
A VOTING-BASED COMPUTATIONAL FRAMEWORK FOR VISUAL

MOTION ANALYSIS AND INTERPRETATION

by

Mircea Nicolescu

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

August 2003

Copyright 2003 Mircea Nicolescu

 ii

Dedication

To Monica, with all my love.

 iii

Acknowledgments

While working towards my Ph.D. degree I have been very fortunate to be surrounded by a

group of wonderful people, whose contribution to this work I would like to acknowledge.

I would first like to express my deepest gratitude to my doctoral advisor, Gérard Medioni, for

his extraordinary support and guidance during my graduate years at USC. From his course

that introduced me to the fascinating world of computer vision, to the insightful suggestions

that have always pointed me to the right direction in my research, to the final advice on

refining my dissertation, he has continuously been a source of inspiration, energy and

invaluable knowledge. For these, and for many other reasons that helped make this

dissertation and the completion of my Ph.D. studies a reality, I will be always indebted to him.

Heartfelt thanks to the other members of my Qualifying and Dissertation Committee: Ram

Nevatia, Ulrich Neumann, Norberto Grzywacz, Jeff Rickel, João Hespanha and Laurent Itti,

for their thorough and valuable comments that helped shape the final version of my

dissertation. In particular, I would like to thank Ram Nevatia for his continuous support,

encouragement and advice since my first days as a student at USC. Many thanks to Keith

Price, Isaac Cohen, and Andres Huertas for always providing valuable expertise and help with

countless issues during these years, ranging from fruitful research discussions to making a

stubborn printer actually print.

I would like to thank my labmates in the Computer Vision group for the friendly and

stimulating atmosphere that made the past years in the lab a wonderful experience. Special

thanks to Elaine Kang, Alexandre François and Philippos Mordohai, for always being there to

help, for the great conversations, and for the numerous weekends and nights spent together in

 iv

the lab before deadlines. I also owe many thanks to Mi-Suen Lee for her invaluable support

and advice – before, during and after my internships at Philips Research.

I have saved the last of my acknowledgments for the people whom I can never hope to

adequately thank – my family. My love and gratitude to my parents, Veronica and Gabriel, for

their support and for the many sacrifices they made so that I can achieve the best in my life.

My love and thanks to my grandparents and parents-in-law, Ica and Ticu, Terezia and Marin,

for their encouragements and the pride they took in my achievements. And finally, my deepest

love to Monica, my wife, for sharing all our joys and efforts throughout these years – our last

years as students, and the first in our lives together. I dedicate this dissertation to her, with all

my love.

 v

Contents

Dedication ii

Acknowledgments iii

List of Tables vii

List of Figures viii

Abstract xi

1 Introduction 1

1.1 The Problem . 1
1.1.1 Motion Analysis and Interpretation . 2
1.1.2 Monocular vs. Motion Cues . 5

1.2 Computational Perspective . 8
1.2.1 What Are the Difficulties? . 8
1.2.2 What Are the Computational Processes? . 11
1.2.3 What Are the Constraints? . 11

1.3 A 4-D Voting Approach . 13
1.3.1 Layered 4-D Representation . 13
1.3.2 Token Communication . 15

1.4 Outline . 17

2 Related Work 19

2.1 Introduction . 19
2.2 Differential Methods . 21
2.3 Region-Based Methods . 22
2.4 Energy-Based Methods . 23
2.5 Markov Random Fields . 24
2.6 Layered Representations and EM . 25
2.7 Variational methods . 27
2.8 Basis Set Methods . 28
2.9 Wavelets . 29
2.10 Graph-Based Methods . 30
2.11 Voting Methods . 30

3 The Tensor Voting Framework 32

3.1 Tensor Voting Overview . 32
3.1.1 Tensor Representation . 34

 vi

3.1.2 Tensor Decomposition . 35
3.1.3 Tensor Communication . 36
3.1.4 Feature Extraction . 39

3.2 Tensor Voting in 4D . 40

4 Matching 46

4.1 Introduction . 46
4.2 Generating Candidate Matches . 48
4.3 Tensor Encoding . 49
4.4 Affinity Propagation . 50
4.5 Selection . 51
4.6 Results . 52

5 Motion Capture 57

5.1 Introduction . 57
5.2 Tensor Encoding . 60
5.3 Orientation Refinement . 61
5.4 Densification . 61
5.5 Grouping . 65
5.6 Boundary Extraction . 66
5.7 Results . 68
5.8 Scale Sensitivity . 70
5.9 Noise Sensitivity . 72

