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Abstract 

Image motion is a rich source of information for the visual perception system, providing a 

multitude of cues to identify distinct objects in the scene and infer their 3-D structure and 

motion. Most approaches rely on parametric models which restrict the types of motion that 

can be analyzed, and involve iterative methods which depend heavily on initial conditions and 

are subject to instability. Further difficulties are encountered in image regions where motion is 

not smooth – typically around motion boundaries.  

This dissertation addresses the problem of visual motion analysis and interpretation, by 

formulating it as an inference of motion layers from a noisy and possibly sparse point set in a 

4-D space. The core of the method is based on a layered 4-D representation of data and a 

voting scheme for affinity propagation. Within the 4-D space of image positions and 

velocities, moving regions are conceptually represented as smooth surface layers, and are 

extracted through a voting process that enforces the motion smoothness constraint. By using 

an additional 2-D voting step that incorporates intensity information (edges) from the original 

images, accurate boundaries and regions are inferred. 

The inherent problem caused by the ambiguity of 2-D to 3-D interpretation is usually handled 

by adding additional constraints, such as rigidity. However, providing a successful approach 

that enforces a global constraint has been problematic in the combined presence of noise, 

multiple independent motions, or non-rigid motion. By decoupling the processes of matching, 

outlier rejection, segmentation and interpretation, we extract accurate motion layers based on 

the smoothness of image motion, then locally enforce rigidity for each layer, in order to infer 

its 3-D structure and motion. 



 xii 

The proposed framework consistently handles both smooth moving regions and motion 

discontinuities, without using any prior knowledge of the motion model. The method is also 

computationally robust, being non-iterative, and does not depend on critical thresholds, the 

only free parameter being the scale of analysis. 

The contributions of this work are demonstrated by analyzing a wide variety of difficult cases 

– opaque and transparent motion, rigid and non-rigid motion, curves and surfaces in motion, 

from sparse and dense input configurations. 
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Chapter 1 

Introduction 

 

1.1   The Problem 

Vision is without doubt our most powerful sense. It allows us to acquire a remarkable amount 

of information about our surroundings, and to interact intelligently with the environment. The 

key for such an accomplishment of translating information from the sensors into meaningful 

knowledge lies in between these two processes. We can do it by continuously building a 

virtual model of the world, and updating it as the world changes. This is true for any type of 

perceptual process, but in the vision case the model is by far the most complex, and probably 

also the most useful for our interaction with the world. 

A successful computer vision system must be able to generate such a world model from the 

same information used by humans in their vision perception process. The main difficulty is 

that such a problem is underconstrained. The model of our environment should be embedded 

in a 3-D+t space (three geometric dimensions and a temporal one) augmented with semantic 

information (such as the separation into distinct objects), while the visual information that we 

perceive is expressed in a 2-D+t space. The problem is clearly tractable, since humans do it 

all the time, with remarkable speed and reliability. Yet it is difficult because the human vision 

process is not a conscious one, and its complex underlying mechanisms are still not well 

understood. 
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From a computational point of view, we could consider the process of building a world model 

from visual information as a refinement of the available data along several levels. We start at 

the pixel level and we continue to a token structure level, then to an object level, and finally to 

a scene level. 

The first step, from pixels to tokens, is to identify the basic elements that can be used in the 

next processing stages. They can be simple points, edges, line segments, corners, small blobs 

with similar intensity etc.  

Next, these tokens must be grouped into distinct entities at the object level. These entities 

should be consistent with what humans perceive as distinct regions in the given image or 

group of images. 

Finally, the whole description obtained so far must be augmented with semantic information 

concerning the objects and the relationships between each other and with the observer, 

allowing for understanding at the level of the entire scene. 

1.1.1   Motion Analysis and Interpretation 

This dissertation addresses a difficult and fundamental problem in computer vision, the 

analysis and interpretation of visual motion. An example that illustrates the problem is given 

in Figure 1.1. Given two image frames that contain general motion, the goal is twofold:  

• to analyze the image changes in order to establish correspondences between image 

tokens across frames, as a dense velocity field, and to group tokens into motion 

regions separated by motion boundaries 

• to interpret these changes in order to recover the scene 3-D structure and 3-D motion.  
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As demonstrated by the human visual perception, successful analysis and interpretation are 

possible from a small number of frames – therefore, this work is focused on the minimal case 

of inference from two images. Once this basic case is well understood, the processing can be 

extended to incorporate information from multiple frames, possibly using an incremental 

inference, where the structure is refined as new frames are added. 

Our formulation, that divides the visual process into motion analysis and interpretation, is 

inspired from various perceptual studies [64][25], which show that establishing 

correspondences is a low-level process, that takes place prior to interpretation, where matches 

are established between elementary tokens, based on built-in affinity measures. The tokens 

involved in matching are not complex structures, but rather primitive image elements, such as 

Figure 1.1. Motion analysis and interpretation 

boundaries 

2

1

regions 

dense velocity field 
 

Motion Analysis Motion Interpretation 

3-D structure and motion 
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points, fragments of edges, or blobs. In this study we only focus on analysis from point 

tokens. 

Based on the changes at image level, the motion analysis process is responsible for 

determining three types of information: pixel velocities, motion boundaries and regions. 

The image velocity of a pixel is a vector that encodes the motion of the pixel in the image, 

from one frame to another. Recovering this information is equivalent to establishing a match 

between a point in the first frame and its corresponding point in the other frame. A velocity 

field is a function defined over a subset of pixels in the image, and whose values are the 

associated velocity vectors. If this function is defined over the entire image, then the velocity 

field is called dense, otherwise it is a sparse velocity field.  

In the formulation of the motion analysis problem given above, the ultimate goal with respect 

to the pixel velocities would be to recover them at each location, thus to determine the dense 

velocity field. Additional issues that need to be studied in this context are the possible non-

existence of correspondences, as some pixels may appear in one image only due to occlusion, 

and the non-uniqueness in establishing matches, as multiple motions may overlap in the case 

of transparent motion. 

The motion boundaries could be defined as the set of curves consisting of pixels where image 

motion changes abruptly. All pixels that exhibit a homogeneous (i.e. smooth) image motion 

could be grouped into a motion region. Consequently, the motion boundaries represent the 

sets of curves that separate motion regions in the image. 

At a first glance, the three entities described above appear to be placed at different conceptual 

levels. Indeed, pixel velocity is an easily quantifiable pixel property, and its definition is a 
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clear and formal one. On the other hand, boundaries and regions cannot be formally defined in 

a mathematical sense, because they are actually more related to the process of visual 

perception – that is, these entities belong to a perceptual or object level, rather than to the 

token level. It is not an easy task to formally specify what is meant by “abrupt change in 

motion” or “smooth motion”. Therefore, the above definitions for motion boundaries and 

regions should not be considered as based on inherent low-level properties, but on how we 

perceive them. 

At the next conceptual level, the motion interpretation process is responsible for building a 

world model in terms of the 3-D scene structure and 3-D motion of the viewed objects. Such a 

process, that is performed subsequently to motion analysis and is based on the 

correspondences and regions recovered from changes at image level, corresponds to a 

traditional structure from motion problem. In this case, the inference is made by interpreting 

the changing projections of unrecognized objects in motion. An alternative process, which has 

been observed in human vision, corresponds to the case of inferring motion from structure, 

where previously recognized 3-D structure is used in order to derive a motion interpretation. 

This study is only concerned with the first case – inference of structure from motion – where 

no past familiarity, or “instant” object recognition is necessary as a prerequisite. 

1.1.2   Monocular vs. Motion Cues 

A very important issue in the analysis and interpretation of visual motion is the source of 

information used in the process. In this context, it is necessary to study what types of 

information are available, how they can be used separately, and how they can be combined 
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into an integrated computational approach. The general process of structure inference from 

one or more images can be performed based on two sources of information: 

• monocular information 

• motion information 

Monocular cues are the ones that can be obtained from a single image, such as intensity, color 

or texture, and they are exclusively employed in several computer vision areas. For example, 

image segmentation can be attempted based entirely on the intensity or color of the pixels in 

the image. 

Motion cues are used when information is to be extracted from time-varying images. The 

usefulness of the analysis from motion cues stems from the fact that regions (pixels with 

similar motion) usually correspond to distinct objects in the scene. Following the same line, 

monocular image segmentation techniques assume that pixels with similar intensity or color 

represent distinct objects in the world. 

When these assumptions hold, it is worth mentioning that boundaries and regions can be 

recovered from monocular cues only; that is, from only one image. The human vision system 

is able to use both monocular and motion cues when available, in addition to patterns of 

objects or motions that are directly recognized.  

Interestingly, in some situations, boundaries, regions and pixel velocities can be also 

determined from motion cues only, when no monocular info is available. Two relevant 

examples are given in Figure 1.2. If the two frames in each pair are presented in a properly 

timed succession, a certain motion of image regions is perceived from one frame to the other. 

However, while in one case the regions can be detected even without motion, only from 
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monocular cues (in this situation, different densities of points), in the other case no monocular 

information is available, so the processing relies on motion cues only. Another relevant aspect 

is the fact that the human vision system not only establishes point correspondences, but also 

perceives regions in motion, although the input consists of sparse points only. This 

demonstrates that full analysis is possible from motion cues alone, even in a sparse 

configuration. 

It is difficult to ascertain what exact types of information are used in the human perception 

processes, in what order, what is the granularity of the tokens involved, and how the entire 

process is carried. Humans are remarkably good in addressing this task, because they are able 

to bring a vast amount of processing power and knowledge into play. A wide range of higher-

level knowledge, such as recognized objects or learned motion patterns, greatly influences the 

way humans interpret both sequences of images and isolated static scenes. In addition, they 

are capable of parallelizing the vision processes on many levels. Information from different 

locations and times in a sequence are frequently processed together, as are pieces of 

information from different hierarchies of understanding.     

The purpose of this study is to determine to what extent this human vision process can be 

emulated by a computational framework that addresses the problem of motion analysis and 

(a) Translating circle (b) Translating disk 

Figure 1.2. Perception from monocular vs. motion cues 
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interpretation. The proposed framework is able to consistently handle the very difficult case of 

grouping from motion cues only, and to integrate monocular information when available, such 

as in the case of real image sequences.  

1.2   Computational Perspective 

Before presenting the computational approach for motion analysis and interpretation, several 

issues need to be examined: what are the difficulties, what are the processes involved, and 

what constraints would be the most suitable for tackling the problem. 

1.2.1   What Are the Difficulties? 

The determination by computational means of the perceived motion of objects in a sequence of 

images is characterized by a wide range of difficulties. The most important are caused by the 

aperture problem, by the presence of regions of homogeneous intensity, and by the uncertainty 

near the motion boundaries. 

Aperture problem 

The relationship between image motion and variations of image intensity in time and space is 

defined by the following equation: 

In this formula v
r

 is the velocity flow (defined as the “apparent motion of brightness 

patterns”), and I is the image intensity. This equation is fundamental to intensity-flow 

calculations and it is called the optical flow constraint equation. 
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A closer look shows that this equation provides a constraint only for the component of the 

image velocity in the direction parallel to the intensity gradient. As shown in Figure 1.3(a), the 

motion of the edge E is analyzed by a local movement detector that examines a limited area of 

the image, represented by the aperture A. Such a detector can measure only the component of 

motion in the direction perpendicular to the orientation of the edge, indicated by the vector q. 

The component of motion along the edge is invisible through the aperture, so a local detector 

cannot distinguish between movement in the directions indicated by p, q, and r. This problem 

is illustrated by the well-known “barber pole” illusion, shown in Figure 1.3(b), where 

although the red strips move horizontally, the perceived motion is vertical. 

As a consequence of the aperture problem, after computing one motion component based on 

local measurements, it is necessary to introduce additional constraints to combine these local 

measurements into a full velocity field. 

Figure 1.3. The aperture problem 

p 

q 

r E 

A 

(b) “Barber  pole” illusion (a) Velocity uncertainty 
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Regions of homogeneous intensity 

Another problem arises when viewing a region lacking texture, with no or very little variation 

in intensity. In such a case, the motion cannot be locally determined. The explanation is that 

both the intensity gradient I∇  and the time derivative of the intensity 
t

I

∂
∂

 are zero. Therefore, 

the optical flow v
r

 in the optical flow equation remains unconstrained, and thus it can take 

any value. 

Uncertainty near motion boundaries 

The presence of motion boundaries within an image sequence generates another range of 

difficulties in motion analysis. Motion boundaries can be seen as the separation between 

occluding and occluded objects. For the object being currently occluded, there may be pixels 

that have no correspondence from one frame to the other. Consequently, the apparent motion 

around boundaries cannot be determined by using any similarity criteria, since the regions 

being compared must have finite extent. Figure 1.4 gives an illustration of this problem. 

In general, this problem can be seen as induced by motion discontinuities at boundaries. From 

a computational point of view, when additional constraints such as smoothness are used, it is 

difficult to enforce them while in the same time preserving the discontinuities. To accurately 

compute the velocity field, the knowledge of the boundaries is required so that the constraints 

Figure 1.4. Uncertainty near motion boundaries 
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can be relaxed around the discontinuities. But the boundaries cannot be computed without 

first having determined the pixel velocities. The approach described in this work, which will 

be described later, addresses this problem. 

1.2.2   What Are the Computational Processes? 

The problem of motion analysis can be decomposed in two main computational processes: 

matching and motion capture. 

Matching. The matching process is responsible for the computation of pixel velocities from 

the raw input data. Finding the image velocity for a pixel is equivalent to establishing a match 

between that point and its correspondent in the next image frame. The output of this process is 

a (possibly sparse and noisy) velocity field. 

Motion capture. Even when the input itself is sparse, as it has been illustrated in Figure 1.2, 

human vision is able to obtain a dense representation of the entities in motion. The fact that 

we perceive regions in motion, as opposed to points, is a well known but poorly understood 

effect called motion capture. The process of motion capture is then responsible for producing 

as output a dense velocity field, plus boundaries and regions as continuous curves and 

surfaces. 

1.2.3   What Are the Constraints? 

The examination of some simple configurations in motion indicates that the visual system 

incorporates a certain affinity measure between tokens, which can be roughly considered as a 

measure of similarity. This affinity is involved in both processes of matching and motion 

capture. Indeed, establishing a correspondence between two tokens implies the fact that their 
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mutual affinity (or preference to each other) is greater than the affinity to other tokens. In 

motion capture, to determine that a token belongs to a certain region is equivalent to 

establishing that it has a stronger affinity to the tokens in that region than to tokens in other 

regions. 

In order to solve the problem of motion analysis, a successful computational framework must 

define a way to express the affinities between tokens, while also taking into account and 

handling the difficulties described in the previous sections. To this purpose, additional 

constraints need to be introduced. 

More specifically, any such constraint must satisfy two requirements: 

• define a practical measure of affinities between tokens, so that they can be matched 

and grouped successfully 

• allow the computation of motion (pixel velocities) where local measurements could 

not provide a complete solution – this being the case of one velocity component 

missing due to the aperture problem, or the case of unreliable motion due to lack of 

texture. In this context, the constraints are needed in order to generate a dense output 

from a sparse and/or noisy input. 

