues in the detection pro-
cess. To get a better insight, we have analyzed below certain
local configurations in natural images. This analysis can re-
veal upfront situations where perceptual grouping would be
most beneficial, and others where it would be expected to
make no improvements or even degrade the results. Let us
consider Fig. 4, for example. The regions within the red
square in each of the images shown in Fig. 4 (a, b) have
been magnified for clarity and shown in Fig. 4 (a.1, b.1).
The respective BG and BTG PB maps are shown in Fig.
4 (a.2, b.2), where lighter intensities correspond to a lower
probability. One can notice that parts of the contour around
the main objects in each image are diminished due to the
low contrast between them and the background. However,
let us suppose now that we encode these values as tensors,
as shown in Fig. 4 (a.3, b.3), where tensor size is given by
the PB map value and tensor direction by the normal to the
edge direction. If we apply IMSTV, these same contours
can be intensified as shown in Fig. 4 (a.4, b.4). This is
because the communication between neighboring segments
reveals the locally organized structure underlying those con-
tours. In other words, a plausible continuation between the
penguin’s neck and chest, as well as between the sail’s parts,
can be found, improving the results produced by BG and
BTG.

On the other hand, let us consider Fig. 5. The regions
shown by the red squares in each of the images in Fig. 5
(a, b) have been magnified for clarity and shown in Fig. 5
(a.1, b.1). Fig. 5 (a.2, b.2) show the respective GM and BG

(a) (b)

(a.1) (a.2) (b.1) (b.2)

(a.3) (a.4) (b.3) (b.4)
Figure 4. Examples illustrating cases where perceptual grouping
improves boundary detection (see text for details): (a, b) origi-
nal images from Berkeley dataset, (a.1, b.1) region within the red
squares magnified, (a.2, b.2) BG and BTG PB maps, (a.3, b.3)
gradients encoded as tensors in IMSTV, (a.4, b.4) tensors after it-
erative voting using IMSTV.

PB maps. It should be noted in these cases that GM and
BG produced strong responses due to the high contrast be-
tween the object and the background. If we encode these
values as tensors, as shown in Fig. 5 (a.3, b.3), and apply
IMSTV, then these contours will be deteriorated as shown
in Fig. 5 (a.4, b.4). This is because the communication be-
tween neighboring segments from the jagged edges is weak,
since they do not satisfy the rules of good continuation and
smoothness. This degrades the results produced by GM and
BG.

5. Experimental Results

In order to evaluate the contribution of perceptual organi-
zation in boundary detection, we used the IMSTV scheme
to post-process the PB map produced by each of the five
methods reviewed in Section 2. The output of IMSTV is
a new PB map which can be thresholded to obtain a set
of boundaries. For evaluation, we used the grayscale test
images and the corresponding PB maps from the Berkeley
segmentation benchmark. As discussed earlier, pixels in the
PB map were encoded as tensors whose size was given by
the PB intensity and direction by the normal to the edge di-
rection crossing the pixel (i.e., see Fig. 4(a.3, b.3) and 5(a.3,
b.3)).

We initiated the IMSTV voting process at 10 equidistant
scales, corresponding to voting fields ranging from 10% to
100% of the smallest image size (i.e., 320 for the Berkeley
dataset images), as suggested in [6]. In each iteration, low-
salient segments (i.e., with saliency below 5% of the max-



(a) (b)

(a.1) (a.2) (b.1) (b.2)

(a.3) (a.4) (b.3) (b.4)
Figure 5. Examples where perceptual grouping degrades bound-
ary detection (see text for details): (a) original images from the
Berkeley dataset, (a.1, b.1) regions within the red squares magni-
fied, (a.2, b.2) GM and BG PB maps, (a.3, b.3) magnitudes en-
coded as tensors in IMSTV, (a.4, b.4) tensors after iterative voting
using IMSTV.

imum saliency) were eliminated and voting was repeated
using the remaining tensors. This process continues, re-
moving low-salient segments for a pre-determined number
of iterations (i.e., 10 in our experiments). In [6], several
different stopping criteria were suggested to avoid over-
segmentation. However, we decided not to implement them
here in order to generate uniform PB maps. The way we
build a PB map for IMSTV is by counting the number of
iterations each pixel survived the elimination process. The
longer a pixel is retained, the higher is its probability to be-
long to an organized structure in the image.