6 Integrating Monocular Cues 73

6.1 Introduction . 73
6.2 Establishing Initial Correspondences . 78
6.3 Extraction of Motion Layers in 4-D . 79
6.4 Boundary Inference in 2-D . 82

6.4.1 The Boundary Saliency Map . 83
6.4.2 Detecting the Boundary . 84

6.5 Results . 86
6.6 Handling Transparent Motion . 92

7 Three-Dimensional Interpretation 97

7.1 Introduction . 97
7.2 Overview of the Method . 101
7.3 The Rigidity Constraint . 103
7.4 Estimating Epipolar Geometry . 105
7.5 Recovering Camera Motion and Scene Structure . 106
7.6 Results . 107

8 Conclusion 113

Reference List 116

 vii

List of Tables

3.1 Elementary tensors in 4-D . 43

3.2 A generic tensor in 4-D . 43

6.1 Yosemite results . 90

 viii

List of Figures

1.1 Motion analysis and interpretation . 3

1.2 Perception from monocular vs. motion cues . 7

1.3 The aperture problem . 9

1.4 Uncertainty near motion boundaries . 10

1.5 Token interaction in 2-D representation vs. layered representation 15

1.6 Overall view of our approach . 16

3.1 Tensor Voting overview . 33

3.2 Tensor decomposition . 36

3.3 Voting in 2-D . 38

3.4 Pipe and two linked tori . 40

4.1 The matching process . 47

4.2 Translating disk . 48

4.3 Rotating disk . 52

4.4 Expanding disk . 53

4.5 Rotating ellipse . 53

4.6 Rotating square . 54

4.7 Transparent motion . 54

4.8 Translating circle . 55

4.9 Rotating disk – translating background . 55

5.1 The motion capture process . 58

5.2 Translating disk . 59

5.3 Layer over-extension . 62

5.4 Densification . 63

 ix

5.5 Boundary extraction . 66

5.6 Rotating disk . 67

5.7 Expanding disk . 68

5.8 Rotating disk – translating background . 69

5.9 Scale factor influence . 70

5.10 Noise influence . 71

6.1 Combining motion and monocular cues . 74

6.2 Non-similarity at motion boundaries . 76

6.3 Candy box sequence – input images . 78

6.4 Candidate matches . 80

6.5 Selected velocities . 80

6.6 Dense layers . 81

6.7 Layer velocities . 81

6.8 Layer boundaries . 81

6.9 Boundary saliency map . 85

6.10 Refined velocities . 85

6.11 Refined boundaries . 85

6.12 Fish sequence . 87

6.13 Barrier sequence . 88

6.14 Yosemite sequence . 89

6.15 Uniform square sequence . 91

6.16 Sparse disk and boundary sequence . 92

6.17 Transparent motion sequence . 96

7.1 Overall view of our approach . 102

7.2 Books sequence . 107

7.3 Cylinders sequence . 108

 x

7.4 Car sequence . 109

7.5 Candy box sequence . 110

7.6 Waving flag sequence . 111

7.7 Static flag sequence . 112

 xi

Abstract

Image motion is a rich source of information for the visual perception system, providing a

multitude of cues to identify distinct objects in the scene and infer their 3-D structure and

motion. Most approaches rely on parametric models which restrict the types of motion that

can be analyzed, and involve iterative methods which depend heavily on initial conditions and

are subject to instability. Further difficulties are encountered in image regions where motion is

not smooth – typically around motion boundaries.

This dissertation addresses the problem of visual motion analysis and interpretation, by

formulating it as an inference of motion layers from a noisy and possibly sparse point set in a

4-D space. The core of the method is based on a layered 4-D representation of data and a

voting scheme for affinity propagation. Within the 4-D space of image positions and

velocities, moving regions are conceptually represented as smooth surface layers, and are

extracted through a voting process that enforces the motion smoothness constraint. By using

an additional 2-D voting step that incorporates intensity information (edges) from the original

images, accurate boundaries and regions are inferred.

The inherent problem caused by the ambiguity of 2-D to 3-D interpretation is usually handled

by adding additional constraints, such as rigidity. However, providing a successful approach

that enforces a global constraint has been problematic in the combined presence of noise,

multiple independent motions, or non-rigid motion. By decoupling the processes of matching,

outlier rejection, segmentation and interpretation, we extract accurate motion layers based on

the smoothness of image motion, then locally enforce rigidity for each layer, in order to infer

its 3-D structure and motion.

 xii

The proposed framework consistently handles both smooth moving regions and motion

discontinuities, without using any prior knowledge of the motion model. The method is also

computationally robust, being non-iterative, and does not depend on critical thresholds, the

only free parameter being the scale of analysis.