Several types of constraints have been usually considered in the literature: 

• constant velocity over an area of the image (valid for pure translation) 

• constant velocity over small time intervals 

• velocity consistent with 2-D rigid motion (valid for rotation and translation of objects 

in the image plane) 
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• velocity consistent with 3-D rigid motion 

• smooth velocity within image areas that represent distinct objects 

Methods that are based on assumptions of constant velocity, or rigid motion, are not sufficient 

for analyzing the two-dimensional motion that arises from the projection of arbitrary three-

dimensional surfaces undergoing general motion in space. Therefore, it is the last constraint – 

smoothness – that is used in this work. 

1.3   A 4-D Voting Approach 

This dissertation proposes a novel computational framework that addresses the problem of 

visual motion analysis and interpretation from a perceptual organization perspective, where 

saliency is used as an affinity measure. This saliency, described in more detail later, will need 

to encode several perceptual concepts, such as proximity, smoothness and continuity. We 

claim that tokens, generated by matching corresponding pixels in the two images, form 

coherent perceptual structures in the 4-D space of image coordinates and pixel velocities, 

while erroneous matches generate outlier tokens. 

The proposed approach to the problem formulated above can be characterized by taking into 

account two key aspects – data representation and token communication [48]. The next 

paragraphs describe how these issues are addressed in our work. 

1.3.1   Layered 4-D Representation 

Finding the velocity field means to assign velocity values at every pixel location in the 2-D 

image. The process of identifying moving objects in an image means to partition (segment) the 



 14 

2-D image into regions according to their motion. However, casting the analysis of visual 

motion as a two-dimensional problem is not the most appropriate solution. The main 

difficulties appear at motion boundaries, where noisy velocities are abundant. This happens 

because tokens that are close in the image have a strong mutual influence or affinity, despite 

the fact that they should belong to different objects. 

Accordingly, we believe that the desirable representation for the problem addressed here 

should be based on a layered description, where regions in motion are represented as smooth 

and possibly overlapping layers. Next we explain how we embed the problem into such a 

layered representation. 

In any method that seeks to solve the problem of establishing correspondences and recovering 

the motion boundaries and regions, each token is characterized by four attributes – its image 

coordinates (x y) and its image velocity with the components (vx vy). In general, there may be 

several candidate velocities for each point (x y), so each tuple (x y vx vy) represents a (possibly 

wrong) candidate match. 

In this context, a natural solution is to encapsulate each token into a (x y vx vy) tuple in the 4-D 

space, so that they are now spatially separated by both velocity and image position. This is 

especially helpful for addressing the problem of uncertainty along motion boundaries, where 

although tokens are close in the image space, their interaction is now inhibited due to their 

separation in velocity space. 

Within the proposed representation, distinct moving objects appear as smooth layers in the 4-

D space of image coordinates and velocities. The next section describes how the motion layers 

are extracted. 
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1.3.2   Token Communication 

As discussed in the previous sections, both matching and motion capture are based on a 

process of expressing and communicating the affinity between tokens. In the proposed 4-D 

layered representation, this affinity is based on the token preference for being incorporated 

into a smooth surface layer. A necessary condition is then to enforce strong support between 

tokens in the same layer, and weak support across layers, or at isolated tokens. 

The example in Figure 1.5 helps illustrate this process. Token A exhibits a strong affinity with 

token B, as they belong to the same layer, but receives much less support from token C, 

situated in a different layer, and from token D, which is isolated and therefore probably a 

wrong match. If a 2-D representation were used, tokens A and C would exhibit a much 

stronger and undesired interaction due to their proximity in image space. 

D

C
A

B 

A

C 

D

B 

(b) Layered representation (a) 2-D representation 

Figure 1.5. Token interaction in 2-D representation vs. layered representation. 
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By letting the tokens propagate their preferred information, regions that exhibit smooth motion 

emerge as the most salient smooth surface layers in the 4-D space, while isolated tokens that 

receive little or no support are identified as outliers. Essentially, the matching problem is 

expressed as an outlier rejection process, while motion capture is performed mainly as a 

layer densification process. 

A suitable computational framework that enforces the smoothness constraint while preserving 

discontinuities is Tensor Voting, here performed in the 4-D space. As the main goal is to 

extract the motion layers, the affinities between tokens are embedded in the concept of surface 

Figure 1.6. Overall view of our approach 

3-D structure 

Matching 

Sparse velocity field 

Motion Capture 

Dense velocity field Boundaries Regions 

Interpretation 

3-D motion 
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saliency exhibited by the data. Communication between tokens is performed through 

convolution-like tensor voting, where each token casts a vote to its neighbors as a preference 

for a certain position and orientation. Incorrect matches are then eliminated as they receive 

little support, and layers are extracted as the most salient surfaces in the 4-D space. 

The contribution of this work is demonstrated by addressing the problems of matching, motion 

capture, and interpretation. The overall view of our approach is illustrated in Figure 1.6. 

Given two sparse sets of point tokens, 4-D voting is first used to select the correct match for 

each input point, as the most salient token, thus producing a sparse velocity field. By using the 

same voting framework, a dense layer representation is determined in the motion capture 

process, thus inferring dense velocities, motion boundaries and regions. Finally, the 3-D 

structure and motion of the viewed objects is computed in the interpretation process. We 

analyze several difficult cases – opaque and transparent motion, rigid and non-rigid motion, 

curves and surfaces in motion, from sparse or dense inputs, by using motion cues only, or 

motion augmented by monocular cues.  

1.4   Outline 

Chapter 2 provides a detailed review of the previous methods used to address the problem of 

visual motion analysis. Chapter 3 examines the voting framework by first giving an overview 

of the Tensor Voting formalism, and then discussing how the voting concepts are extended to 

the 4-D case. Chapters 4 and 5 describe the proposed approach for the matching and motion 

capture problems respectively, by using the 4-D voting framework. Chapter 6 describes how 

monocular cues are integrated into the framework, in order to allow for handling real image 
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sequences. Chapter 7 examines the approach for the problem of motion interpretation. Finally, 

Chapter 8 summarizes our contributions. 
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Chapter 2 

Related Work 

 

2.1   Introduction 

The object of this dissertation is to establish a computational framework for the visual motion 

analysis and interpretation, decomposed here into a matching process that recovers token 

correspondences as a sparse velocity field, followed by a motion capture process that infers 

motion boundaries and regions, and an interpretation process that determines the 3-D 

structure and motion of the viewed objects. 

Ullman presents an excellent analysis of the correspondence problem, from both a 

psychological and a computational perspective [64]. Here we are following his conclusion, 

that the correspondence formation is a low-level process, which takes place prior to any 3-D 

interpretation. A certain similarity measure between correspondence tokens, called affinity, is 

incorporated in the human visual system, and the correspondence between elements is 

determined from their affinities, via local competition interactions. The entire process is 

carried in a bottom-up fashion, as correspondences are not established between structured 

entities, on the basis of their similarity, but is built up from matches between small 

components of the images. The tokens involved in matching are non-complex elements, such 

as points, blobs, edge and line fragments. In our approach we only study the case where the 

input consists of identical point tokens. 
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A comprehensive description of the motion analysis problem is given in the work of Hildreth 

[25]. Several additional constraints that need to be incorporated in a computational framework 

are identified and discussed. According to this analysis, in our research we have employed the 

motion smoothness constraint, as the most general and probably the most important one that is 

used by the human visual system.   

The problem of visual motion analysis has been intensively studied, and good results have 

been achieved, although for limited type of scenes, such as those containing a single, smooth 

and textured surface. Most approaches rely on parametric models that restrict the types of 

motion that can be analyzed, and involve iterative methods which depend heavily on initial 

conditions and are subject to instability. Further difficulties are encountered in image regions 

where motion is not smooth – typically around motion boundaries. This problem has lead to 

numerous inconsistent methods, with ad-hoc criteria introduced to account for motion 

discontinuities.  

In the area of structure inference from motion, the inherent problem caused by the ambiguity 

of 2-D to 3-D interpretation is usually handled by adding additional constraints, such as 

rigidity. However, providing a successful computational approach has still been problematic, 

especially in the combined presence of noise and multiple independent motions, or even non-

rigid motions. In this context it is very difficult to enforce a global constraint, as it is not clear 

how to handle misfits – which may correspond to outlier noise, non-rigid, or independent 

motion. 

Barron, Fleet, and Beauchemin [5] provide a useful review of the computational 

methodologies used in motion analysis and interpretation. In the following subsections we 

discuss the most important research directions that have been investigated in the literature. 
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2.2   Differential Methods 

Differential methods of computing optical flow reduce the problem to that of solving a partial 

differential equation within spatio-temporal space. The earliest example of this is the work of 

Horn and Schunck [26]. Such an approach is based on the optical flow constraint equation:  

As explained in Chapter 1, this is only one equation providing constraints on the optical flow 

v
r

, an unknown with two components. Consequently, only the component of the optical flow 

normal to the local intensity gradient is constrained, phenomenon known as the aperture 

problem. The system is therefore underdetermined, requiring that additional constraints be 

imposed to ensure a unique solution. Horn and Schunck augmented the constraints with a 

global smoothness constraint on the optical flow. Their approach fails to account for 

discontinuities in the motion field, that are present at motion boundaries. 

Using the equation above it is possible to frame the problem in terms of a minimization within 

a local neighborhood. Lucas and Kanade [37] applied this method by using a small window 

with Gaussian weighting w. The quantity to be minimized is:  

A combination of this approach with a Bayesian framework is also presented by Simoncelli et 

al. [55]. 

Second-order differential techniques, which employ the second-order derivatives of I to 

constrain the velocity v
r

 were introduced by Nagel et al. [42][43][44]. The applicable 
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differential equation is derived from a requirement that the local intensity gradient I∇  is 

conserved in time. In an attempt to properly handle occlusion, Nagel suggested that 

smoothness only be imposed orthogonal to steep intensity gradients, to prevent smoothing 

across what could possibly be motion boundaries. The problem is ultimately formulated as a 

minimization of an energy functional. Unfortunately, the initial constraint does not permit 

common types of motion such as rotation and expansion. 

2.3   Region-Based Methods 

In these methods, an attempt is made to determine the most likely displacement d of a region R 

between consecutive frames of the image sequence. The parameters in such a calculation are 

the spatial extent of the region to be matched, the range of possible displacements, and a 

defined intensity metric between regions. The usual metrics employed are the normalized 

cross-correlation coefficient (which is to be maximized), or the sum of squared distance 

measure: 

Anandan [2] has combined a sum of squared difference metric with a Laplacian pyramid 

technique [9] to determine optical flow. In this technique, sub-pixel accuracy in this difference 

metric is achieved with a quadratic approximation. In addition, Anandan employs a 

smoothness constraint on the optical flow field v, which attempts to minimize the sum of the 

Laplacians of the two components of the flow field, yx vv 22 ∇+∇ . Such a technique suffers 
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from an attempt to smooth the optical flow across motion boundaries, as well as restricting 

input to data derived from only two neighboring frames. 

Singh [56][57] attempts to remedy the latter difficulty by defining a new metric, which is the 

average of the metrics in forward and reverse time, thereby incorporating information from 

three neighboring frames. If D is the actual sum of squared difference, the sub-pixel 

displacement is calculated as a weighted average of all possible displacements, the weighting 

function being provided by: 

A second step in the processing performs a Gaussian smoothing of the derived optical flow, 

allowing velocity information to propagate locally. These derived values are then used as 

input for repeated iterations of a similar calculation. Once again, since the smoothness 

constraints use no knowledge of motion boundaries, this technique over-smoothes the optical 

flow at these locations. 

2.4   Energy-Based Methods 

Energy-based techniques map the optical flow field in spatio-temporal space into Fourier 

space. A simple application of the shift theorem to the optical flow constraint equation yields: 

In this equation, F0 is the Fourier transform of I(x,0), ω is the temporal frequency, and k is the 

spatial frequency. This shows that the power spectrum of a translating, fixed intensity pattern 

( ) ( )dcDedW −=  (2.4) 
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must exist entirely within a plane passing through the origin of the 2D + t frequency space. 

This restriction can then form the basis of new methods for calculating optical flow. 

Heeger [22][23] exploits this restriction to provide a method that determines optical flow by 

attempting a least-squares fit to a plane in frequency space. This approach suffers from the 

defect that any object undergoing rotation or a non-rigid motion such as expansion cannot be 

adequately represented. 

2.5   Markov Random Fields 

Several research efforts have investigated the usefulness of Markov Random Fields (MRF) in 

treating discontinuities in the optical flow [8][24]. Gelgon and Bouthemy [16] perform motion 

segmentation in three sequential steps. In the first step, the images in a sequence are each 

partitioned at the pixel level according to an intensity-texture criterion, using a Markov 

Random Field procedure [30]. This provides a spatial region graph, which acts as an 

abstraction of the pixel-level representation of the image. 

In a second step, the spatial region graph is partitioned according to motion criteria, through 

the minimization of an energy function. This energy function is a weighted sum of two terms, 

one being a discrepancy term which favors identical motion labels in the graph when 

associated motions are similar, the second being a regularization term which favors identical 

labels for neighboring regions (represented by neighboring nodes in the spatial graph). 

In the third step, the optical flow of the regions is determined through a merging of motion 

data from sets of regions with identical motion labels derived in the previous stage. While this 

technique gives some good results, it relies heavily on a proper spatial segmentation early in 
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the algorithm, which will not be realistic in many cases. And since the granularity of the 

spatial region representation is necessarily coarse, little freedom is provided for capturing 

intricate structure in the optical flow. 

2.6   Layered Representations and EM 

Significant improvements have been achieved by casting the problem in terms of layered 

descriptions [11][29][27]. This formalism has many advantages. It is a natural way to 

accommodate discontinuities present in the motion field. Also, it inhibits information transfer 

between layers as spatially separated regions, and may resolve local uncertainties. 

The work of Ayer and Sawhney [4] attacks this problem through an application of the 

Expectation-Maximization (EM) algorithm [38] together with a mixture model. The mixture 

model describes each location in the image in terms of probabilities distributed among a finite 

set of discrete states. These states can be thought of as corresponding to discrete objects in the 

image, each providing a smooth flow field. In a given image, an optical flow discontinuity 

manifests as an abrupt change in the state containing the highest probability density. 

An EM algorithm discovers the motion discontinuities in an iterative fashion. During the 

expectation step, the state probabilities are optimized for the current value for the optical 

flow. During the maximization step, the parameters governing the optical flow are optimized 

while holding the state probabilities fixed. An initialization step provides a reasonable set of 

probability densities. 

Since the number of possible states can increase without bound, Ayer and Sawhney 

incorporate an intermediate Minimum Description Length (MDL) criterion between the 
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expectation and maximization stages, in order to compromise between the simplicity and 

accuracy of the representation.  

While this technique provides a basis for much subsequent study, it still suffers from three 

major defects. First, the procedure requires an initialization step, which is essentially 

arbitrary. Second, the algorithm is iterative, and subject to stability concerns. Third, the 

description of the optical flow is parameterized, and does not permit a general description as 

would be desirable. 

Many other current methods use common motion to group regions, usually performing a 

parameterized fit to motion data [28][65]. Weiss [66] provides a good overview of the 

difficulties involved in this estimation process, which range from inadequate representation of 

motion as rigid, to the over-fitting and instabilities resulting from higher-order 

parameterizations. 

Weiss uses a layered representation in combination with the EM algorithm, where a dense 

smooth flow field is fit to multiple layers. In this case, the number of layers is computed 

automatically by initially over-estimating the partitioning. A final step in the algorithm merges 

layer indices that are judged to be similar. 

