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Abstract1. The problem of recovering the 3-D camera and scene structure has 
been intensively studied and is considered well understood. Starting with two 
images, a process of establishing point correspondences is usually followed by 
the estimation of epipolar geometry while also rejecting outlier matches, and 
finally by 3-D structure estimation. However, most existing methods tend to fail 
in the combined presence of noise and multiple motions, since no single 
constraint applies to the entire set of matches. Hence, image registration 
becomes a more challenging problem, as the matching and registration phases 
become interdependent. We propose a novel approach that decouples the above 
operations, allowing for separate handling of matching, outlier rejection, 
grouping and 3-D interpretation. Our method first determines an accurate 
representation in terms of dense velocities, segmented motion regions and 
boundaries, by enforcing only the smoothness of image motion, followed by the 
extraction of 3-D camera and scene geometry.  

1  Introduction 

Most existing methods for recovering the camera and 3-D scene structure from a set 
of correspondences are usually based on the assumption that a single constraint (e.g., 
rigidity, or the epipolar constraint) can be enforced on the entire set. Given two views 
of a static scene, a set of matching points – typically corresponding to salient image 
features – are first obtained by methods such as cross-correlation. Assuming that 
matches are perfect, a simple Eight Point Algorithm [1] can be used for estimating the 
fundamental matrix, and thus the epipolar geometry of the cameras is determined. A 
dense set of matches can be then established, and finally the scene structure is 
recovered through triangulation. The simplistic approach described above performs 
reasonably well only when (i) the set of matches contains no outlier noise, and (ii) the 
scene is rigid – i.e., without objects having independent motions. 

The first assumption almost never holds, since image measurements are bound to 
be imperfect, and matching techniques will never produce accurate correspondences, 
mainly due to occlusion or lack of texture. In the presence of incorrect matches, linear 
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methods are very likely to fail. The problem can be reliably solved by robust methods, 
which involve non-linear optimization [2][3], and normalization of data before 
fundamental matrix estimation [4]. 

However, if the second assumption is also violated by the presence of multiple 
independent motions, even the robust methods may become unstable, as the scene no 
longer corresponds to a rigid configuration. Even if the dominant epipolar geometry is 
recovered (for example, the one corresponding to the static background), it is not very 
clear how to handle misfits – they may be caused by outlier noise, independent 
motions, or even non-rigid motion.  

The core inadequacy of most existing methods is that they attempt to enforce a 
global constraint – such as the epipolar one – on a data set which may include, in 
addition to noise, independent subsets that are subject to separate constraints. In this 
context, it is indeed very difficult to recover structure from motion and segment the 
scene into independently moving objects, if these tasks are performed simultaneously. 

In order to address these difficulties, we propose a novel approach that decouples 
the above operations, allowing for explicit and separate handling of matching, outlier 
rejection, grouping, and recovery of camera and scene structure. In the first step, we 
determine an accurate representation in terms of dense velocities (equivalent to point 
correspondences), segmented motion regions and boundaries, by using only the 
smoothness of image motion [5]. In the second step we proceed with the extraction of 
scene and camera 3-D geometry, separately on each rigid component of the scene. 
Note that our approach follows Ullman’s interpretation of visual motion [6], in that 
the correspondence process takes place prior to 3-D interpretation.  

The main advantage of our approach is that at the interpretation stage, noisy 
matches have been already rejected, and matches have been grouped according to the 
distinct moving objects in the scene. Therefore, standard methods can be reliably 
applied on each data subset in order to determine the 3-D camera and scene structure. 

1.1  Previous Work 

Linear methods [1][7][8] can be used for estimation of the fundamental matrix, in the 
absence of noisy matches or moving objects. The Eight Point Algorithm [1] recovers 
the essential/fundamental matrix from two calibrated/uncalibrated images, by solving 
a system of linear equations. A minimum of eight points is needed – if more are 
available, a least mean square minimization is used. To ensure that the resulting 
matrix satisfies the rank two requirement, its singularity is usually enforced [4][9].  

In order to handle outlier noise, more complex, non-linear iterative optimization 
methods are proposed [3][10][11]. These techniques use objective functions, such as 
distance between points and corresponding epipolar lines, or gradient-weighted 
epipolar errors, to guide the optimization process. Despite their increased robustness, 
iterative optimization methods in general require somewhat careful initialization for 
early convergence to the correct optimum. One of the most successful algorithms in 
this class is LMedS [3], which uses the least median of squares and data sub-sampling 
to discard outliers by solving a non-linear minimization problem. 