To quantify boundary detection results, we used
Precision-Recall Curves (PRCs) like in the Berkeley seg-
mentation benchmark. PRCs reflect the trade-off between
true boundary pixels detected and non-boundary pixels de-
tected at a given threshold. It should be mentioned, how-
ever, that all comparisons in the Berkeley benchmark were
carried out using the F-measure [9], which is a weighted
harmonic mean of precision (P) and recall (R): F =
PR/(αR + (1 − α)P ) where (α) is a weight. The value
of α was set to .5 in [7] which is usually called the equal
regime. Different values of α allow for different regimes
(e.g., high precision regime for α > .5, or high recall regime
for α < .5).

To avoid any bias towards a specific regime and evaluate
overall performance more objectively, we have also com-
puted the Area Above the precision-recall Curve (AAC) in
our experiments. The use of AAC’s dual, the Area Under
a Curve (AUC), has been investigated in other studies (e.g.,

[2]), suggesting that AUC is a better measure for evaluating
overall performance instead of using a single measurement
on the curve. In our case, our objective is minimizing AAC
in order to improve both precision and recall rates.

Fig. 6 shows the PRCs for each of the five boundary
detection methods tested. Each graph also shows the cor-
responding PRC using IMSTV for post-processing. Each
curve is the average over 100 PRCs corresponding to the
100 grayscale test images in the Berkeley segmentation
dataset. Table 1 shows the F-measure and AAC values for
each PRC. As it can be noted, at equal regime, perceptual
grouping partially improved only one method (i.e., GM),
slightly degraded one method (i.e., TG), and partially im-
proved or degraded the rest (i.e., MGM, BG, and BTG).
Considering the AAC measure, however, IMSTV improved
all methods except TG. The reason that TG was not im-
proved is because most boundaries found using texture gra-
dient violate the perceptual organization rules used by IM-
STV. For the methods with shown improvement, it is inter-
esting to note that post-processing improved the results at
certain thresholds, that is, more improvements can be no-
ticed at a high precision regime.

Table 1. Resulting F-measure (F) at equal regime and AAC for the
five methods tested with and without IMSTV.

Method Original w/ IMSTV
F AAC F AAC

GM .56 .43 .57 .38
MGM .58 .31 .58 .28

TG .58 .21 .57 .24
BG .60 .34 .60 .31

BTG .63 .28 .62 .26

Looking at the PRCs alone does not provide sufficient
information to appreciate the benefits of integrating percep-
tual organization cues with segmentation. Tables 2 and 3
provide more information to further analyze the results ob-
tained. Specifically, each table shows the actual Number of
Images Improved (NII) after post-processing, the Average
Improvement Rate (AIR), the Number of Images Degraded
(NID) after post-processing, and the Average Degradation
Rate (ADR) for each method. Table 2 shows these statistics
using the F-measure while Table 3 shows the same statistics
using the AAC value. The results based on the F-measure
indicate that although the number of images improved is
lower than the number of images degraded, the average rate
of improvement is usually higher than the average rate of
degradation. In other words, the rate of improvement is
higher for the images improved than the rate of degradation
for the images damaged. Considering the same statistics in
the case of AAC, it is more clear that IMSTV is really ben-
eficial as a post-processing step. It has not only improved
more images, the rate of improvement is also higher on the
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Figure 6. Average PRCs comparing each method with and without IMSTV to post-process boundary detection results: (a) GM, and GM
with IMSTV, (b) MGM, and MGM with IMSTV, (c) TG, and TG with IMSTV, (d) BG, and BG with IMSTV, (e) BTG, and BTG with
IMSTV. The resulting F-measure and AAC are shown in Table 1.

average. At the same time, it has degraded fewer images
with a lower rate on the average.

Table 2. Results based on the F-measure at equal regime obtained
by post-processing the 100 test images from the Berkeley dataset
using IMSTV.

Method NII AIR NID ADR

GM 40 9.0% 60 5.3%
MGM 35 5.5% 65 3.7%

TG 24 3.1% 76 4.1%
BG 40 4.9% 60 4.9%

BTG 36 4.4% 64 3.4%

Table 3. Results based on AAC obtained by post-processing the
100 test images from the Berkeley dataset using IMSTV.