The expectation step in the algorithm assigns the most likely layer labels to each pixel based 

upon a Markov Random Field that favors identical labels for neighboring pixels. The 

maximization step adjusts the optical flow associated with each layer by maximizing the 

conditional posterior probability of the optical flow based upon a fixed set of pixel layer 

indices. A functional is minimized which incorporates a Horn-Schunck term as well as term 

which penalizes a lack of smoothness in the optical flow field. 
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A novel feature of the method is the representation of the optical flow field as a linear 

combination of localized flow functions. The Horn-Schunck optical flow criterion is translated 

into a large-scale linear system combining the localized flow functions with the layer labels. A 

subsequent substantial reduction in the dimensionality of the linear system renders the method 

computationally feasible. 

While the results obtained by this method are good, it is still an iterative technique, subject to 

all associated liabilities. In addition, it performs a mathematical fit of the optical flow, even 

allowing spatially separated regions to influence each other. This precludes any possibility of 

incorporating higher-level knowledge (e.g. occlusion information) into the calculation. It is 

possible for unrelated regions to be accidentally merged into a single layer simply because of 

similar motion profiles, despite the presence of conflicting occlusion evidence, while the 

merging of spatially diffuse regions is more appropriately the domain of higher-level 

processing.  

2.7   Variational Methods 

Due to the ambiguity of the general vision problem, which is inherently ill-posed, attempts 

have been made to identify and model the physical constraints that make it determined and 

solvable. The under-constrained nature of the motion analysis problem has led to the 

development of a class of methods that use variational principles to impose specific physical 

constraints. These methods are derived from the regularization theory for solving ill-posed 

problems, which are transformed into a non-linear, scalar functional optimization framework. 
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However, the discontinuity aspect of the constraint involved is hard to express along with 

smoothness in such a functional optimization framework. The most limiting factor in the 

regularization theory is that the solution corresponds to a minimum which globally reduces the 

error. As such, discontinuities in the data are not preserved. 

Recent approaches [17][13] augment the regularization formalism by replacing the quadratic 

regularization term (usually used to recover a smooth solution) with a particular function of 

the gradient flow, specifically derived to allow for flow discontinuities in the solution. These 

techniques attempt to explicitly preserve discontinuities by weakening the smoothing in areas 

that exhibit strong intensity gradients. The main issues of variational methods are 

convergence, numerical stability, parameter and initialization dependency. In addition, an 

incorrect assumption is also made here, that the motion boundaries can always be detected in 

advance, based on intensity only. 

2.8   Basis Set Methods 

An example of using basis set methods (in the form of steerable flow fields) is the work of 

Fleet, Black, and Jepson [14]. At each pixel location, the optical flow is expanded as a linear 

combination of basis functions. But, in order to accommodate the presence of motion 

discontinuities, an additional parameter θ is included which incorporates the orientation of a 

potential motion boundary. 

The optical flow equation is used to enable a least squares fit solution to the vectors of 

unknown coefficients. In order to provide a continuously varying set of motion boundary 

angular orientations in the basis set, the basis functions are permitted to acquire imaginary 
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components, since coefficients of the form θie  are equivalent to rotation operators in the 

complex plane. 

The results of this technique are good, but the use of a gradient descent solution to the 

resulting system of equations is heavily dependent on initial conditions and parameters 

governing movement in the coefficient solution space. 

2.9   Wavelets 

Wu, Kanade, Cohn and Li [67] have applied the wavelet techniques of Cai and Wang [10] to 

the problem of optical flow determination. Optical flow is described as a linear combination of 

2D wavelets. A coarse to fine adjustment is enabled by using different velocity space 

resolutions in a hierarchical pyramid. This permits capture of a wide range of velocity 

magnitudes without the instability created by applying coarse to fine adjustment in the 

intensity space, which can create poor optical flow values at low-resolution where image 

structure is lost. Instead, full image resolution is used at all levels of the velocity space 

pyramid. 

Based on the optical flow constraint previously described, the sum of squared difference 

quantity also used by the region-based methods is minimized. While the results of this 

technique are fairly adequate, motion discontinuities are modeled poorly due to over-

smoothing. The presence of iteration in the solution of the system of equations also leaves 

open the possibility of instability. 
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2.10   Graph-Based Methods 

Shi and Malik [52] have approached the problem of motion segmentation in terms of recursive 

partitioning of the spatio-temporal space through normalized cuts within a weighted graph 

[51]. The associated graph encodes similarities between the motion profiles of points in 

spatio-temporal space, with similar pairs of points supporting graph edges of low weight. The 

cuts are normalized in such a way as to not favor partitions with small surface area. 

Motion profiles encode regional similarities in probabilities of displacements. The results are 

relatively good, but no prescription is offered for deciding when spatio-temporal space has 

been adequately partitioned. 

2.11   Voting Methods 

Little et al. [34] developed a parallel algorithm for computing the optical flow by using a local 

voting scheme based on similarity of planar patches. However, their methodology cannot 

prevent motion boundary blurring due to over-smoothing and is restricted to short-range 

motion only. 

The first to propose using Tensor Voting in addressing the motion analysis problem were 

Gaucher and Medioni [15]. They employ successive steps of voting, first to determine the 

boundary points as the tokens with maximal motion uncertainty, and then to locally refine 

velocities near the boundaries by allowing communication only between tokens placed on the 

same side of the boundary. However, in their approach the voting communication between 
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tokens is essentially a two-dimensional process that does not inhibit neighboring elements with 

different velocities from influencing each other. 
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Chapter 3 

The Tensor Voting Framework 

 

3.1   Tensor Voting Overview 

The use of a voting process for structure inference from sparse data was introduced by Guy 

and Medioni [18][19] and then formalized into a unified tensor framework [31][32][33] 

[59][61][40]. The smoothness constraint is used in order to generate descriptions in terms of 

surfaces, curves, and junctions, from sparse and noisy data in 2-D or 3-D.  

The methodology is grounded on two elements: tensor calculus for data representation, and 

non-linear voting for data communication. An overall illustration of the method, summarizing 

its different components, is given in Figure 3.1, which shows the 3-D version.  

Each input token can be a point, a point with an associated tangent direction, a point with an 

associated normal direction, or any combination of the above. Every such token is encoded 

into a second order symmetric tensor. In a first voting stage, tokens communicate their 

preferred information in a neighborhood through a predefined tensor field, and cast a tensor 

vote. The preference information includes proximity, smoothness, and continuity. Each site 

collects all the votes cast at its location and encodes them into a new tensor. After this 

refinement process, each token is now a generic second order symmetric tensor, which encodes 

curve and surface orientation information (given by the tensor orientations), and confidence of 

this knowledge (given by the tensor size). 



 33 

In a second voting stage, these generic tensor tokens propagate their information at each 

discrete location in their neighborhood, leading to a dense tensor map that encodes feature 

saliency at every point in the domain. In practice, the domain space is digitized into a uniform 

array of cells.  

Points Curves Surfaces 

Input tokens 
(sparse) 

Encode 

Tensor tokens 
(sparse) 

Tensor Voting 

Tensor tokens 
(refined) 

Tensor Voting 

Saliency tensor 
field (dense) 

Surface 
saliency map 

Curve 
saliency map 

Junction 
saliency map 

Feature extraction 

Decompose 

Figure 3.1. Tensor Voting overview 
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The resulting dense tensor map is decomposed by building a saliency map for each feature 

type. Surface, curve, and junction features are obtained by extracting local extrema of the 

corresponding saliency values along normal directions. The final output is the aggregate of the 

outputs for each of the components. 

This methodology is non-iterative and robust to considerable amounts of outlier noise. The 

only free parameter is the scale of analysis, which is indeed an inherent property of visual 

perception.  

3.1.1   Tensor Representation 

Points can simply be represented by their coordinates. A local description of a curve is given 

by the point coordinates, and its associated tangent or normal. A local description of a surface 

patch is given by the point coordinates, and its associated normal. Here, however, it is not 

known in advance what type of entity (point, curve, surface) a token may belong to. 

Furthermore, because features may overlap, a location may actually correspond to multiple 

feature types at the same time.  

To capture the geometric information and its singularities, a second order symmetric tensor is 

used. It captures both the orientation information and its confidence, or saliency. Such a 

tensor can be visualized as an ellipse in 2-D, or an ellipsoid in 3-D. Intuitively, the shape of 

the tensor defines the type of information captured (point, curve, or surface element), and the 

associated size represents the saliency. For instance, in 2-D, a very salient curve element is 

represented by a thin ellipse, whose major axis represents the estimated tangent direction, and 

whose length reflects the saliency of the estimation. 
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To express a second order symmetric tensor S, graphically depicted by an ellipsoid in 3-D, the 

associated quadratic form is diagonalized, leading to a representation based on the eigenvalues 

λ1, λ2, λ3 (where λ1≥λ2≥λ3≥0), and the eigenvectors e1, e2, e3:  

The eigenvectors represent the principal directions of the ellipsoid and the eigenvalues encode 

the size and shape of the ellipsoid.  

An input token that represents a surface element will be encoded as an elementary stick 

tensor, where e1 represents the surface normal, while λ1=1 and λ2=λ3=0. An input token that 

represents a curve element will be encoded as a plate tensor, where e3 represents the curve 

tangent, while λ1=λ2=1 and λ3=0. An input token that represents a point element will be 

encoded as a ball tensor, with no preferred orientation, while λ1=λ2=λ3=1. Figure 3.2 shows 

the elementary tensors that corespond to surface, curve and point tokens, in the 3-D case. 

3.1.2   Tensor Decomposition 

As a result of the voting procedure, generic second-order, symmetric tensors are produced 

from the elementary tensors described above, therefore the need to handle generic tensors. Any 

tensor can be expressed as a linear combination of these three cases: 

In this equation, e1e1
T describes a stick, (e1e1

T+e2e2
T) describes a plate, and 

(e1e1
T+e2e2

T+e3e3
T) describes a ball.  

S = λ1e1e1
T+λ2e2e2

T+λ3e3e3
T (3.1) 

S = (λ1-λ2)e1e1
T + (λ2-λ3)(e1e1

T+e2e2
T) + λ3(e1e1

T+e2e2
T+e3e3

T) (3.2) 
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At each location, the estimate of each of the three types of information and their associated 

saliency are captured as follows: 

• point-ness: no orientation, saliency is λ3 

• curve-ness: tangent orientation is e3, saliency is λ2 -λ3 

• surface-ness: normal orientation is e1, saliency is λ1-λ2 

In 2-D, there is no surface-ness, and curve-ness is expressed by e2 for the tangent orientation, 

and by λ1-λ2 for curve saliency. 

3.1.3   Tensor Communication 

We now describe the communication and computation scheme, which allows a site to 

exchange information with its neighbors, and infer new information. 

Token refinement and dense extrapolation. The input tokens are first encoded as elementary 

tensors. In 3-D, a point token is encoded as a 3-D ball. A point associated with tangent 

Figure 3.2. Tensor decomposition 
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direction is encoded as a 3-D plate. A point associated with normal direction is encoded as 3-

D stick. These initial tensors communicate with each other in order to: 

• derive the most preferred orientation information, or refine the initial orientation if 

given, for each of the input tokens (token refinement), and 

• extrapolate the above inferred information at every location in the domain for the 

purpose of  coherent feature extraction (dense extrapolation). 

In the token refinement case, each token collects all the tensor values cast at its location by all 

the other tokens. The resulting tensor value is the tensor sum of all the tensor votes cast at the 

token location.  

In the dense extrapolation case, each token is first decomposed into its independent elements, 

then it broadcasts this information. In this case ball tensors do not vote, as they define isolated 

features, which do not need to propagate their information. While they may be implemented 

differently for efficiency, these two operations are equivalent to a voting process, and can be 

regarded as a tensor convolution with voting fields (kernels). 

Derivation of the voting fields. The size and shape of the voting neighborhood, and the vote 

strength and orientation are encapsulated in predefined voting fields, one for each feature type 

– there is a stick voting field, a plate voting field, and a ball voting field in the 3-D case. The 

fields are generated based on a single parameter – the scale factor σ. Vote orientation 

corresponds to the best (smoothest) local curve continuation from voter to recipient, while 

vote strength )(dVS
r

 decays with distance || d
r

between them, and with curvature ρ: 
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=
2
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ρd

edVS

r
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All voting fields can be derived from the fundamental 2-D stick field, by rotation and 

integration. Figure 3.3(a) shows how votes are generated to build the 2-D stick field. A tensor 

P where curve information is locally known (illustrated by curve normal PN
r

) casts a vote at 

its neighbor Q. The vote orientation is chosen so that it ensures a smooth curve continuation 

(through a circular arc) from voter P to recipient Q. To propagate the curve normal N
r

 thus 

obtained, the vote )(dVstick

r
 sent from P to Q is encoded as a tensor according to the equation 

below, where PQ −=d
r

. 

Note that vote strength at both Q’ and Q” is smaller than at Q – because Q’ is farther, and Q” 

requires a higher curvature than Q. Figure 3.3(b) shows the 2-D stick field, with its color-

coded strength. When the voter is a ball tensor, with no information known locally, the vote is 

generated by rotating a stick vote in the 2-D plane and integrating all contributions, according 

to the equation below. The corresponding 2-D ball field is shown in Figure 3.3(c). 

T
stick NNdVSdV

rrrr
⋅= )()(  (3.4) 

θθθ

π

θ dRdRVRdV T
stickball )()( 1

2

0

rr
−∫=  (3.5) 

Figure 3.3. Voting in 2-D 
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(c) 2-D ball field 
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The 3-D stick field is obtained by first rotating a fundamental 2-D stick field Vstick with 90° 

about the z-axis (denote it by V’stick). Then, V’stick is rotated about the x-axis, and the 

contributions are integrated by tensor addition during the rotation. To obtain the 3-D plate 

field, the 3-D stick field obtained above is rotated about the z-axis, integrating the 

contributions by tensor addition. To obtain the 3-D ball field, the 3-D stick field is rotated 

about the y-axis and z-axis, integrating the contributions by tensor addition. 

3.1.4   Feature Extraction 

At each receiving site, the collected votes are combined through simple tensor addition (sum 

of matrices )(dV
r

), thus producing generic tensors. During voting, tokens that lie on a salient 

geometric feature (curve, surface) reinforce each other, and the tensors deform according to 

the prevailing orientation.  

At the end of the voting process, a dense tensor map has been produced, which is then 

decomposed in three dense maps: the surface map, the curve map, and the junction map. Each 

voxel of these maps has a 2-tuple ( )vs ˆ, , where s is a scalar indicating strength and v̂  is a 

unit vector indicating direction: 

• Surface map (SMap): s = λ1-λ2, and v̂ = e1 indicates the normal direction. 

• Curve map (CMap): s = λ2-λ3, and v̂ = e3 indicates the tangent direction. 

• Junction map (JMap): s = λ3, and v̂  is arbitrary. 

These maps are then used as input to an extremal-extraction algorithm similar to a marching 

process [36], in order to generate features such as junctions, curves, and surfaces. The 
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definition of point extremality, corresponding to junctions, is straightforward: it is a local 

maximum of the scalar value s. A point P is on an extremal surface if its strength s is locally 

extremal along the direction of the normal. A point P is on an extremal curve if any 

displacement from P on the plane normal to the tangent will result in a lower s value. Detailed 

implementation can be found in [60][40]. 