RANSAC [12] consists of random sampling of a minimum subset with seven pairs 
of matching points for parameter estimation. The candidate subset that maximizes the 



number of inliers and minimizes the residual is the solution. Statistical measures are 
used to derive the minimum number of sample subsets. Although LMedS and 
RANSAC are considered to be some of the most robust methods, it is worth noting 
that these techniques still require a majority of the data to be correct, or else some 
statistical assumption is needed. If false matches and independent motions exist, these 
methods may fail or become less attractive, since in the latter case, many matching 
points on the moving objects are discarded as outliers. 

In [13], Pritchett and Zisserman propose the use of local planar homographies, 
generated by Gaussian pyramid techniques. However, the homography assumption 
does not generally apply to the entire image. 

1.2  Outline of the Approach 

The first step of the proposed method formulates the motion analysis problem as an 
inference of motion layers from a noisy and possibly sparse point set in a 4-D space. 
In order to compute a dense set of matches (equivalent to a velocity field) and to 
segment the image into motion regions, we use an approach based on a layered 4-D 
representation of data, and a voting scheme for communication. First we establish 
candidate matches through a multi-scale, normalized cross-correlation procedure. 
Following a perceptual grouping perspective, each potential match is seen as a token 
characterized by four attributes – the image coordinates (x,y) in the first image, and 
the velocity with the components (vx,vy).  

Tokens are encapsulated as (x,y,vx,vy) points in the 4-D space, this being a natural 
way of expressing the spatial separation of tokens according to both velocities and 
image coordinates. In general, for each pixel (x,y) there can be several candidate 
velocities, so each 4-D point (x,y,vx,vy) represents a potential match. 

Within this representation, smoothness of motion is embedded in the concept of 
surface saliency exhibited by the data. By letting the tokens communicate their mutual 
affinity through voting, noisy matches are eliminated as they receive little support, 
and distinct moving regions are extracted as smooth, salient surface layers in 4-D. 

The second step interprets the image motion by estimating the 3-D scene structure 
and camera geometry. First a rigidity test is performed on the matches within each 
object, to identify potential non-rigid (deforming) objects, and also between objects, 
to merge those that move rigidly together but have separate image motions due to 
depth discontinuities. Finally, the epipolar geometry is estimated separately for each 
rigid component by using standard methods for parameter estimation (such as the 
normalized Eight Point Algorithm, LMedS or RANSAC), and the scene structure and 
camera motion are recovered by using the dense velocity field. 

2  The Voting Framework 

2.1  Voting in 2-D 

The use of a voting process for feature inference from sparse and noisy data was 
formalized into a unified tensor framework by Medioni, Lee and Tang [14]. The input 



data is encoded as tensors, then support information (including proximity and 
smoothness of continuity) is propagated by voting. The only free parameter is the 
scale of analysis, which is indeed an inherent property of visual perception. 

In the 2-D case, the salient features to be extracted are points and curves. Each 
token is encoded as a second order symmetric 2-D tensor, geometrically equivalent to 
an ellipse. It is described by a 2×2 eigensystem, where eigenvectors e1 and e2 give the 
ellipse orientation and eigenvalues λ1 and λ2 are the ellipse size. The tensor is 
represented as a matrix TT eeeeS 222111 ⋅+⋅= λλ . 

An input token that represents a curve element is encoded as a stick tensor, where 
e2 represents the curve tangent and e1 the curve normal, while λ1=1 and λ2=0. A point 
element is encoded as a ball tensor, with no preferred orientation, and λ1=λ2=1. 

The communication between tokens is performed through a voting process, where 
each token casts a vote at each site in its neighborhood. The size and shape of this 
neighborhood, and the vote strength and orientation are encapsulated in predefined 
voting fields, one for each feature type – there is a stick voting field and a ball voting 
field in the 2-D case. The fields are generated based only on the scale factor σ. Vote 
orientation corresponds to the smoothest continuation from voter to recipient, while 
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Fig. 1 shows how votes are generated to build the 2-D stick field. A tensor P where 

curve information is locally known (illustrated by curve normal PN
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Fig. 2 shows the 2-D stick field, with its color-coded strength. When the voter is a 
ball tensor, with no information known locally, the vote is generated by rotating a 
stick vote in the 2-D plane and integrating all contributions. The 2-D ball field is 
shown in Fig. 3. 