The contributions of this work are demonstrated by analyzing a wide variety of difficult cases

– opaque and transparent motion, rigid and non-rigid motion, curves and surfaces in motion,

from sparse and dense input configurations.

 1

Chapter 1

Introduction

1.1 The Problem

Vision is without doubt our most powerful sense. It allows us to acquire a remarkable amount

of information about our surroundings, and to interact intelligently with the environment. The

key for such an accomplishment of translating information from the sensors into meaningful

knowledge lies in between these two processes. We can do it by continuously building a

virtual model of the world, and updating it as the world changes. This is true for any type of

perceptual process, but in the vision case the model is by far the most complex, and probably

also the most useful for our interaction with the world.

A successful computer vision system must be able to generate such a world model from the

same information used by humans in their vision perception process. The main difficulty is

that such a problem is underconstrained. The model of our environment should be embedded

in a 3-D+t space (three geometric dimensions and a temporal one) augmented with semantic

information (such as the separation into distinct objects), while the visual information that we

perceive is expressed in a 2-D+t space. The problem is clearly tractable, since humans do it

all the time, with remarkable speed and reliability. Yet it is difficult because the human vision

process is not a conscious one, and its complex underlying mechanisms are still not well

understood.

 2

From a computational point of view, we could consider the process of building a world model

from visual information as a refinement of the available data along several levels. We start at

the pixel level and we continue to a token structure level, then to an object level, and finally to

a scene level.

The first step, from pixels to tokens, is to identify the basic elements that can be used in the

next processing stages. They can be simple points, edges, line segments, corners, small blobs

with similar intensity etc.

Next, these tokens must be grouped into distinct entities at the object level. These entities

should be consistent with what humans perceive as distinct regions in the given image or

group of images.

Finally, the whole description obtained so far must be augmented with semantic information

concerning the objects and the relationships between each other and with the observer,

allowing for understanding at the level of the entire scene.

1.1.1 Motion Analysis and Interpretation

This dissertation addresses a difficult and fundamental problem in computer vision, the

analysis and interpretation of visual motion. An example that illustrates the problem is given

in Figure 1.1. Given two image frames that contain general motion, the goal is twofold:

• to analyze the image changes in order to establish correspondences between image

tokens across frames, as a dense velocity field, and to group tokens into motion

regions separated by motion boundaries

• to interpret these changes in order to recover the scene 3-D structure and 3-D motion.

 3

As demonstrated by the human visual perception, successful analysis and interpretation are

possible from a small number of frames – therefore, this work is focused on the minimal case

of inference from two images. Once this basic case is well understood, the processing can be

extended to incorporate information from multiple frames, possibly using an incremental

inference, where the structure is refined as new frames are added.

Our formulation, that divides the visual process into motion analysis and interpretation, is

inspired from various perceptual studies [64][25], which show that establishing

correspondences is a low-level process, that takes place prior to interpretation, where matches

are established between elementary tokens, based on built-in affinity measures. The tokens

involved in matching are not complex structures, but rather primitive image elements, such as

Figure 1.1. Motion analysis and interpretation

boundaries

2

1

regions

dense velocity field

Motion Analysis Motion Interpretation

3-D structure and motion

 4

points, fragments of edges, or blobs. In this study we only focus on analysis from point

tokens.

Based on the changes at image level, the motion analysis process is responsible for

determining three types of information: pixel velocities, motion boundaries and regions.

The image velocity of a pixel is a vector that encodes the motion of the pixel in the image,

from one frame to another. Recovering this information is equivalent to establishing a match

between a point in the first frame and its corresponding point in the other frame. A velocity

field is a function defined over a subset of pixels in the image, and whose values are the

associated velocity vectors. If this function is defined over the entire image, then the velocity

field is called dense, otherwise it is a sparse velocity field.

In the formulation of the motion analysis problem given above, the ultimate goal with respect

to the pixel velocities would be to recover them at each location, thus to determine the dense

velocity field. Additional issues that need to be studied in this context are the possible non-

existence of correspondences, as some pixels may appear in one image only due to occlusion,

and the non-uniqueness in establishing matches, as multiple motions may overlap in the case

of transparent motion.