Results of applying the tensor voting methodology in the 3-D case are shown in Figure 3.4.  

3.2   Tensor Voting in 4-D 

We formulate our methodology for matching and motion capture by using a Tensor Voting 

framework in a four-dimensional space. In this section we describe how the Tensor Voting 

formalism is extended to the 4-D case.  

noisy input surfaces curves 

noisy input surfaces 

Figure 3.4. Pipe and two linked tori 
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The Tensor Voting framework is general enough to be extended to any dimension readily, 

except for some implementation changes, mainly for efficiency purposes [62]. The main issues 

that need to be addressed are the tensor representation of the features in the desired space, the 

generation of voting fields, and the data structures used for vote collection.  

Before discussing how the issues above affect the Tensor Voting framework, we need to make 

a few clarifying comments on the possible geometric varieties that may exist within an 

arbitrary dimensional space.  

In any N-dimensional space there are N types of geometric features (varieties), whose 

dimensionality ranges from 0 to N-1. The dimensionality of each of these features is given by 

the number of parameters that are needed to describe the feature in a parametric model. For a 

given feature, the number of such parameters is the same, regardless of the N-dimensional 

space.  

For example, in any N-D space (with dimensions x1, x2 … xN) a curve has dimensionality 1, 

because it is parametrically described through one parameter p, by the set of equations: 

Similarly, in any N-D space a surface has dimensionality 2 because it is parametrically 

described through two parameters p and q, by the set of equations: 

Moreover, each feature can be considered as defined locally by a number of tangent vectors. 

The number of tangent vectors is the same as the dimensionality of the feature, because each 

( ) Nkpxx kk ...1where ==  (3.6) 

( ) Nkqpxx kk ...1where, ==  (3.7) 
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such vector is given by the partial derivatives of the dimension variables x1, x2 … xN with 

respect to one of the parameters. 

For instance, a surface is defined by two tangent vectors: 

Equivalently, if nt is the number of tangent vectors, a feature can also be locally determined 

by a number of normal vectors nn = N - nt. Following the example above, a surface in N-D is 

also defined by 2 normal vectors. In fact all these tangent and normal vectors together 

represent an orthonormal basis for the N-dimensional space.  

According to the discussion above, in a 4-D space there are four possible features: 

• point (0-D) - having no tangents and 4 normals 

• curve (1-D)  - having 1 tangent and 3 normals 

• surface (2-D) - having 2 tangents and 2 normals 

• volume (3-D) - having 3 tangents and 1 normal 

Tensor representation. After this brief geometric interlude, we return to the problem of 

tensor representation in 4-D. The four possible geometric features mentioned above 

correspond to the four elementary tensors for the 4-D space. Table 3.1 shows how each of 

these features is encoded as an elementary tensor, by specifying the values of the eigenvalues 

and eigenvectors in each case.  
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Table 3.2 shows how each of the four geometric features can be extracted from a generic 

tensor, which is produced after voting. It is now clear that by following these rules, the tensor 

representation can be easily extended into any dimension. 

In our computational framework for visual motion analysis we represent the motion layers as 

surfaces embedded in a 4-D space. Therefore, throughout this study we are mainly interested 

in extracting salient surfaces from the input data.  

Voting fields. The voting fields are a key part of the formalism – they are responsible of the 

size and shape of the neighborhood where the votes are cast, and also control how the votes 

depend on distance and orientation. As explained in the previous subsection, there is only one 

fundamental voting field – the 2-D stick field. All other voting fields – for different features 

and in higher dimensional spaces – are derived from the 2-D stick.  

Feature λ1  λ2  λ3  λ4 e1  e2  e3  e4 Tensor 

point 1   1   1   1 any orthonormal basis ball 

curve 1   1   1   0 n1  n2  n3  t C-plate 

surface 1   1   0   0 n1  n2  t1   t2 S-plate 

volume 1   0   0   0 n   t1   t2   t3 stick 

 

Table 3.1. Elementary tensors in 4-D 

Table 3.2. A generic tensor in 4-D 

Feature Saliency Normals Tangents 

point λ4 none none 

curve λ3 - λ4 e1  e2  e3 e4 

surface λ2 - λ3 e1  e2 e3  e4 

volume λ1 - λ2 e1 e2  e3  e4 
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The 4-D voting fields are obtained as follows. First the 4-D stick field is generated in a similar 

manner to the 2-D stick field, as it was explained in the previous section and illustrated in 

Figure 3.3. Then, the other three voting fields are built by integrating all the contributions 

obtained by rotating a 4-D stick field around appropriate axes. In particular, the 4-D ball field 

– the only one directly used in this work – is generated according to: 

where x, y, u, v are the 4-D coordinates axes, θxy, θxu, θxv are rotation angles in the specified 

planes, and the stick field corresponds to the orientation (1 0 0 0). 

Data structures. In the 2-D or 3-D case, the data structure used to store the tensors during 

vote collection was a simple 2-D grid or a red-black tree. Because we need a data structure 

that is gracefully scalable to higher dimensions, the solution used in our approach is an 

approximate nearest neighbor (ANN) k-d tree [3]. 

Since we use efficient data structures to store the tensor tokens, the space complexity of the 

algorithm is linear, or O(n), where n is the input size. The average time complexity of the 

voting process is O(µn) where µ is the average number of tokens in the neighborhood. 

Therefore, in contrast to other voting techniques, such as the Hough Transform, both time and 

space complexities of the tensor voting methodology are independent of the dimensionality of 

the desired feature. The running time for an input of size 700 is about 20 seconds on a 

Pentium III (600 MHz) processor. 

Space non-isotropy. A key component of our framework is the 4-D layered representation of 

data. Within the 4-D space of image positions (x y) and potential pixel velocities (vx vy), 

∫ ∫ ∫ −=
π

θθθθθθθθθ θθθ
2

0

1 )()( xvxuxy
T

stickball dddRdRVRdV
xvxuxyxvxuxyxvxuxy

rr
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moving regions are represented as smooth surface layers, and are extracted through a voting 

process that enforces the motion smoothness constraint.  

Although both image positions (x y) and velocities (vx vy) are measured in pixels, they 

represent conceptually different, independent entities. Consequently, the 4-D space used here 

is not an isotropic one. However, the domain of image velocities is finite, as it is bounded by 

the image size – for an image with a size of SxS pixels, possible velocities range between –S 

and S. In practice, since typical image motions are rather small (usually between –S/10 and 

S/10), the distance between layers in velocity space is small compared to the image size. 

Therefore, before voting we scale the velocities (vx vy) so that the typical separation between 

layers is in the same order of magnitude as the image size. For all image sequences analyzed 

in this work, we have scaled the velocity values with the same factor of 10. 

Quantization effects. In the general tensor voting framework, an important issue is the 

underlying grid that is chosen for extracting dense salient geometric features. The size of 

voxels in the grid directly influences the feature extraction procedure (similar to a Marching 

Cubes algorithm), in terms of processing time, memory requirements, and precision of the 

extracted features. 

In our 4-D voting framework for motion analysis, we do not use a marching algorithm to 

extract dense motion layers. Instead, we generate discrete velocity candidates at each pixel 

location, collect votes at each candidate, and choose the most salient candidate as the most 

likely velocity at that pixel. Furthermore, the size of the underlying grid is fixed in the image 

space (1 pixel), as we are interested in inferring velocity values at each image location. In 

velocity space, in order to obtain velocity values with subpixel precision, the candidates are 

generated at every 1/4 pixel. 
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Chapter 4 

Matching 

 

4.1   Introduction 

In this chapter we present our approach for the problem of matching from two sparse sets of 

identical point tokens, when only motion cues are available [45]. The entire approach is based 

on the 4-D voting framework that has been presented in the previous chapters. An overview of 

the processes involved in the various stages of data processing is shown in Figure 4.1.  

The input consists of two frames containing identical point tokens, in a sparse configuration. 

For illustration purposes, we give a step-by-step description of the approach by using a 

specific example – the random point tokens represent an opaque translating disk against a 

static background. Later we also show how our method performs on several other examples. 

In the first stage we generate candidate matches from the image data, as (x y vx vy) points in 

the 4-D space. These points are then encoded as 4-D ball tensors, and their mutual affinities 

are propagated through a step of sparse voting. From the 4-D generic tensors resulted after 

voting, the ones that have maximal surface saliency are retained, while the others are 

eliminated as wrong matches. The final result is a set of 4-D points that represent the correct 

matches, and thus a sparse velocity field. 
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Since the goal is to extract the correct velocity (match) for each token, while eliminating the 

wrong matches, the process implemented here can be seen as a classification of the (x y vx vy) 

points into inliers and outliers.  

Before presenting in more detail each of the steps involved, we need to make a brief comment 

on how we display the intermediate results (i.e. those in 4-D). For illustration purposes, the 

Figure 4.1. The matching process 

Generating candidate matches 

(x y vx vy) points in 4-D 

Tensor encoding 

4-D ball tensors 

Affinity propagation 

4-D generic tensors 

Selection 

(x y vx vy) points in 4-D 

Input 

Sparse voting 

Sparse velocity field 
(correct matches) 
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last component of each 4-D point has been dropped to allow a three-dimensional display. 

More specific, the three dimensions shown are the image coordinates x and y (in the horizontal 

plane), and the vx component of the image velocity (the height).  

4.2   Generating Candidate Matches 

We take as input two sparse sets of identical point tokens, as shown in Figure 4.2(a). 

Candidate matches are generated as follows: for each token in the first frame, we simply 

create a potential match with every point in the second frame that is located within a 

neighborhood (whose size is given by the scale factor) of the first token. The resulted 

candidates appear as a cloud of (x,y,vx,vy) points in the 4-D space. The translation example 

Figure 4.2. Translating disk 

(a) Input (b) Candidate matches 

(d) Recovered vx velocities (c) Sparse velocity field 
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has 400 input points, and by using the procedure described above we generate an average of 

5.3 candidate matches per point, among which at most one is correct.  

Note that in the case where monocular information is to be integrated (sequences of real 

images), this step is replaced by an intensity-based procedure, such as cross-correlation, that 

produces candidate matches in the form of a sparse and possibly noisy velocity field. 

Figure 4.2(b) shows the candidate matches. Note that the correct matches can be already 

perceived as they are grouped in two parallel layers surrounded by noisy matches. 

4.3   Tensor Encoding 

Each potential match is then encoded into a 4-D tensor as follows. The tensor position in the 

4-D space is given by the point (x y vx vy). Next we need to specify the eigenvalues and 

eigenvectors. Since no information is initially known, each potential match is encoded into a 

4-D ball tensor – the eigenvalues and eigenvectors are the following: 

The eigenvectors e1, e2, e3 and e4 given above do not have any special significance – they now 

simply define an arbitrary orthonormal basis in the 4-D space. The fact that this tensor 

represents a pure 4-D ball is given by the encoding of the eigenvalues, which show equal 

preference for all directions. Note that among the 4-D feature saliency values ( 21 λλ −  for 

volumes, 32 λλ −  for surfaces, 43 λλ −  for curves, and 4λ  for points), the only non-zero 

λ1=1          e1 = ( 0 0 0 1 )T 

λ2=1          e2 = ( 0 0 1 0 )T 

λ3=1          e3 = ( 0 1 0 0 )T 

λ4=1          e4 = ( 1 0 0 0 )T 

(4.1) 
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saliency value is 4λ  which corresponds precisely to the desired situation, that no particular 

orientation is initially preferred. 

4.4   Affinity Propagation 

After encoding, each token propagates its preferred information in a certain neighborhood 

through a step of voting. This is a sparse process, in the sense that votes are accumulated only 

at input token locations. The size of the neighborhood where each token casts votes is given 

by the only parameter of our voting scheme, the scale factor σ, which is an inherent 

characteristic of human vision. 

The affinities propagated are encapsulated in the strength and orientation of the votes cast. 

Since the tensors involved are ball tensors, only the 4-D ball voting field is used. The vote 

strength decays with distance and with the orientation – in the sense that smooth surface 

continuations are encouraged. The vote orientation corresponds to the best (smoothest) 

possible local surface continuation from voter to recipient. 

During voting there is strong support between tokens that lie on a smooth surface (layer), 

while communication between layers is inhibited by the spatial separation between tensors in 

the 4-D space of both image coordinates and velocities. Wrong matches appear as isolated 

points that receive little or no support.  

The output of this process consists of 4-D generic tensors. 
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4.5   Selection 

The next step is to eliminate the incorrect matches. After propagating mutual token affinities 

in the voting stage, the wrong candidates have received little support compared to the correct 

ones, which reinforce each other. A measure of this support is encapsulated into the surface 

saliency. 

For each group of tokens that have common (x y) coordinates but different (vx vy) velocities we 

retain the token with the strongest surface saliency (that is, with the maximum value for λ2-

λ3), while rejecting the others as outliers.  

The output represents the good matches in a sparse configuration. Since votes have been cast 

only at the input token locations, no new points have been inferred. Therefore, the result is a 

sparse velocity field. 

It is worth mentioning that the entire process described in this chapter not only extracts the 

correct matches, but also simultaneously determines the local orientation of the layers at every 

token location. Indeed, after voting the first two eigenvectors e1 and e2 of the tensor give the 

orientation the two normals to the locally estimated layer at each tensor location. Later in the 

process of motion capture (in order to extract the layers), these estimated layer orientations 

will be refined through another voting step that includes only the correct matches recovered 

here.  

For the translating disk example, a comparison with the ground truth shows that the matching 

was 100% accurate - all 400 matches have been recovered correctly, despite the large amount 

of approximately 500% noise present. Figure 4.2(c) shows a 3-D view of the recovered 
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matches, where the height represents the vx component of the velocity, while Figure 4.2(d) 

shows the recovered sparse velocity field. 

4.6   Results 

The case illustrated so far may be considered too simple since the only motion involved is 

translation. Indeed, image regions undergoing translation will be represented in the 4-D space 

by planar surfaces parallel to the (x y) plane, because all pixels in a region have the same 

velocity. However, no assumption – such as translational, planar, or rigid motion – has been 

made. The only criterion used is the smoothness of image motion. To support this argument, 

we show next that our approach also performs very well for several other configurations. 

Rotating disk (Figure 4.3). The input consists of two sets of 400 point tokens each, 

representing an opaque rotating disk (about 7°, counter-clockwise) against a static 

background. The average number of candidate matches per point is 5.6. Comparing the 

resulting matches with the true motion shows that only 2 matches among 400 are wrong. Our 

method still works very well in this case, despite the fact that now the motion layer 

corresponding to the disk is not a horizontal plane, but a tilted surface. 

Figure 4.3. Rotating disk 
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Expanding disk (Figure 4.4). The input consists of two sets of 400 point tokens each, 

representing an opaque disk in expansion against a static background. The average number of 

candidate matches per point is 6.1. Comparing the resulting matches with the true motion 

shows that only 1 match among 400 is wrong. This example demonstrates that, without 

special handling, our framework can easily accommodate both rigid and non-rigid image 

motions. 

Rotating ellipse (Figure 4.5). The input consists of two sets of 100 point tokens each, 

representing a rotating ellipse. The average number of candidate matches per point is 5.9. 