At each receiving site, the collected votes are combined through simple tensor 

Fig. 2. 2-D stick field Fig. 1. Vote generation 
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Fig. 3. 2-D ball field 



addition, producing generic 2-D tensors. During voting, tokens that lie on a smooth 
curve reinforce each other, and the tensors deform according to the prevailing 
orientation. Each tensor encodes the local orientation of geometric features (given by 
the tensor orientation), and their saliency (given by the tensor shape and size). For a 
generic 2-D tensor, its curve saliency is given by (λ1-λ2), the curve normal orientation 
by e1, while its point saliency is given by λ2. Therefore, the voting process infers 
curves and junctions simultaneously, while also identifying outlier noise.  

2.2  Extension to 4-D 

Table 1 shows all the geometric features that appear in a 4-D space and their 
representation as elementary 4-D tensors, where n and t represent normal and tangent 
vectors, respectively. Note that a surface in the 4-D space can be characterized by two 
normal vectors, or by two tangent vectors. From a generic 4-D tensor that results after 
voting, the geometric features are extracted as shown in Table 2. 

The 4-D voting fields are obtained as follows. First the 4-D stick field is generated 
in a similar manner to the 2-D stick field (see Fig. 1). Then, the other three voting 
fields are built by integrating all the contributions obtained by rotating a 4-D stick 
field around appropriate axes. In particular, the 4-D ball field – the only one directly 
used here – is generated according to: 
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Feature λ1  λ2  λ3  λ4 e1  e2  e3  e4 Tensor 

point 1   1   1   1 Any orthonormal basis Ball 

curve 1   1   1   0 n1  n2  n3  t C-Plate 

surface 1   1   0   0 n1  n2  t1   t2 S-Plate 

volume 1   0   0   0 n   t1   t2   t3 Stick 

 

Table 1. Elementary tensors in 4-D 

Table 2. A generic tensor in 4-D 

Feature Saliency Normals Tangents 

point λ4 none none 

curve λ3 - λ4 e1  e2  e3 e4 

surface λ2 - λ3 e1  e2 e3  e4 

volume λ1 - λ2 e1 e2  e3  e4 

 



where x, y, u, v are the 4-D coordinates axes and R is the rotation matrix with angles 
θxy, θxu, θxv. 

The data structure used to store the tensors is an approximate nearest neighbor 
(ANN) k-d tree [15]. The space complexity is O(n), where n is the input size (the total 
number of candidate tokens). The average time complexity of the voting process is 
O(µn) where µ is the average number of candidate tokens in the neighborhood. 
Therefore, in contrast to other voting techniques, such as the Hough Transform, both 
time and space complexities of the Tensor Voting methodology are independent of the 
dimensionality of the desired feature. 

3  Motion Segmentation 

We take as input two image frames that involve general motion – that is, both the 
camera and the objects in the scene may be moving. For illustration purposes, we give 
a description of our approach by using a specific example – the two images in Fig. 
4(a) are taken with a handheld moving camera, while the stack of books has been 
moved between taking the two pictures.  

Matching. For every pixel in the first image, the goal at this stage is to produce 
candidate matches in the second image. We use a normalized cross-correlation 
procedure [16], where all peaks of correlation are retained as candidates. When a peak 
is found, its position is also adjusted for sub-pixel precision according to the 
correlation values of its neighbors. Finally, each candidate match is represented as a 
(x,y,vx,vy) point in the 4-D space of image coordinates and pixel velocities, with 
respect to the first image. 

Since we want to increase the likelihood of including the correct match among the 
candidates, we repeat this process at multiple scales, by using different correlation 
window sizes. Small windows have the advantage of capturing fine detail, and are 
effective close to the motion boundaries, but produce considerable noise in areas 
lacking texture or having small repetitive patterns. Larger windows generate smoother 
matches, but their performance degrades in large areas along motion boundaries. We 
have experimented with a large range of window sizes, and found that best results are 
obtained by using only two or three different sizes, that should include at least a very 
small one. In practice we used three correlation windows, with 3x3, 5x5 and 7x7 
sizes. 

The resulting candidates appear as a cloud of (x,y,vx,vy) points in the 4-D space. 
Fig. 4(b) shows the candidate matches. In order to display 4-D data, the last 
component of each 4-D point has been dropped – the 3 dimensions shown are x and y 
(in the horizontal plane), and vx (the height). The motion layers can be already 
perceived as their tokens are grouped in two layers surrounded by noisy matches. 

Extracting statistically salient structures from such noisy data is very difficult for 
most existing methods. Because our voting framework is robust to considerable 
amounts of noise, we can afford using the multiple window sizes in order to extract 
the motion layers. 