The motion boundaries could be defined as the set of curves consisting of pixels where image

motion changes abruptly. All pixels that exhibit a homogeneous (i.e. smooth) image motion

could be grouped into a motion region. Consequently, the motion boundaries represent the

sets of curves that separate motion regions in the image.

At a first glance, the three entities described above appear to be placed at different conceptual

levels. Indeed, pixel velocity is an easily quantifiable pixel property, and its definition is a

 5

clear and formal one. On the other hand, boundaries and regions cannot be formally defined in

a mathematical sense, because they are actually more related to the process of visual

perception – that is, these entities belong to a perceptual or object level, rather than to the

token level. It is not an easy task to formally specify what is meant by “abrupt change in

motion” or “smooth motion”. Therefore, the above definitions for motion boundaries and

regions should not be considered as based on inherent low-level properties, but on how we

perceive them.

At the next conceptual level, the motion interpretation process is responsible for building a

world model in terms of the 3-D scene structure and 3-D motion of the viewed objects. Such a

process, that is performed subsequently to motion analysis and is based on the

correspondences and regions recovered from changes at image level, corresponds to a

traditional structure from motion problem. In this case, the inference is made by interpreting

the changing projections of unrecognized objects in motion. An alternative process, which has

been observed in human vision, corresponds to the case of inferring motion from structure,

where previously recognized 3-D structure is used in order to derive a motion interpretation.

This study is only concerned with the first case – inference of structure from motion – where

no past familiarity, or “instant” object recognition is necessary as a prerequisite.

1.1.2 Monocular vs. Motion Cues

A very important issue in the analysis and interpretation of visual motion is the source of

information used in the process. In this context, it is necessary to study what types of

information are available, how they can be used separately, and how they can be combined

 6

into an integrated computational approach. The general process of structure inference from

one or more images can be performed based on two sources of information:

• monocular information

• motion information

Monocular cues are the ones that can be obtained from a single image, such as intensity, color

or texture, and they are exclusively employed in several computer vision areas. For example,

image segmentation can be attempted based entirely on the intensity or color of the pixels in

the image.

Motion cues are used when information is to be extracted from time-varying images. The

usefulness of the analysis from motion cues stems from the fact that regions (pixels with

similar motion) usually correspond to distinct objects in the scene. Following the same line,

monocular image segmentation techniques assume that pixels with similar intensity or color

represent distinct objects in the world.

When these assumptions hold, it is worth mentioning that boundaries and regions can be

recovered from monocular cues only; that is, from only one image. The human vision system

is able to use both monocular and motion cues when available, in addition to patterns of

objects or motions that are directly recognized.

Interestingly, in some situations, boundaries, regions and pixel velocities can be also

determined from motion cues only, when no monocular info is available. Two relevant

examples are given in Figure 1.2. If the two frames in each pair are presented in a properly

timed succession, a certain motion of image regions is perceived from one frame to the other.

However, while in one case the regions can be detected even without motion, only from

 7

monocular cues (in this situation, different densities of points), in the other case no monocular

information is available, so the processing relies on motion cues only. Another relevant aspect

is the fact that the human vision system not only establishes point correspondences, but also

perceives regions in motion, although the input consists of sparse points only. This

demonstrates that full analysis is possible from motion cues alone, even in a sparse

configuration.

It is difficult to ascertain what exact types of information are used in the human perception

processes, in what order, what is the granularity of the tokens involved, and how the entire

process is carried. Humans are remarkably good in addressing this task, because they are able

to bring a vast amount of processing power and knowledge into play. A wide range of higher-

level knowledge, such as recognized objects or learned motion patterns, greatly influences the

way humans interpret both sequences of images and isolated static scenes. In addition, they

are capable of parallelizing the vision processes on many levels. Information from different

locations and times in a sequence are frequently processed together, as are pieces of

information from different hierarchies of understanding.

The purpose of this study is to determine to what extent this human vision process can be

emulated by a computational framework that addresses the problem of motion analysis and

(a) Translating circle (b) Translating disk

Figure 1.2. Perception from monocular vs. motion cues

 8

interpretation. The proposed framework is able to consistently handle the very difficult case of

grouping from motion cues only, and to integrate monocular information when available, such

as in the case of real image sequences.

1.2 Computational Perspective

Before presenting the computational approach for motion analysis and interpretation, several

issues need to be examined: what are the difficulties, what are the processes involved, and

what constraints would be the most suitable for tackling the problem.

1.2.1 What Are the Difficulties?

The determination by computational means of the perceived motion of objects in a sequence of

images is characterized by a wide range of difficulties. The most important are caused by the

aperture problem, by the presence of regions of homogeneous intensity, and by the uncertainty

near the motion boundaries.