Comparing the resulting matches with the true motion shows a 100% accuracy – all the 100 

matches have been correctly recovered. Many methods would fail on this example (used in 

literature to illustrate the aperture effect, and adapted from [25]) – one difficulty is that at the 

Figure 4.4. Expanding disk 

Figure 4.5. Rotating ellipse 
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points where the rotated ellipse “intersects” the original one, the velocity could be wrongly 

estimated as zero.  

Rotating square (Figure 4.6). The input consists of two sets of 100 point tokens each, 

representing a rotating square. The average number of candidate matches per point is 5.7. 

Comparing the resulting matches with the true motion shows a 100% accuracy – all the 100 

matches have been correctly recovered. This example is similar to the rotating ellipse and is 

used to show that the presence of non-smooth curves does not produce additional difficulty for 

our methodology. 

Transparent motion (Figure 4.7). The input consists of two sets of 500 point tokens each, 

representing a transparent disk in translation against a static background. The average number 

of candidate matches per point is 8.9. Comparing the resulting matches with the true motion 

Figure 4.6. Rotating square 

Figure 4.7. Transparent motion 
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shows a 100% accuracy – all the 500 matches have been correctly recovered. This example is 

extremely relevant to illustrate the power of our approach. If the analysis had been performed 

in a two-dimensional space, most methods would have failed, because the two motion layers 

are superimposed in 2-D. In our framework, using the 4-D space provides a very natural 

separation between layers, separation that is consistent with the human perception. In this 

representation, the process of affinity propagation through voting offers a consistent 

approach, as the presence of transparent motion does not create any more difficulties than 

opaque motion.  

Translating circle (Figure 4.8). The input consists of two sets of 400 point tokens each, 

representing a translating circle against a translating background. The average number of 

candidate matches per point is 6. Comparing the resulting matches with the true motion shows 

Figure 4.8. Translating circle 

Figure 4.9. Rotating disk – translating background 
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a 100% accuracy – all the 400 matches have been correctly recovered. This example shows 

that we can successfully handle both curves and surfaces in motion.  

Rotating disk – translating background (Figure 4.9). The input consists of two sets of 400 

point tokens each, representing an opaque rotating disk (about 7°, counter-clockwise) against 

a translating background. The average number of candidate matches per point is 5.8. 

Comparing the resulting matches with the true motion shows that only 2 matches among 400 

are wrong. This is a very difficult case even for human vision, due to the fact that at the left 

extremity of the disk the two motions (of the disk and the background) are almost identical. In 

that part of the image there are points on different moving objects that are not separated, even 

in the 4-D space. In spite of this inherent ambiguity, our method is still able to accurately 

recover correct velocities. The key fact is that the local layer orientations generated through 

voting are still different from one region to another, and therefore provide a good affinity 

measure. 
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Chapter 5 

Motion Capture 

 

5.1   Introduction 

This chapter describes our approach for the problem of motion capture from two sparse sets 

of identical point tokens [46]. The process starts with the sparse set of correspondences 

recovered during the matching step – described in the previous chapter – and is responsible 

for inferring a scene representation defined by a dense velocity field, motion regions and 

motion boundaries. 

It is interesting to note that in solving the motion capture problem, the proposed framework 

uses exactly the same token affinity measure that has been used in the matching process. 

Indeed, in the motion capture process in order to determine that a token belongs to a certain 

region is equivalent to establishing that it has a stronger affinity to the tokens in that region 

than to tokens in other regions. It is the same affinity that has been used in matching, in the 

sense that establishing a correspondence between two tokens implies the fact that their mutual 

affinity (or preference to each other) is greater than the affinity to other tokens.  

Since token affinities here are conceptually the same as in matching, the computational 

approach that handles them in motion capture is also the same. The motion capture 

methodology is again based on the 4-D voting framework that has been presented in the 
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previous chapters. An overview of the processes involved in the various stages of motion 

capture is shown in Figure 5.1.  

The input consists of a sparse velocity field – described by (x y vx vy) points in the 4-D space – 

that has been produced by the matching process. The approach is illustrated with the same 

 Correct matches (sparse) 

Figure 5.1. The motion capture process 
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specific example – the random point tokens represent an opaque translating disk against a 

static background. Later we also show how the method performs on several other examples.  

In the first stage, the 4-D points are encoded as 4-D ball tensors, and a refined description of 

the layer orientations is obtained through a step of sparse voting. The 4-D tensors resulted 

after this process are then used in another step of dense voting, in order to produce tensors at 

every image location.  

(a) Recovered vx velocities (b) Sparse velocity field 

(c) Dense velocity field (d) Regions 

(e) Boundaries 

Figure 5.2. Translating disk 
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Next, we group the resulted dense set of tokens into layers (regions), based on their velocities 

and local normal orientations that have been produced at the voting stage. Finally, we extract 

the motion boundary for each region.  

The following sections present each of the processing stages in more detail. Similar to the 

convention in the previous chapter, for illustration purposes the last component of each 4-D 

point has been dropped to allow a three-dimensional display. The three dimensions shown are 

the image coordinates x and y (in the horizontal plane), and the vx component of the image 

velocity (the height).  

5.2   Tensor Encoding 

The input is a set of 4-D points that represent the pixel velocities (matches) recovered in the 

matching process, as shown in Figure 5.2(a). At this stage we need to obtain an estimation of 

the layer orientations as accurate as possible. Although local layer orientations have already 

been determined as a by-product during the matching process (after voting, the eigenvectors e1 

and e2 represent the normals to layers), they may have been corrupted by the presence of 

wrong correspondences.  

Therefore, we perform an orientation refinement through another sparse voting process, but 

this time with the correct matches only. To this purpose, every 4-D point is again encoded into 

a 4-D ball tensor.  
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5.3   Orientation Refinement 

As explained above, the goal is to get an accurate estimation of the layer orientation at every 

token location. The token affinities are propagated again, as in the step of matching, but this 

time without the corrupting influence of wrong matches. 

This process is performed through a step of sparse voting, very similar to the one involved in 

the matching stage. However, now we are interested in both the saliency values as a measure 

of affinity, and also in the layer orientations that result after voting. In Chapter 3 we have 

shown that the voting process simultaneously generates information regarding all geometric 

varieties (curves, surfaces, volumes, etc.) that exist in the chosen space (in this case 4-D). 

Because in this process we are looking for the layer orientations – and the layers are surfaces 

embedded in the 4-D space – the desired orientations (as normals to layers) are found at each 

token after voting as the first two eigenvectors e1 and e2. We remind the reader that in a 4-D 

space, a surface is characterized by two normal vectors.   

In figure 5.2(b) we show a 3-D view of the tokens with refined layer orientations. Obviously, 

only one of the normal vectors is shown at each token.  

5.4   Densification 

At this stage we have determined the accurate layer orientations at each token location. In 

order to attain the very goal of the motion capture problem – that is, to recover boundaries 

and region as continuous curves and surfaces, respectively – it is necessary to first infer 

velocities and layer orientations at every location in the image.  
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The previously developed Tensor Voting framework allows for a densification procedure that 

extracts geometric features such as curves and surfaces from sparse data. However, the way 

in which this process is conducted is not appropriate for the particular problem addressed in 

this work. The existing densification algorithm proceeds by choosing the most salient tensor 

from the sparse set of tokens, and then growing the surface or curve around it, in a manner 

similar to a marching process. The curve or surface orientation and saliency are estimated at 

all neighbors of the current token (in a discrete grid) through voting. They are then analyzed 

with sub-voxel precision in order to determine how the curve or surface crosses the current 

grid cell (square in 2-D, or cube in 3-D). This procedure is then repeated for the neighboring 

cell grids that correspond to the direction in which the curve or surface extends. Chapter 3 

provides a more detailed description of this process. 

The aspect that makes this approach undesirable for the current problem is that it is still not 

clear when to stop growing. If, for example, a closed surface such as a sphere is to be 

extracted, the results will be very good. On the other hand, if we need to extract an open 

surface such as a plane, the resulted surface will be over-extended. The reason is that the 

existing densification process grows the surface until the saliency drops below a certain level, 

Figure 5.3. Layer over-extension 
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due to the decay with the distance from the supporting tokens. A result of applying this 

procedure to our translating disk example is shown in Figure 5.3. 

Since in addressing the motion capture problem it is crucial to obtain accurate motion 

boundaries, such an approach is not appropriate. Therefore we devised a different 

densification scheme that addresses the specific constraints of our problem – to extract dense 

layers while maintaining the motion boundaries.  

The key of our approach lies in the fact that the 4-D space we use is not isotropic. We need to 

obtain a tensor value at every (x y) location in the image, but certainly not at every (vx vy) 

location in the velocity space. 

Our densification method is illustrated in Figure 5.4. For each pixel (x y) in the image we try 

to find the best (vx vy) location at which to place a newly generated token. The candidates 

considered are all the discrete points (vx vy) between the minimum and maximum velocity 

Figure 5.4. Densification 

vx, vy 

x 

y 
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values present in the sparse token configuration. To improve the speed, we actually consider 

only the minimum and maximum velocities from the sparse tokens within a neighborhood of 

the (x y) point. At each candidate position (x y vx vy) we accumulate votes from the sparse 

tokens, according to the same Tensor Voting framework that has been used so far. After 

voting, the candidate token whose surface saliency (λ2-λ3) is maximal is retained, and its (vx 

vy) coordinates represent the most likely velocity at (x y). By following this procedure at every 

(x y) image location, we generate a dense velocity field. 

The densification process described above uses the same token affinities that have been 

employed in the previous stages, which are encapsulated in the voting framework. The best 

velocities at each image location are determined by trying different candidates, based on their 

affinity to the existing, sparse tokens. The token affinity is again measured through the 

surface saliency, by accumulating support for smooth surface orientations. 

The output at this stage is the dense velocity field, the first of the three goals that have been 

mentioned in Chapter 1, when the problem of visual motion analysis has been formulated. 

Note that in this process, along with velocities (given by the last two coordinates in the 4-D 

space), we simultaneously infer layer orientations (given by the first two eigenvectors e1 and 

e2 as normals to the layer). Figure 5.2(c) shows a 3-D view of the dense set of tokens that 

have been generated, including their associated layer orientations.  

Although the 4-D representation allows for the presence of overlapping layers, this procedure 

precludes us from obtaining multiple velocity values at each image location, such as in the 

case of transparent motion. A potential solution would be to choose not just the most salient 

velocity candidate, but all the candidates whose saliency values are locally maximal. 
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However, as it is not very clear how this choice would affect the motion boundaries, such 

strategy still needs to be further investigated.  

5.5   Grouping 

After obtaining a dense velocity field, the next step is to group tokens into regions that 

correspond to distinct moving objects, as perceived by the human vision. A main advantage of 

our approach is that we have already inferred both velocities and layer orientations at each 

image location.  

The smoothness criterion is used again to assign tokens to regions. We start from an arbitrary 

point in the image, assign a region label to it, and try to recursively propagate this label to all 

its image neighbors. In order to decide whether the label must be propagated to a neighbor 

(that is, whether the neighbor and the current point should be placed in the same region), we 

use the smoothness of both velocity and layer orientation as a grouping criterion. Having both 

pieces of information available is especially helpful in situations where neighboring pixels 

have very similar velocities, and yet they must belong to different regions. Most methods that 

are based only on velocity discontinuities would fail on these cases. We will show such an 

example later. 

The output consists of region-labeled tokens at each image location, which means that we 

have recovered the motion regions, the third of our goals in the problem of motion analysis. 

After assigning region labels to every token, for illustration purposes we perform a 

triangularization of each of the regions detected. The resulted surfaces are presented in Figure 

5.2(d). 
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5.6   Boundary Extraction 

It may have been noticed that the “upper” surface shown in Figure 5.2(d) does not exactly 

correspond to a disk. This is a normal outcome, and it is due to the fact that the input set of 

points was sparse. The irregularity of the surface boundary became apparent in the 

densification process, and it depends on the density distribution of the input points. Moreover, 

in terms of the human visual system, this boundary irregularity is more or less perceived 

according to the scale factor. Indeed, on a small scale (viewing the scene from a small 

distance) the boundary will appear very “rugged”. By increasing the scale factor (viewing 

from a larger distance), the boundary will be perceived as less and less irregular, until at some 

point it will appear as totally convex. In fact, at that moment the region boundary is perceived 

as the convex hull of all the sparse input points in the region. 

Therefore we have implemented a method to extract the boundary for each region as a 

“partially convex hull”. The process is controlled by only one parameter – the scale factor – 

which determines the degree of irregularity – in other words, the departure from the actual 

A2 

Figure 5.5. Boundary extraction 
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convex hull. The entire algorithm is performed in the 2-D image space, by using the x and y 

coordinates of each token. 

The approach is illustrated in Figure 5.5. We start at some arbitrary point S on the boundary 

– for example, the point with the largest x coordinate in the region. From there the boundary 

curve is grown so that at every current point C, the curve is locally convex. For the current 

point C, the next boundary point N1 is chosen so that all the points within the neighborhood A1 

are inside (to the right of) the boundary found so far, including the segment CN1. The size of 

this neighborhood is given by the scale factor, which determines the perceived level of detail. 

If the scale factor has a larger value – corresponding to the neighborhood A2 – then the next 

point selected from C will be N2, and the resulting boundary will be closer to the true convex 

hull.  

Figure 5.6. Rotating disk 

(a) Dense velocity field (b) Regions 

(c) Boundaries 
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At this point we have determined the motion boundaries, the last remaining goal of the three 

that we enumerated for the problem of motion analysis. The resulted boundary curves for the 

current example of the translating disk are presented in Figure 5.2(e). 

5.7   Results 

We conclude this chapter by presenting our results for several other configurations, that 

illustrate how our approach performs for different classes of sparse inputs, when only motion 

cues are available. The examples presented below have also been used in Chapter 4 when 

addressing the matching problem – therefore, a description of their input will not be repeated 

here.  

Figure 5.7. Expanding disk 

(c) Boundaries 

(a) Dense velocity field (b) Regions 
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For each example we show the dense velocity field as 4-D point tokens, the detected regions 

as continuous surfaces, and the extracted motion boundaries as continuous curves. 

Rotating disk – Figure 5.6.  

Expanding disk – Figure 5.7.  

Rotating disk – translating background – Figure 5.8.  

The last example is the most difficult one and deserves a few comments. As it was mentioned 

in Chapter 4, this example is problematic even for the human perception, because at the left 

extremity of the disk the two motions (of the disk and the background) are almost identical. In 

that part of the image there are points on different moving objects that are not separated even 

in the 4-D space. In spite of this inherent ambiguity, our method is still able to accurately 

Figure 5.8. Rotating disk – translating background 

(a) Dense velocity field (b) Regions 

(c) Boundaries 
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recover the regions and boundaries. The key fact is that in grouping we rely not only on the 

smoothness of recovered velocities, but also on the smoothness of local layer orientations that 

are determined simultaneously at every token location. 

5.8   Scale Sensitivity 

Since the only parameter involved in our voting framework is the scale factor that defines the 

voting fields (kernels), we analyzed how it influences the quality of the analysis. We ran our 

algorithm on the translating disk example for a large range of scale values and we found that 

the method is remarkably robust to varying scale factors. Figure 5.9 shows the number of 

Figure 5.9. Scale factor influence 
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incorrect matches (for an input of 400 points) obtained for different values of the voting field 

size (in pixels). Comparatively, the image size is 200 by 200.  