Selection. Since no information is initially known, each potential match is encoded 
into a 4-D ball tensor. Then each token casts votes by using the 4-D ball voting field. 
During voting there is strong support between tokens that lie on a smooth surface 
(layer), while communication between layers is reduced by the spatial separation in 
the 4-D space of both image coordinates and pixel velocities. For each pixel (x,y) we 
retain the candidate match with the highest surface saliency (λ2-λ3), and we reject the 
others as wrong matches. By voting we also estimate the normals to layers at each 
token as e1 and e2. 

Outlier rejection. In the selection step, we kept only the most salient candidate at 
each pixel. However, there are pixels where all candidates are wrong, such as in areas 
lacking texture. Therefore now we eliminate all tokens that have received very little 
support. Typically we reject all tokens with surface saliency less that 10% of the 
average saliency of the entire set. 

Densification. Since the previous step created holes (i.e., pixels where no velocity 
is available), we must infer them from the neighbors by using a smoothness constraint. 

Fig. 4. BOOKS sequence 

(a) Input images (b) Candidate matches 

(c) Dense layers (d) Layer velocities (e) Layer boundaries 

(f) Epipolar lines 

(g) 3-D structure and motion 



For each pixel (x,y) without an assigned velocity we try to find the best (vx,vy) location 
at which to place a newly generated token. The candidates considered are all the 
discrete points (vx,vy) between the minimum and maximum velocities in the set, within 
a neighborhood of the (x,y) point. At each candidate position (x,y,vx,vy) we accumulate 
votes, according to the same Tensor Voting framework that we have used so far. After 
voting, the candidate token with maximal surface saliency (λ2-λ3) is retained, and its 
(vx,vy) coordinate represent the most likely velocity at (x,y). By following this 
procedure at every (x,y) image location we generate a dense velocity field. Note that in 
this process, along with velocities we simultaneously infer layer orientations. A 3-D 
view of the dense layers is shown in Fig. 4(c). 

Segmentation. The next step is to group tokens into regions, by using again the 
smoothness constraint. We start from an arbitrary point in the image, assign a region 
label to it, and try to recursively propagate this label to all its image neighbors. In 
order to decide whether the label must be propagated, we use the smoothness of both 
velocity and layer orientation as a grouping criterion. Fig. 4(d) illustrates the 
recovered vx velocities within layers (dark corresponds to low velocity). 

Boundary inference. The extracted layers may still be over or under-extended 
along the true object boundaries. This situation typically occurs in areas subject to 
occlusion, where the initial correlation procedure may generate wrong matches that 
are consistent with the correct ones, and therefore could not be rejected as outlier 
noise. The boundaries of the extracted layers give us a good estimate for the position 
and overall orientation of the true boundaries. We combine this knowledge with 
monocular cues (intensity edges) from the original images in order to build a 
boundary saliency map within the uncertainty zone along the layers margins. At each 
location in this area, a 2-D stick tensor is generated, having an orientation normal to 
the image gradient, and a saliency proportional to the gradient magnitude. 

The smoothness and continuity of the boundary is then enforced through a 2-D 
voting process, and the true boundary is extracted as the most salient curve within the 
saliency map. Finally, pixels from the uncertainty zone are reassigned to regions 
according to the new boundaries, and their velocities are recomputed. Fig. 4(e) shows 
the refined motion boundaries, that indeed correspond to the actual object. 

(a) Input images (b) Candidate matches 

(d) Dense layers 

(c) Velocities 

(e) 3-D structure 

Fig. 5. CYLINDERS sequence 



4  Interpretation of Image Motion 

So far we have not made any assumption regarding the 3-D motion, and the only 
constraint used has been the smoothness of image motion. The observed image motion 
could have been produced by the 3-D motion of objects in the scene, or the camera 
motion, or both. Furthermore, some of the objects may suffer non-rigid motion.  

For classification we used an algorithm introduced by McReynolds and Lowe [17], 
that verifies the potential rigidity of a set of minimum six point correspondences from 
two views under perspective projection. The rigidity test is performed on a subset of 
matches within each object, to identify potential non-rigid objects, and also across 
objects, to merge those that move rigidly together but have distinct image motions due 
to depth discontinuities. It is also worth mentioning that the rigidity test is actually 

Fig. 6. CANDY BOX sequence 

  

(a) Input images (b) Candidate matches 

(c) Dense layers (d) Layer velocities (e) Layer boundaries 

(f) Epipolar lines 

(g) 3-D structure and motion 



able to only guarantee the non-rigidity of a given configuration. Indeed, if the rigidity 
test fails, it means that the image motion is not compatible to a rigid 3-D motion, and 
therefore the configuration must be non-rigid. If the test succeeds, it only asserts that a 
possible rigid 3-D motion exists, that is compatible to the given image motion. 
However, this computational approach corresponds to the way human vision operates 
– as shown in [6], human perception solves this inherent ambiguity by always 
choosing a rigid interpretation when possible. 