Aperture problem

The relationship between image motion and variations of image intensity in time and space is

defined by the following equation:

In this formula v
r

 is the velocity flow (defined as the “apparent motion of brightness

patterns”), and I is the image intensity. This equation is fundamental to intensity-flow

calculations and it is called the optical flow constraint equation.

0=
∂
∂+∇⋅

t

I
Iv

r
 (1.1)

 9

A closer look shows that this equation provides a constraint only for the component of the

image velocity in the direction parallel to the intensity gradient. As shown in Figure 1.3(a), the

motion of the edge E is analyzed by a local movement detector that examines a limited area of

the image, represented by the aperture A. Such a detector can measure only the component of

motion in the direction perpendicular to the orientation of the edge, indicated by the vector q.

The component of motion along the edge is invisible through the aperture, so a local detector

cannot distinguish between movement in the directions indicated by p, q, and r. This problem

is illustrated by the well-known “barber pole” illusion, shown in Figure 1.3(b), where

although the red strips move horizontally, the perceived motion is vertical.

As a consequence of the aperture problem, after computing one motion component based on

local measurements, it is necessary to introduce additional constraints to combine these local

measurements into a full velocity field.

Figure 1.3. The aperture problem

p

q

r E

A

(b) “Barber pole” illusion (a) Velocity uncertainty

 10

Regions of homogeneous intensity

Another problem arises when viewing a region lacking texture, with no or very little variation

in intensity. In such a case, the motion cannot be locally determined. The explanation is that

both the intensity gradient I∇ and the time derivative of the intensity
t

I

∂
∂

 are zero. Therefore,

the optical flow v
r

 in the optical flow equation remains unconstrained, and thus it can take

any value.

Uncertainty near motion boundaries

The presence of motion boundaries within an image sequence generates another range of

difficulties in motion analysis. Motion boundaries can be seen as the separation between

occluding and occluded objects. For the object being currently occluded, there may be pixels

that have no correspondence from one frame to the other. Consequently, the apparent motion

around boundaries cannot be determined by using any similarity criteria, since the regions

being compared must have finite extent. Figure 1.4 gives an illustration of this problem.

In general, this problem can be seen as induced by motion discontinuities at boundaries. From

a computational point of view, when additional constraints such as smoothness are used, it is

difficult to enforce them while in the same time preserving the discontinuities. To accurately

compute the velocity field, the knowledge of the boundaries is required so that the constraints

Figure 1.4. Uncertainty near motion boundaries

 11

can be relaxed around the discontinuities. But the boundaries cannot be computed without

first having determined the pixel velocities. The approach described in this work, which will

be described later, addresses this problem.

1.2.2 What Are the Computational Processes?

The problem of motion analysis can be decomposed in two main computational processes:

matching and motion capture.

Matching. The matching process is responsible for the computation of pixel velocities from

the raw input data. Finding the image velocity for a pixel is equivalent to establishing a match

between that point and its correspondent in the next image frame. The output of this process is

a (possibly sparse and noisy) velocity field.

Motion capture. Even when the input itself is sparse, as it has been illustrated in Figure 1.2,

human vision is able to obtain a dense representation of the entities in motion. The fact that

we perceive regions in motion, as opposed to points, is a well known but poorly understood

effect called motion capture. The process of motion capture is then responsible for producing

as output a dense velocity field, plus boundaries and regions as continuous curves and

surfaces.

1.2.3 What Are the Constraints?

The examination of some simple configurations in motion indicates that the visual system

incorporates a certain affinity measure between tokens, which can be roughly considered as a

measure of similarity. This affinity is involved in both processes of matching and motion

capture. Indeed, establishing a correspondence between two tokens implies the fact that their

 12

mutual affinity (or preference to each other) is greater than the affinity to other tokens. In

motion capture, to determine that a token belongs to a certain region is equivalent to

establishing that it has a stronger affinity to the tokens in that region than to tokens in other

regions.

In order to solve the problem of motion analysis, a successful computational framework must

define a way to express the affinities between tokens, while also taking into account and

handling the difficulties described in the previous sections. To this purpose, additional

constraints need to be introduced.

More specifically, any such constraint must satisfy two requirements:

• define a practical measure of affinities between tokens, so that they can be matched

and grouped successfully

• allow the computation of motion (pixel velocities) where local measurements could

not provide a complete solution – this being the case of one velocity component

missing due to the aperture problem, or the case of unreliable motion due to lack of

texture. In this context, the constraints are needed in order to generate a dense output

from a sparse and/or noisy input.