When the field is too small (kernel size < 30), the input tokens fail to communicate to each 

other, and the performance starts to degrade abruptly. At the other end (kernel size > 200), the 

degradation is more graceful, even for voting fields that are larger than the image size. Note 

the broad range of applicable field sizes, between 50 and 175. 

Figure 5.10. Noise influence 
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5.9   Noise Sensitivity 

To demonstrate the robustness of our method, we have conducted an experiment in which 

various amounts of noise are added to the data set. The input frames contain 400 point tokens, 

that correspond to the translating disk sequence. For this experiment, we added 400n points 

randomly selected in the image space, to the data set. At each step, n is incremented by one – 

see Figure 5.10. It is interesting to note that the performance is very robust to large amounts 

of noise, and it only starts to fail when n ≥ 5. 
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Chapter 6 

Integrating Monocular Cues 

 

6.1   Introduction 

So far we have only presented cases where no monocular information (such as intensity) is 

available, and the entire analysis has been performed based on motion cues only. Human 

vision is able to handle these cases remarkably well, and their study is fundamental for 

understanding the motion analysis process. Nevertheless they are very difficult from a 

computational perspective – most existing methods cannot handle such examples in a 

consistent and unified manner, or without relying on unrealistic assumptions about the motion. 

In the case of real image sequences, in addition to motion cues, there is a wealth of monocular 

information that can be used in the inference of salient structures. The human vision system is 

able to decouple the two sources of information, as the analysis is possible from each of them 

separately. However, when both monocular and motion cues are available, they seem to be 

used in conjunction, although the integration process is yet unclear. 

From a computational point of view, we need to decide how the two types of information 

should be combined, and in what order. If monocular cues are to be used first, such as in 

Figure 6.1(b), which shows the intensity edges detected in Figure 6.1(a), it would be very 

difficult to process such raw information. On the other hand, if motion cues are used, it is 

much easier to perceive the two salient regions (the box and the background), based on their 
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different image velocities, as shown by the velocity map in Figure 6.1(c). Although the 

boundaries are still incorrect, the general position and shape of the regions are detected, and 

can be locally refined by using monocular cues, as intensity edges from original images 

(Figure 6.1(d)). 

This chapter describes the additional difficulties induced by the case of real image sequences, 

an overview of the proposed method, the extensions to the framework in order to address these 

difficulties, and the experimental results that have been obtained. 

In order to incorporate monocular information into our framework, we need to address a 

number of problems specific to the case when the input consists of a sequence of intensity 

images. In particular, the issues to be handled in this context are: 

• generation of candidate matches  

• rejection of outliers due to image areas lacking texture 

(c) Velocities (d) Local boundary refinement 

(a) One input image (b) Intensity edges 

Figure 6.1. Combining motion and monocular cues 
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• inference of accurate motion boundaries in the presence of occlusion 

The pre-processing step where candidate matches are generated is replaced by an intensity-

based cross-correlation procedure, where all peaks of correlation are retained as candidate 

matches. Furthermore, the procedure is repeated for several sizes of the correlation window, in 

order to capture information at multiple scales. 

In areas lacking texture, it is very likely that all matching candidates are incorrect, as there is 

no reliable intensity information that can be used by the correlation process. In the selection 

step described in Chapter 4, when only candidates with maximal saliency are retained at each 

pixel, it is possible that the best candidate is still incorrect. Therefore, an additional step of 

outlier rejection is employed, where all tokens that received very little support during voting 

are eliminated.  

Producing an accurate motion flow field is very difficult at motion boundaries. The motivation 

of the motion segmentation problem stems from the fact that motion regions (pixels with 

similar motion) usually correspond to distinct objects in the scene. Computationally, the 

problem is addressed by first establishing pixel correspondences between images in order to 

obtain velocity values at each image location. Based on their velocities, pixels are then 

grouped into motion regions, separated by motion boundaries, thus producing a segmentation 

of the image.  

However, an inherent difficulty in this process is caused by the presence of the motion 

boundaries themselves. The very source of information used for segmentation – pixel 

velocities – are mostly unreliable exactly at the motion boundaries, where the segmentation 

takes place. The example in Figure 6.2, showing a truck moving from left to right over a static 
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background, is used to illustrate the problem. From area A that appears in the first image, 

only half is visible in the second image, the other half being occluded by the moving region. At 

the opposite side, area B is still visible in the second image, but is now split into two regions, 

with new, un-occluded pixels in between. Even where no occlusion takes place, such as at the 

upper boundary, area C is also split in the second image, due to the motion between regions.  

Consequently, the apparent motion around boundaries cannot be precisely determined by 

using any similarity criteria, since the areas being compared must have a finite extent. 

Moreover, it is not realistic to assume that all the wrong matches can be later removed as 

noise. Due to the similarity of partial areas, wrong correspondences are often assigned in a 

consistent manner, resulting in over-extended image regions. 

The key observation is that one should not rely on motion cues only, in order to perform 

motion segmentation. Examining the original images reveals a multitude of monocular cues, 

such as intensity edges, that can aid in identifying the true object boundaries. A second glance 

at Figure 6.2 will confirm it.  

 

A 
B 

C 

A 
B 

C 

Figure 6.2. Non-similarity at motion boundaries 
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In this context, we formulate the problem of motion analysis as a two-component process, 

that: 

• enforces the smoothness of motion, except at its discontinuities 

• enforces the smoothness of such discontinuities, aided by monocular cues 

Here we present the extensions to our 4-D framework in order to handle real image data, and 

integrate it with a 2-D voting-based method for accurate inference of motion boundaries 

[49][47]. The extended approach we developed for the case of monocular cues is based on two 

voting processes, in different dimensional spaces. First, motion layers as extracted as surfaces 

in a 4-D space, by using a voting process to enforce the smoothness of motion and determine 

an estimation of pixel velocities, motion regions and boundaries. This 4-D process is carried 

out according to the same voting framework that has been presented in the previous chapters. 

Although noisy correspondences are rejected as outliers after extracting the motion layers in 

4-D, there are also wrong matches that are consistent with the correct ones. This mostly 

occurs at the motion boundaries, where the occluding layer is typically over-extended towards 

the occluded area. 

The remaining stage is to infer the correct motion boundary by adding monocular information 

from the original images. First we define zones of boundary uncertainty along the margins of 

layers. Within these zones we create a 2-D saliency map that combines the following 

information: the position and overall orientation of the layer boundary, and the strength and 

orientation of the intensity edges from the original images. Then we enforce the smoothness 

and continuity of the boundary through a 2-D voting process, and extract the true boundaries 
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as the most salient curves within these zones. Finally, correct velocities are computed for the 

pixels near boundaries, as they are reassigned to the appropriate regions. 

6.2   Establishing Initial Correspondences 

The input consists of two image frames that involve general motion – that is, both the camera 

and the objects in the scene may be moving. For illustration purposes, we give a description of 

the proposed approach by using a specific example, the candy box sequence – the two 

images in Figure 6.3 are taken with a handheld moving camera, where the candy box and the 

background exhibit distinct motions due to their different distances from the camera.  

For every pixel in the first image, the goal at this stage is to produce candidate matches in the 

second image. We use a normalized cross-correlation procedure, where all peaks of 

correlation are retained as candidates. When a peak is found, its position is also adjusted for 

sub-pixel precision according to the correlation values of its neighbors. Finally, each 

candidate match is represented as a (x,y,vx,vy) point in the 4-D space of image coordinates and 

pixel velocities, with respect to the first image. 

Figure 6.3. Candy box sequence – input images 
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Since it is desirable to increase the likelihood of including the correct match among the 

candidates, we repeat this process at multiple scales, by using different correlation window 

sizes. Small windows have the advantage of capturing fine detail, and are effective close to the 

motion boundaries, but produce considerable noise in areas lacking texture or having small 

repetitive patterns. Larger windows generate smoother matches, but their performance 

degrades in large areas along motion boundaries. We have experimented with a large range of 

window sizes, and found that best results are obtained by using only two or three different 

sizes, that should include at least a very small one. Therefore, in all the examples described in 

this paper we used three correlation windows, with 3x3, 5x5 and 7x7 sizes. 

The resulting candidates appear as a cloud of (x,y,vx,vy) points in the 4-D space. Figure 6.4 

shows the candidate matches. In order to display 4-D data, the last component of each 4-D 

point has been dropped – the 3 dimensions shown are x and y (in the horizontal plane), and vx 

(the height). The motion layers can be already perceived as their tokens are grouped in two 

layers surrounded by noisy matches. 

Extracting statistically salient structures from such noisy data is very difficult for most 

existing methods. Because our voting framework is robust to considerable amounts of noise, 

we can afford using the multiple window sizes in order to extract the motion layers. 

6.3   Extraction of Motion Layers in 4-D 

The process of extracting the motion layers is very similar to that used in the case of sparse 

input data, when only motion cues are available, and it has been described in detail in the 

previous chapters. Here we only give a succinct description of the main steps involved, 
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including the extensions that have been made in order to address the problem of motion 

analysis in the case of intensity images. 

Selection. Since no information is initially known, each potential match is encoded into a 4-D 

ball tensor. Then each token casts votes by using the 4-D ball voting field. During voting 

there is strong support between tokens that lie on a smooth surface (layer), while 

communication between layers is reduced by the spatial separation in the 4-D space of both 

image coordinates and pixel velocities. For each pixel (x y) we retain the candidate match with 

the highest surface saliency (λ2-λ3), and we eliminate the others as they represent incorrect 

matches. Figure 6.5 shows a 3-D view of the recovered matches (the height represents vx). 

Orientation refinement. In order to obtain an estimation of the layer orientations as accurate 

as possible, we perform an orientation refinement through another voting process, but now 

with the selected matches only. After voting, the normals to layers are found at each token as 

the first two eigenvectors e1 and e2. 

Outlier rejection. In the selection step, we retained only the most salient candidate at each 

pixel. However, there are pixels where all candidates are wrong, such as in areas lacking 

texture. Therefore now we eliminate all tokens that have received very little support. Typically 

Figure 6.4. Candidate matches Figure 6.5. Selected velocities 
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we reject all tokens with surface saliency less that 10% of the average saliency of the entire 

set. 

Densification. Since the previous step created “holes” (i.e., pixels where no velocity is 

available), we must infer their velocity from the neighbors by using a smoothness constraint. 

For each pixel (x y) without an assigned velocity we try to find the best (vx vy) location at 

which to place a newly generated token. The candidates considered are all the discrete points 

(vx vy) between the minimum and maximum velocities in the set, within a neighborhood of the 

(x y) point. At each candidate position (x y vx vy) we accumulate votes, according to the same 

Tensor Voting framework that we have used so far. After voting, the candidate token with 

maximal surface saliency (λ2-λ3) is retained, and its (vx vy) coordinate represents the most 

likely velocity at (x y). By following this procedure at every (x y) image location we generate a 

Figure 6.6. Dense layers 

Figure 6.7. Layer velocities Figure 6.8. Layer boundaries 
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dense velocity field. In this process, along with velocities we also simultaneously infer layer 

orientations. A 3-D view of the dense layers is shown in Figure 6.6. 

Grouping. The next step is to group tokens into regions, by using again the smoothness 

constraint. We start from an arbitrary point in the image, assign a region label to it, and try to 

recursively propagate this label to all its image neighbors. In order to decide whether the label 

must be propagated, we use the smoothness of both velocity and layer orientation as a 

grouping criterion. Figure 6.7 illustrates the recovered vx velocities within layers (dark 

corresponds to low velocity), and Figure 6.8 shows the layer boundaries superimposed over 

the first image. 

6.4   Boundary Inference in 2-D 

At this stage, the extracted motion layers can still be over or under-extended along the motion 

boundaries. This situation typically occurs in areas subject to occlusion, where the initial 

correlation procedure may generate wrong matches that are consistent with the correct ones, 

and therefore could not be rejected as outlier noise. 

However, now it is known how many moving objects are present in the scene and where they 

are. The margins of the layers provide a good estimate for the position and overall orientation 

of the true motion boundaries. We combine this knowledge with monocular cues (intensity 

edges) from the original images in order to build a boundary saliency map along the layers 

margins. Next we enforce the smoothness and continuity of the boundary through a 2-D 

voting process, and extract the true boundary as the most salient curve within the map. 
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This procedure is performed in two successive passes – by separately using the horizontal and 

vertical components of the image gradient. In fact, during the first pass all edges are found, 

with the exception of the ones “perfectly” horizontal. The second pass is actually used to only 

detect the remaining edges. Note that the two steps are inter-changeable, and their order is not 

important. 

6.4.1   The Boundary Saliency Map 

In the first pass, we start by finding the points that belong to the layer boundaries, identified 

by changes in region labels along horizontal lines. For each such point (xc yc) we define a 

horizontal zone of boundary uncertainty, centered at (xc yc). Since the over or under-extension 

of motion layers is usually within the limits of the correlation window size, we chose the 

largest size used in correlation as the zone width. The zone height is one pixel. 

Next we make use of the monocular cues by computing the image gradient (from the intensity 

I in first image) at each location within the zones of boundary uncertainty: 

Since at this pass we are looking for non-horizontal edges, we initialize our saliency map with 

the horizontal component of the gradient: 

This choice is made in order not to be influenced in the analysis by purely horizontal edges, 

which will be detected during the second pass. Diagonal edges that exhibit a significant 

horizontal gradient contribute to the saliency map and they are detected in the first pass. 
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Finally, we incorporate our estimation of the boundary position and orientation, as resulted 

from motion cues, by introducing a bias towards the current layer boundaries. Within each 

zone, we define a weight function W that is 1 at xc and decays exponentially by: 

where σW corresponds to a weight of 0.2 at the zone extremities. 

The saliency map is then updated by multiplying each existing value with the corresponding 

weight.  

6.4.2   Detecting the Boundary 

At this stage we have a saliency value and an orientation at each location within the zones of 

uncertainty. However, in order to extract the boundaries we need to examine how neighboring 

locations agree upon their information, through a voting process. 

We proceed by encapsulating all the existing information within a 2-D tensor framework. 

Since we have boundary orientations, at each location in the uncertainty zones we create a 2-

D stick tensor, with the orientation (eigenvectors e1 and e2) given by the image gradient, and 

the size taken from the saliency map: 

Next, the tensors communicate through a 2-D voting process, where each tensor is influenced 

by the saliency and orientation of its neighbors. After voting, the curve saliency values are 
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collected at each tensor as (λ1-λ2) and stored back in the saliency map. Figure 6.9 shows the 

tensors after voting, with the local curve tangent given by the eigenvector e2. The curve 

saliency (λ1-λ2) is illustrated here as the length of the tangent vector. Note that although 

strong texture edges are present in the uncertainty zone, after voting their saliency has been 

diminished by the overall dominance of saliency and orientation of the correct object edges. 

 The true boundaries are extracted by choosing seeds with maximum curve saliency, and 

growing the boundary from an uncertainty zone to the next, according to the local curve 

saliency and orientation.  

Figure 6.10. Refined velocities Figure 6.11. Refined boundaries 

Figure 6.9. Boundary saliency map 
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After marking the detected boundaries, the entire process is repeated in a similar fashion in the 

second pass, this time using the vertical component of the gradient, in order to detect any 

horizontal boundaries that have been missed during the first pass. 