Method NII AIR NID ADR

GM 71 8.4% 29 5.2%
MGM 72 5.2% 28 3.8%

TG 62 4.1% 38 3.5%
BG 82 6.9% 18 3.6%

BTG 84 7.2% 16 3.6%

A detailed analysis of these results can reveal even more

information about the kind of images that are more likely
to be improved by IMSTV. Table 4 shows the number of
images improved by IMSTV, considering the F-measure at
equal regime, relative to the F-measure obtained by the orig-
inal methods. The results show that 53% to 87.5% of the
images resulting in F-measures originally below .5 were im-
proved. As the resulting F-measure increases, the rate of
improved images decreases. These results indicate that per-
ceptual organization cues are especially beneficial to images
having low F-measures. Although we would have to ex-
periment more to further verify this observation, it appears
that such images are not well explained by the features ex-
tracted (e.g., Fig. 4). On the other hand, when the features
extracted can explain an image well (e.g., Fig. 5), then post-
processing seems to have less effect.

Table 5 shows the number of images improved by IM-
STV, considering the AAC value relative to the F-measure
obtained by the original methods. Although 70.0% to
92.3% of the images resulting in F-measures originally be-
low .5 were improved, it is interesting to note that, in gen-
eral, high rates were achieved throughout the whole F-
measure range. These results suggest that independently
of the performance achieved by a given method, it might be



Table 4. Improvement based on the F-measure at equal regime rel-
ative to the original F-measure.

Method [.0,.5] (.5,.6] (.6,.7] (.7,.8] (.8,1.]

GM 87.5% 55.6% 30.0% 8.7% 0.0%
MGM 75.0% 51.9% 23.5% 5.0% 0.0%

TG 53.3% 26.0% 15.6% 20.0% 0.0%
BG 84.6% 69.6% 39.3% 6.5% 0.0%

BTG 70.0% 70.6% 40.6% 11.4% 0.0%

always possible to improve its overall performance using
perceptual organization cues for post-processing.

Fig. 7 shows some boundary detection results for each
method with and without IMSTV. As it can be observed,
IMSTV eliminates noisy segments more effectively, pre-
serving boundary segments that satisfy the perceptual or-
ganization principles underlying IMSTV.

Table 5. Improvement based on the AAC relative to the original
F-measure.

Method [.0,.5] (.5,.6] (.6,.7] (.7,.8] (.8,1.]

GM 87.5% 92.6% 60.0% 52.2% 50.0%
MGM 87.5% 85.2% 58.8% 70.0% 33.3%

TG 86.7% 59.2% 57.8% 60.0% 33.3%
BG 92.3% 95.7% 67.9% 77.4% 100.0%

BTG 70.0% 100.0% 84.4% 82.9% 66.7%

6. Conclusions and Future Work

We investigated the idea of integrating perceptual organi-
zation cues with segmentation in order to improve boundary
detection in natural images. In this context, we proposed
using IMSTV, a TV variant, to post-process the PB map
produced by segmentation methods based on one or more
photometric cues. For evaluation and comparison purposes,
we used the Berkeley segmentation benchmark along with
five segmentation methods that have shown good results on
this benchmark. Detailed analysis of our results revealed
how and when perceptual organization cues are more likely
to improve or degrade boundary detection. In particular, our
results indicate that IMSTV improved up to 40% of the test
images, when considering the F-measure at equal regime as
a performance measure. These improvements were espe-
cially noticed among images having low F-measures orig-
inally, although, in general, a higher performance is more
obvious at high precision regime. When considering AAC,
IMSTV improved up to 84% of the images and across the
entire range of original F-measure. These results look par-
ticularly interesting and encouraging to us. The benefits of
integrating perceptual organization cues with segmentation
methods are quite clear. For future research, we first plan
to consider the problem of choosing between photomet-
ric features and perceptual organization cues more wisely.
This will potentially prevent some of the degrading cases

from happening and, consequently, improve overall results
even more. Second, we plan to consider polarity informa-
tion (first-order voting) in order to better preserve junctions.
This will certainly improve the segmentation quality and ac-
curacy.
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(a) (b) (c) (d) (e)
Figure 7. Visual comparison of results: (a) original grayscale images, (b) initial boundaries detected, (c) resulted boundaries by thresholding
at the optimal F-measure (d) resulted boundaries using post-processing, thresholded at the optimal F-measure, (e) ground truth.