The remaining task at this stage is to determine the object (or camera) motion, and 
the scene structure. Since wrong matches have been eliminated, and correct matches 
are already grouped according to the rigidly moving objects in the scene, standard 
methods for reconstruction can be reliably applied. For increased robustness, we chose 
to use RANSAC [12] to recover the epipolar geometry for each rigid object, followed 
by an estimation of camera motion and projective scene structure. 

The following discussion describes each case, illustrated with experimental results.  
Multiple rigid motions. This case is illustrated by the BOOKS example in Fig. 4, 

where two sets of matches have been detected, corresponding to the two distinct 
objects – the stack of books and the background. The rigidity test shows that, while 
each object moves rigidly, they cannot be merged into a single rigid structure. The 
recovered epipolar geometry is illustrated in Fig. 4(f), while the 3-D scene structure 
and motion are shown in Fig. 4(g).  

The CYLINDERS example, shown in Fig. 5, is adapted from Ullman [6], and 
consists of two images of random points in a sparse configuration, taken from the 
surfaces of two transparent co-axial cylinders, rotating in opposite directions. This 
extremely difficult example clearly illustrates the power of our approach, which is 
able to determine accurate point correspondences and scene structure – even from a 
sparse input, based on motion cues only (without any monocular cues), and for 
transparent motion. 

Single rigid motion. This is the stereo case, illustrated by the CANDY BOX 
example in Fig. 6, where the scene is static and the camera is moving. Due to the 
depth disparity between the box and the background, their image motions do not 
satisfy the smoothness constraint together, and thus they have been segmented as two 
separate objects. However, the rigidity test shows that the two objects form a rigid 

(a) Input images (b) Candidate matches (vx) 

Fig. 7. FLAG sequence 

(d) Dense layers (vx) 

(c) Velocities 

(e) Dense layers (vy) 



configuration, and therefore are labeled as a single object. The epipolar geometry 
estimation and scene reconstruction are then performed on the entire set of matches. 
Along with the 3-D structure, Fig. 6(g) also shows the two recovered camera 
positions. 

Non-rigid motion. The FLAG example, shown in Fig. 7, is a synthetic sequence 
where sparse random dots from the surface of a waving flag are displayed in two 
frames. The configuration is recognized as non-rigid, and therefore no reconstruction 
is attempted. However, since the image motion is smooth, our framework is still able 
to determine correct correspondences, extract motion layers, segment non-rigid 
objects, and label them as such. 

We also analyzed a standard sequence (the TEDDY example – Fig. 8) with ground 
truth available, to provide a quantitative estimate for the performance of our approach, 
as compared to other methods. As shown in Table 3 (partially reproduced from [18]), 
our voting-based approach has the smallest error rate (percentage of pixels with a 
disparity error greater than 1), among the techniques mentioned. 

5  Conclusions 

We have presented a novel approach that decouples grouping and interpretation of 
visual motion, allowing for explicit and separate handling of matching, outlier 
rejection, grouping, and recovery of camera and scene structure. The proposed 
framework is able to handle data sets containing large amounts of outlier noise, as 
well as multiple independently moving objects, or non-rigid objects. 

Fig. 8. TEDDY sequence 

(a) An input image (b) Ground truth disparity map (c) Tensor Voting disparity map 

Table 3. TEDDY sequence – results [18] 

Methods Error Rate 

Tensor Voting 15.4% 

Sum of Squared Differences 26.5% 

Dynamic Programming 30.1% 

Graph Cuts 29.3% 

 



Our methodology for extracting motion layers is based on a layered 4-D 
representation of data, and a voting scheme for token communication. It allows for 
structure inference without using any prior knowledge of the motion model, based on 
the smoothness of motion only, while consistently handling both smooth moving 
regions and motion discontinuities. The method is also computationally robust, being 
non-iterative, and does not depend on critical thresholds, the only free parameter 
being the scale of analysis. 

We plan to extend our approach by incorporating information from multiple 
frames, and to study the possibility of using an adaptive scale of analysis in the voting 
process. 
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