Finally, each zone of boundary uncertainty is revisited in order to reassign pixels to regions, 

according to the new boundaries. In addition to changing the region label, their velocities are 

recomputed in a 4-D voting process similar to the one used for densification. However, since 

region labels are now available, the votes are collected only from points within the same layer. 

Figure 6.10 shows the refined velocities within layers (dark represents small velocity), and 

Figure 6.11 shows the refined motion boundaries, that indeed correspond to the actual object. 

6.5   Results 

We have also analyzed several other image sequences, and we present here the results 

obtained. In all experiments we used three correlation windows, with 3x3, 5x5 and 7x7 sizes, 

and for each window we retained all peaks of correlation. Therefore each pixel in the image 

had at least 3 candidate matches, among which at most one was correct. For both the 4-D and 

2-D voting processes, in all examples we used the same scale factor, corresponding to an 

image neighborhood with a radius of 16 pixels.  
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Fish sequence (Figure 6.12). To quantitatively estimate the performance of our approach we 

created a synthetic sequence from real images. The silhouette of a fish was cropped from its 

image and inserted at different locations over a background image, in order to generate a 

motion sequence with ground truth. The average angular error we obtained is 0.42° ± 1.2° for 

100% field coverage, which is very low despite the multitude of texture edges from the 

cluttered background, that were competing with the true object edges. This example is also 

used to show that we can successfully handle more detailed and non-convex motion 

boundaries. 

Figure 6.12. Fish sequence 

(d) Layer velocities (e) Layer boundaries (f) Boundary saliency map 

(a) One input image (b) Candidate matches (c) Dense layers 

(g) Refined layers (h) Refined boundaries 
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Barrier sequence (Figure 6.13). We analyzed the motion from two frames of a sequence 

showing two cars moving away from the camera. The analysis is difficult due to the large 

ground area with very low texture, and because the two moving objects have relatively small 

sizes in the image. Also note that the image motion is not translational – the front of each car 

has a lower velocity than its back. This is visible in the 3-D view of the motion layers, which 

appear as tilted surfaces. In fact, our framework does not make any assumption regarding the 

type of motion – such as translational, planar, or rigid motion – the only criterion being used 

is the smoothness of image motion. 

Figure 6.13. Barrier sequence 

(d) Layer velocities (e) Layer boundaries (f) Boundary saliency map 

(a) One input image (b) Candidate matches (c) Dense layers 

(g) Refined layers (h) Refined boundaries 
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Yosemite sequence (Figure 6.14). We analyzed the motion from two frames of the Yosemite 

sequence (without the sky), to further provide a quantitative estimate for the performance of 

our approach, as compared to other methods. Although this is an artificial fly-through 

sequence, it uses real images as texture for the valley model. The average angular error 

obtained by using the described approach is 3.74° ± 4.3° for 100% field coverage. Table 6.1 

compares our results with the performance of other methods, as reproduced from [5]. In terms 

of average angular error, the proposed method significantly outperforms all others, which are 

also applied on 100% image coverage. Some methods obtain slightly better performance, but 

only when they restrict the coverage to a lower percent of the image. Also note that most 

(c) Velocities vx 

(a) One input image 

(d) Velocities vy 

(b) Dense layer 

Figure 6.14. Yosemite sequence 
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methods listed here require more than two frames for the analysis, while our method uses two 

frames only. 

Uniform square sequence (Figure 6.15). This example, showing a uniform square in 

translation against a static uniform background, is used to illustrate the main difficulties in 

motion analysis, and how they are addressed by our method. The experiment is very difficult, 

as both image regions lack any texture, and the aperture effect is present at each location 

around the intensity edges. 

Figure 6.15(b) shows two intensity maps corresponding to the candidate velocities, separately 

for the vx and vy components. As only the corners provide texture for the correlation process, 

note the uncertainty around the middle part of the edges, due to the aperture effect. Since there 

is no possibility to determine the motion of the static uniform background, we assigned zero 

Technique Average error Standard deviation Density 

Nicolescu and Medioni 3.74° 4.3° 100% 

Anandan 15.54° 13.46° 100% 

Uras et al. (unthresholded) 16.45° 21.02° 100% 

Horn and Schunck 22.58° 19.73° 100% 

Lucas and Kanade (λ2 ≥ 5.0) 3.55° 7.11° 8.8% 

Uras et al. (det(H) ≥ 2.0) 3.75° 3.44° 6.1% 

Fleet and Jepson (τ = 2.5) 4.29° 11.24° 34.1% 

Fleet and Jepson (τ = 1.25) 4.95° 12.39° 30.6% 

Lucas and Kanade (λ2 ≥ 1.0) 5.20° 9.45° 35.1% 

Uras et al. (det(H) ≥ 1.0) 5.97° 11.74° 23.4% 

Heeger 11.74° 19.0° 44.8% 

 

Table 6.1. Yosemite results 
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motion to all pixels where no texture is found during correlation. This is the reason for the 

incorrect motion that is reported in the interior of the square.  

Figure 6.15(c) shows the layer velocities after the sparse and dense voting. The uncertainty 

due to the aperture effect has been eliminated, and the interior pixels of the square have been 

assigned correct velocities during densification. 

The remaining problem is that the extracted layers are over-extended (with half the correlation 

window size), as the only texture used in correlation is represented by the intensity edges. 

However, the correct layers are inferred by augmenting the motion information with the 

intensity edges – the refined velocities are shown in Figure 6.15(d). 

Sparse disk and boundary sequence (Figure 6.16). In the previous chapters we have shown 

that our framework is able to perform the analysis based on monocular cues only, when the 

input consists of sparse data. The extended framework, described in this chapter, handles 

Figure 6.15. Uniform square sequence 

(c) Layer velocities (d) Refined velocities 

(a) Input images (b) Candidate velocities 
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motion augmented with monocular cues, as in real image sequences. Here we show that the 

extended framework is also able to analyze motion and monocular cues in the case of sparse 

input data. The example in Figure 6.16 illustrates a sparse input corresponding to a disk in 

translation against a static background. The monocular cues are represented by the higher 

density of points on the disk boundary, creating the salient perception of a circle. 

As expected, the recovered motion layers (Figure 6.16(c)) are over-extended due to occlusion. 

However, as the input points from the correct boundary form a salient structure, the true 

boundary (Figure 6.16(e)) is inferred by the 2-D voting process, and the refined layers indeed 

correspond to the correct perception of the translating disk, as shown in Figure 6.16(g). 

6.6   Handling Transparent Motion 

The human visual system can easily distinguish multiple motions that are transparently 

combined in an image sequence. However, traditional computational models of the motion 

Figure 6.16. Sparse disk and boundary sequence 

(a) Input images (b) Candidate velocities (c) Dense velocities 

(g) Refined layers (d) Boundary gradient (f) Refined velocities (e) Refined boundary 
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perception process have largely been confused by scenes with multiple motions. Real world 

examples of these viewing conditions are common – for example, people looking out of a 

window often see both the outside world and a reflection of the objects inside the room. As 

any driver has observed, the human visual system can perform accurate navigation functions 

even when a large percentage of the image signal is obscured by a corrupting, but coherently 

organized noise process, caused by rain or snow. 

Transparent segregation can be performed on an image sequence that contains moving point 

tokens, even when a static display of the tokens does not support such segregation. Ullman 

[64] and Mulligan [41] have shown that human observers could easily segregate two 

coherently moving sets of point tokens that were unseparable in static presentation. For both 

image patterns and sparse point tokens stimuli, there is a perception of continuous surfaces 

corresponding to what was used in the physical or synthetic construction of the stimulus. 

Several computational approaches have been developed in order to address the perception of 

transparent or multi-component motion, from 3 or more image frames. The algorithm of 

Shizawa and Mase [53][54] computes two velocity vectors for each location in the image, by 

using an energy integral minimization as a model fitting method, but does not address the 

problem of perceptual grouping of coherently moving regions of the scene. Other methods 

[6][28] compute global affine optical flow fields, but use local measurements that are only 

capable of determining a single velocity estimate at each point.  

The technique presented by Irani and Peleg [28] assumes a spatially dominant background, 

whose parameters can be estimated based on the entire image data, since the outlier 

contamination from the foreground will be relatively small. The background estimate can be 

further refined using an iterative robust technique, re-estimating the parameters based only on 
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the points with low residual error. The motion of a foreground object is then estimated based 

only on the complement of the background support. With multiple objects, these recursive 

estimate-and-segment approaches will fail when objects exist at the same scale. In this case, 

the percentage of outliers in the signal, relative to the estimation of either object will exceed 

the breaking point of the robust estimation method. 

Darrell and Simoncelli [12] describe a hypothesize-and-test method, which assumes a prior 

model of the global motion. Hypotheses are generated by sampling the parameter space, or by 

fitting initial guesses to samples of data. Other methods [6][58] propose iterative methods that 

recover multiple motions in the presence of reflections and transparency. However, their 

techniques are restricted by the use of parametric motion models, such as translational or 

affine. 

A major benefit of our 4-D framework for motion analysis is that it allows for explicit 

representation of overlapping motion layers, and for affinity propagation within each layer, 

while inhibiting propagation across layers. Therefore, it can successfully handle images 

containing reflections and transparency, as the interaction between tokens still takes place 

within each smooth motion layer, as in the case of opaque motion. The limitation (also shared 

by most other methods) is that we need to know how many overlapping layers are present in 

the scene. Such knowledge is needed only for the selection of the most salient velocity 

candidates, as opposed to the case of opaque motion, where only the most salient one needs to 

be retained.  

In our approach for the analysis of transparent motion we consider the image I(x,y,t) at time t 

as a combination of two patterns A and B, which have independent motions a and b: 
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In this equation, Ata denotes pattern A transformed by motion ta. In order to obtain the 

dominant motion (assume it is a), we run a cross-correlation procedure, followed by a step of 

voting as described in the Matching section, to eliminate noisy matches. Next we use a 

“nulling” method [7][58], to estimate the remaining motion b. The pattern component A with 

velocity a is removed from the sequence by moving each frame with a, then subtracting it 

from the following frame. The resulting difference images are: 

Assuming that we have three frames, the difference images are D0 = (Bb - Ba) and D1 = (Bb - 

Ba)b, which show a pattern (Bb - Ba) moving with a single motion b. We use the same method – 

cross-correlation followed by voting – to determine motion b from frames D0 and D1. 

Finally, we put together the two sets of 4-D tokens with velocities a and b, and run a step of 

dense voting and grouping (as described in the Motion Capture section) on the entire set. This 

process also fills any holes in the layers, which may have been produced by the noisy matches 

elimination. Note that the entire procedure recovers the motions without separating the image 

patterns. 

Transparent motion sequence (Figure 6.17). We analyzed the motion from three frames 

captured with a moving camera, showing a face reflected in a framed picture. One of the input 

frames is illustrated in Figure 6.17(a). In order to show the accuracy of our results, we 

compute two “temporal average” images after registering the input frames using the two 
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recovered motions, as shown in Figure 6.17(b) and Figure 6.17(c). In each of these, the 

registered pattern is sharp, while the other one is blurred due to the image motion.  

Fig. 6.17. Transparent motion sequence 

(c) Registered foreground (b) Registered background (a) An input frame 
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Chapter 7 

Three-Dimensional Interpretation 

 

7.1   Introduction 

The goal of our approach for visual motion interpretation is the following: given two views of 

a scene containing general motion, to recover the 3-D structure and 3-D motion of each 

coherently moving region in the scene. The human vision system is able to make an 

interpretation according to two alternative processes. One case corresponds to inferring 3-D 

structure from image motion, by interpreting unrecognized objects in motion. The second case 

is a process of inferring motion from structure, which uses previously recognized 3-D 

structure in order to derive a motion interpretation. In this work we focus on the first process, 

that infers 3-D structure and 3-D motion only from changes in image appearance. 

The difficulties at this stage are caused by the inherent ambiguity of the 2-D to 3-D 

interpretation, which can be handled by adding additional constraints, such as rigidity. From a 

computational point of view, a problem usually encountered is the combined presence of noise 

and multiple independent motions, even non-rigid motions. In this context it is very difficult to 

enforce a global constraint, as it is not clear how to handle misfits, which may correspond to 

outliers, non-rigid, or independent motion. 

The case when the analysis is performed on two image frames and the scene is assumed to be 

static corresponds to stereo vision. In this context, the assumption of a static scene and a 
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moving camera represents an instance of the 3-D rigidity constraint. In particular, rigidity is 

used in stereo vision by enforcing the epipolar constraint on the set of point correspondences, 

in order to obtain the fundamental matrix that describes the rigid configuration of the camera 

system or, equivalently, the camera motion. As the pixel disparities between the two frames 

are assumed to have been produced by a single motion only (of the camera), the epipolar 

constraint is globally enforced on the entire set of correspondences. 

In order to estimate the scene geometry and motion from a set of point correspondences, it is 

often needed to explicitly handle the presence of false matches and independently moving 

regions. Given a pair of image frames, most methods first obtain the matching points, which 

are then filtered by an outlier rejection step before they are used to solve for epipolar geometry 

and for 3-D structure estimation. In the presence of moving objects, image registration 

becomes a more challenging problem, as the matching and registration phases become 

interdependent.  

The problem of recovering the epipolar geometry and 3-D scene structure has been intensively 

studied and it is considered well understood. Given two views of a static scene, a set of 

matching points – typically corresponding to salient image features – are first obtained by 

methods such as cross-correlation. Assuming that matches are perfect, a simple Eight Point 

Algorithm [35] can be used for estimating the fundamental matrix, and thus the epipolar 

geometry of the cameras is determined. A dense set of matches can be then established, aided 

by the epipolar constraint, and finally the scene structure is recovered through triangulation. 

The simplistic approach described above performs reasonably well only in the case when the 

following conditions are met:  
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• the set of matches must contain no outlier noise 

• the scene must be rigid – i.e., without objects having independent motions 

However, the first assumption almost never holds, since image measurements are bound to be 

imperfect, and matching techniques will never produce accurate correspondences, mainly due 

to occlusion or lack of texture. In the presence of incorrect matches, linear methods, such as 

the Eight Point Algorithm, are very likely to fail. The problem can be reliably solved by 

robust methods, which involve non-linear optimization [1][68], and normalization of data 

before fundamental matrix estimation [20]. 

If the second assumption is also violated by the presence of multiple independent motions, 

even the robust methods may become unstable, as the scene is no longer a static one. 

Depending on the size and number of the moving regions, these techniques may return a 

totally incorrect fundamental matrix. Furthermore, even if the dominant epipolar geometry is 

recovered (for example, the one corresponding to the static background), motion 

correspondences are discarded as outliers. 

The core inadequacy of most existing methods is that they attempt to enforce a global 

constraint – such as the epipolar one – on a data set which may include, in addition to noise, 

independent subsets that are subject to separate constraints. In this context, it is indeed very 

difficult to recover structure from motion and segment the scene into independently moving 

regions, if the two tasks are performed simultaneously. 

In order to address these difficulties, we have developed a novel approach that decouples the 

above operations, allowing for explicit and separate handling of matching, outlier rejection, 

grouping, and recovery of camera and scene structure. In the first step, we determine an 
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accurate representation in terms of dense velocities (equivalent to point correspondences), 

segmented motion regions and boundaries, by using only the smoothness of image motion. In 

the second step we proceed with the extraction of scene and camera 3-D geometry, separately 

on each rigid component of the scene. Note that our approach follows Ullman’s interpretation 

of visual motion [64], in that the correspondence process is a low-level process, which takes 

place prior to 3-D interpretation. However, we also perform segmentation before 3-D 

interpretation, based on smoothness of image motion only.  

The main advantage of our approach is that, at the interpretation stage, noisy matches have 

been already rejected, and matches have been grouped according to the distinctly moving 

regions present in the scene. Therefore, standard methods can be applied in order to locally 

enforce the rigidity constraint for each segmented data subset. 

The computer vision literature offers a multitude of techniques for the estimation of epipolar 

geometry, scene structure and camera motion. Linear methods, such as the Eight Point 

Algorithm [35] can be used for accurate estimation of the fundamental matrix, in the absence 

of noisy matches or moving objects. The algorithm recovers the essential/fundamental matrix 

from two calibrated/uncalibrated images, by solving a system of linear equations. A minimum 

of eight points is needed – if more are available, a least mean square minimization is used. To 

ensure that the resulting matrix satisfies the rank two requirement, its singularity is usually 

enforced [20].  

In order to handle outlier noise, more complex, non-linear iterative optimization methods are 

proposed [68]. These techniques use objective functions, such as distance between points and 

corresponding epipolar lines, or gradient-weighted epipolar errors, to guide the optimization 

process. Despite their increased robustness, iterative optimization methods in general require 
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somewhat careful initialization for early convergence to the correct optimum. One of the most 

successful algorithms in this class is LMedS [68], which uses the least median of squares and 

data sub-sampling to discard outliers by solving a non-linear minimization problem. 

RANSAC [63] consists of random sampling of a minimum subset with seven pairs of 

matching points for parameter estimation. The candidate subset that maximizes the number of 

inliers and minimizes the residual is the solution. Statistical measures are used to derive the 

minimum number of sample subsets. Although LMedS and RANSAC are considered to be 

some of the most robust methods, it is worth noting that these techniques still require a 

majority of the data to be correct, or else some statistical assumption is needed. If false 

matches and independent motions exist, these methods may fail or become less attractive, 

since in the latter case, many matching points on the moving objects are discarded as outliers. 

In [50], Pritchett and Zisserman propose the use of local planar homographies, generated by 

Gaussian pyramid techniques. However, the homography assumption does not generally apply 

to the entire image. 

7.2   Overview of the Method 

The first step of the proposed method – illustrated in Figure 7.1 – formulates the motion 

analysis problem as an inference of motion layers from a noisy and possibly sparse point set 

in a 4-D space. In order to compute a dense set of matches (equivalent to a velocity field) and 

to segment the image into motion regions, we use the voting-based computational framework 

described in the previous chapters. By letting the tokens communicate their mutual affinity 
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through voting, noisy matches are eliminated as they receive little support, and distinct moving 

regions are extracted as smooth, salient surface layers, in the 4-D space. 

The second step interprets the image motion by estimating the 3-D scene structure and camera 

geometry. First a rigidity test is performed on the matches within each region, to identify 

potential non-rigid (deforming) regions, and also between regions, to merge those that move 

rigidly together but have separate image motions due to depth discontinuities. 

Figure 7.1. Overall view of the approach 

Motion interpretation 

Motion analysis 

Matching 
Outlier rejection 

Grouping 

3-D reconstruction 

L1 LN 

non-rigid rigid 

Rigidity test 

L1 LK LK+1 LN 

S1 SK 3-D structure and motion 
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Finally, the epipolar geometry is estimated separately for each rigid component by using 

standard methods for parameter estimation (such as the normalized Eight Point Algorithm, 

LMedS or RANSAC), and the scene structure and camera/object motion are recovered by 

using the dense velocity field. 

7.3   The Rigidity Constraint  

So far we have not made any assumption regarding the 3-D motion, and the only constraint 

used has been the smoothness of image motion. The observed image motion could have been 

produced by the 3-D motion of objects in the scene, or the camera motion, or both. 

Furthermore, some of the objects may undergo non-rigid motion.  

For classification we use an algorithm introduced by McReynolds and Lowe [39], that verifies 

the potential rigidity of a set of minimum six point correspondences from two views under 

perspective projection. The rigidity test is performed on a subset of matches within each 

region, to identify potential non-rigid regions, and also across regions, to merge those that 

move rigidly together but have distinct image motions due to depth discontinuities. 

The following discussion describes each case, as identified by the rigidity test. 

Multiple rigid motions. This case occurs when multiple moving regions have been identified 

by the layer extraction process, and the rigidity test shows that: 

• each region moves rigidly  

• the regions cannot be merged into a single rigid structure 
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Consequently, the image sequence cannot correspond to a static scene viewed with a moving 

camera, as multiple independent motions are present. 

Single rigid motion. This is the stereo case, where the scene is static and the camera is 

moving. However, note that it is still possible to have multiple layers extracted in the stage of 

grouping from motion, if their image motions do not satisfy the smoothness constraint 

together, due to depth discontinuities. In this case, the rigidity test will show that the regions 

actually correspond to a single rigid configuration in motion, and therefore can be labeled as a 

single object.  

Non-rigid motion. This case occurs when objects suffer non-rigid 3-D motion (deformations). 

The rigidity test will detect that the image motion, while still smooth, is not compatible to any 

rigid 3-D motion. Therefore, the configuration is recognized as non-rigid, and no 

reconstruction is attempted. 

It is also worth mentioning that the rigidity test is actually able to only guarantee the non-

rigidity of a given configuration. Indeed, if the rigidity test fails, it means that the image 

motion is not compatible to a rigid 3-D motion, and therefore the configuration must be non-

rigid. If the test succeeds, it only asserts that a possible rigid 3-D motion exists, that is 

compatible to the given image motion. However, this computational approach corresponds to 

the way human vision operates – as shown in [64], human perception solves this inherent 

ambiguity by always choosing a rigid interpretation when possible. 
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7.4   Estimating Epipolar Geometry 

Given two images of a static scene viewed with a moving camera (or equivalently, a single 

object in rigid motion), the epipolar geometry is described by the fundamental matrix, which – 

for any pair of matching points x ↔ x’ in the two frames – satisfies: 

If a sufficient number of point matches is provided, the fundamental matrix can be computed 

by using a linear method, such as the Eight Point Algorithm [35]. For increased robustness, 

we choose to use RANSAC [63] to recover the epipolar geometry for each rigid object. 

RANSAC randomly selects a minimal set of matches (seven point correspondences) to 

estimate the fundamental matrix, and measures the support for this estimation by using all 

point matches available. The process is repeated a number of times, and the fundamental 

matrix that received most support is chosen as the robust fit. The number of samples (sets of 

matches) that are randomly tried is chosen sufficiently high to ensure with a probability p 

(usually 95%), that at least one of the random samples of s points is free from outliers. If e is 

the probability that a selected data point is an outlier, then the number of samples required is: 

The RANSAC algorithm is summarized as follows: 

1. Repeat for N samples: 

(a) Select a random sample of the minimum number of point matches to make a 
parameter estimate F. 

(b) Calculate the distance of each match to the epipolar lines defined by F. 

(c) Compute the number of inliers consistent with F. 

2. Select the best solution – i.e., the largest consistent data set. 

0' =xFx T  (7.1) 

))1(1log(/)1log( sepN −−−=  (7.2) 



 106 

3. Re-estimate F using all the data that has been identified as consistent. 

Note that the above procedure is applied separately for each rigidly moving region, as 

determined by the rigidity test. Therefore, inconsistent matches due to independent motion do 

not appear in the samples selected by the RANSAC algorithm. 

7.5   Recovering Camera Motion and Scene Structure 

Starting from a set of matches x ↔ x’ in the two images, that correspond to a set of 3-D 

points Xi, the reconstruction task is to find the camera matrices P and P’, as well as the 3-D 

points Xi, so that: 

The camera matrices are determined as follows. Once the fundamental matrix F has been 

computed, the epipoles e and e’ are first determined from: 

By using a 3-D coordinate system aligned with the first camera, the camera matrices P and P’ 

can be then chosen as: 

Note that the concept of camera motion is used here to denote either physical motion of the 

camera, or of the scene. Indeed, if the camera is static and the scene moves, the configuration 

is equivalent to a situation where the scene is static, and the camera moves with an inverse 

motion. 

iiii XPxPXx ''==        for all i (7.3) 

0'0 == eFFe T  (7.4) 

[ ] [ ][ ]'|''0| eFePIP ×==  (7.5) 
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Finally, from the dense set of point matches x ↔ x’ and the recovered camera matrices P and 

P’, the 3-D points Xi can be computed by triangulation. In practice, as back-projecting rays 

from the measured image points do not intersect precisely, it is necessary to estimate a best 

solution for the 3-D points. In our approach, we used a solution that minimizes the 

reprojection error for 3-D points that are mapped to the given image matches [21]. 

7.6   Results 

Books sequence (Figure 7.2). The two input images are taken with a handheld moving 

camera, while the stack of books has been moved between taking the two pictures. This 

Figure 7.2. Books sequence 
 

(a) Input images (b) Candidate matches 

(c) Dense layers (d) Layer velocities (e) Layer boundaries 

(f) Epipolar lines (g) 3-D structure and motion 
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example corresponds to the multiple rigid motions case. Two sets of matches have been 

detected, corresponding to the two distinct regions – the stack of books and the background. 

The rigidity test shows that, while each region moves rigidly, they cannot be merged into a 

single rigid structure. The recovered epipolar geometry is illustrated in Figure 7.2(f), while the 

3-D scene structure and motion are shown in Figure 7.2(g). Note the displaced stack of books 

in the 3-D reconstruction shown in the Figure 7.2(g) at left.  

Cylinders sequence (Figure 7.3). This example, also illustrating the multiple rigid motions 

case, is adapted from Ullman [64], and consists of two images of random points in a sparse 

configuration, taken from the surfaces of two transparent co-axial cylinders, rotating in 

opposite directions. This extremely difficult example clearly illustrates the power of our 

approach, which is able to determine accurate point correspondences and scene structure – 

(a) Input images (b) Candidate matches 

(d) Dense layers (c) Velocities (e) 3-D structure 

Figure 7.3. Cylinders sequence 
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even from a sparse input, based on motion cues only (without any monocular cues), and for 

transparent motion. 

Car sequence (Figure 7.4). In this example, the sign and the background correspond to a rigid 

configuration and can be merged, while the car exhibits an independent motion.  

 

 

 

Figure 7.4. Car sequence 

(a) Input images (b) Candidate matches 

(c) Dense layers (d) Layer velocities (e) Layer boundaries 

(f) Epipolar lines (g) 3-D structure and motion 



 110 

Candy box sequence (Figure 7.5). This is the single rigid motion case, where the scene is 

static and the camera is moving. Due to the depth disparity between the box and the 

background, their image motions do not satisfy the smoothness constraint together, and thus 

they have been segmented as two separate regions. However, the rigidity test shows that the 

two regions form a rigid configuration, and therefore are labeled as a single region. The 

epipolar geometry estimation and scene reconstruction are then performed on the entire set of 

matches. Along with the 3-D structure, Figure 7.5(g) also shows the two recovered camera 

positions. 

Figure 7.5. Candy box sequence 

 

(a) Input images (b) Candidate matches 

(c) Dense layers (d) Layer velocities (e) Layer boundaries 

(f) Epipolar lines (g) 3-D structure and motion 
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Waving flag sequence (Figure 7.6). This example illustrates the non-rigid motion case, and 

consists of a synthetic sequence where sparse random dots from the surface of a waving flag 

are displayed in two frames, as observed by a static camera. The configuration is recognized 

as non-rigid, and therefore no reconstruction is attempted. However, since the image motion is 

smooth, our framework is still able to determine correct correspondences, extract motion 

layers, segment non-rigid regions, and label them as such. 

 

 

 

 

Figure 7.6. Waving flag sequence 
 

(d) Dense layers (vx) (c) Velocities (e) Dense layers (vy) 

(a) One input image (b) Candidate matches (vx) (c) Candidate matches (vy) 
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Static flag sequence (Figure 7.7). It is interesting to see what happens if the vy component of 

the image motion is removed from the previous example. The new image sequence accepts a 

rigid interpretation, which corresponds to a static flag observed by a translating camera. This 

new configuration is recognized as rigid, and the 3-D reconstruction is shown in Figure 7.7(f) 

– for illustration purposes, the image of a flag has been mapped on the 3-D model.  

Figure 7.7. Static flag sequence 
 

(d) Dense layers (vx) (c) Velocities (e) Dense layers (vy) 

(a) One input image (b) Candidate matches (vx) (c) Candidate matches (vy) 

(f) 3-D structure 
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Chapter 8 

Conclusion 

 

 

This dissertation presented a novel, voting-based computational framework that addresses the 

problem of visual motion analysis and interpretation. From two image frames involving 

general motion, the proposed approach recovers the dense velocity field, motion boundaries 

and regions, identifies rigid objects, and estimates the 3-D structure and motion for each such 

object.  

We summarize the contributions of this work along four main directions:  

• we developed a 4-D layered representation of data, where the moving regions are 

conceptually represented as smooth layers in the 4-D space of image coordinates and 

pixel velocities;  

• within this data representation, we employed a voting scheme for token affinity 

communication, where token affinities are expressed by their preference for being 

incorporated into smooth surfaces, as statistically salient features; communication 

between tokens is performed by tensor voting, which enforces the motion smoothness 

while preserving motion discontinuities;  

• we consistently integrated both motion and monocular cues in our voting framework, 

in order to fully exploit the information available in real image sequences;  
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• by using an approach that decouples the processes of matching, outlier rejection and 

grouping, we segment the scene into rigidly moving regions, and produce a reliable 3-

D motion interpretation.   

This formulation offers a consistent and unified approach for visual motion analysis and 

interpretation, that allows for structure inference without using any a priori knowledge of the 

motion model, based on the smoothness of motion only, while consistently handling both 

smooth moving regions and motion discontinuities.  

Using a 4-D space for the voting-based motion analysis is essential, since it allows for a 

spatial separation of the points according to both their velocities and image coordinates. 

Consequently, the proposed framework allows tokens from the same motion layer to strongly 

support each other, while inhibiting the influence from other layers or from isolated tokens.  

Despite the high dimensionality, the method is computationally robust – it does not involve 

initialization or iterative search in a parametric space, and therefore does not suffer from local 

optima or poor convergence problems. The only free parameter is scale, which is an inherent 

characteristic of human vision, and its setting is not critical. 

The contributions of the proposed framework have been demonstrated by successfully 

analyzing a wide variety of difficult cases – opaque and transparent motion, rigid and non-

rigid motion, curves and surfaces in motion, from sparse and dense input configurations. 

The current framework is still subject to a number of limitations, that must be addressed in 

further research efforts. The first issue concerns the improvement of computation time, which 

prohibits the use of the proposed method for real time applications. A potential way to 
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increase the processing speed is to implement a parallel processing scheme for voting, as the 

computations at each token are independent.  

A second research direction is to incorporate information from multiple views, possibly in an 

incremental inference, where existing structures are refined as new frames are added. The 

primary concern here is how the representation must be augmented in order to allow encoding 

past trajectories, and using their curvature values.  

Finally, studying the use of an adaptive scale processing scheme would allow to 

simultaneously capture details in regions with high density of data, and bridge the gaps where 

data is very sparse. 
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