Several types of constraints have been usually considered in the literature:

• constant velocity over an area of the image (valid for pure translation)

• constant velocity over small time intervals

• velocity consistent with 2-D rigid motion (valid for rotation and translation of objects

in the image plane)

 13

• velocity consistent with 3-D rigid motion

• smooth velocity within image areas that represent distinct objects

Methods that are based on assumptions of constant velocity, or rigid motion, are not sufficient

for analyzing the two-dimensional motion that arises from the projection of arbitrary three-

dimensional surfaces undergoing general motion in space. Therefore, it is the last constraint –

smoothness – that is used in this work.

1.3 A 4-D Voting Approach

This dissertation proposes a novel computational framework that addresses the problem of

visual motion analysis and interpretation from a perceptual organization perspective, where

saliency is used as an affinity measure. This saliency, described in more detail later, will need

to encode several perceptual concepts, such as proximity, smoothness and continuity. We

claim that tokens, generated by matching corresponding pixels in the two images, form

coherent perceptual structures in the 4-D space of image coordinates and pixel velocities,

while erroneous matches generate outlier tokens.

The proposed approach to the problem formulated above can be characterized by taking into

account two key aspects – data representation and token communication [48]. The next

paragraphs describe how these issues are addressed in our work.

1.3.1 Layered 4-D Representation

Finding the velocity field means to assign velocity values at every pixel location in the 2-D

image. The process of identifying moving objects in an image means to partition (segment) the

 14

2-D image into regions according to their motion. However, casting the analysis of visual

motion as a two-dimensional problem is not the most appropriate solution. The main

difficulties appear at motion boundaries, where noisy velocities are abundant. This happens

because tokens that are close in the image have a strong mutual influence or affinity, despite

the fact that they should belong to different objects.

Accordingly, we believe that the desirable representation for the problem addressed here

should be based on a layered description, where regions in motion are represented as smooth

and possibly overlapping layers. Next we explain how we embed the problem into such a

layered representation.

In any method that seeks to solve the problem of establishing correspondences and recovering

the motion boundaries and regions, each token is characterized by four attributes – its image

coordinates (x y) and its image velocity with the components (vx vy). In general, there may be

several candidate velocities for each point (x y), so each tuple (x y vx vy) represents a (possibly

wrong) candidate match.

In this context, a natural solution is to encapsulate each token into a (x y vx vy) tuple in the 4-D

space, so that they are now spatially separated by both velocity and image position. This is

especially helpful for addressing the problem of uncertainty along motion boundaries, where

although tokens are close in the image space, their interaction is now inhibited due to their

separation in velocity space.

Within the proposed representation, distinct moving objects appear as smooth layers in the 4-

D space of image coordinates and velocities. The next section describes how the motion layers

are extracted.

 15

1.3.2 Token Communication

As discussed in the previous sections, both matching and motion capture are based on a

process of expressing and communicating the affinity between tokens. In the proposed 4-D

layered representation, this affinity is based on the token preference for being incorporated

into a smooth surface layer. A necessary condition is then to enforce strong support between

tokens in the same layer, and weak support across layers, or at isolated tokens.

The example in Figure 1.5 helps illustrate this process. Token A exhibits a strong affinity with

token B, as they belong to the same layer, but receives much less support from token C,

situated in a different layer, and from token D, which is isolated and therefore probably a

wrong match. If a 2-D representation were used, tokens A and C would exhibit a much

stronger and undesired interaction due to their proximity in image space.

D

C
A

B

A

C

D

B

(b) Layered representation (a) 2-D representation

Figure 1.5. Token interaction in 2-D representation vs. layered representation.

 16

By letting the tokens propagate their preferred information, regions that exhibit smooth motion

emerge as the most salient smooth surface layers in the 4-D space, while isolated tokens that

receive little or no support are identified as outliers. Essentially, the matching problem is

expressed as an outlier rejection process, while motion capture is performed mainly as a

layer densification process.

A suitable computational framework that enforces the smoothness constraint while preserving

discontinuities is Tensor Voting, here performed in the 4-D space. As the main goal is to

extract the motion layers, the affinities between tokens are embedded in the concept of surface

Figure 1.6. Overall view of our approach

3-D structure

Matching

Sparse velocity field

Motion Capture

Dense velocity field Boundaries Regions

Interpretation

3-D motion

 17

saliency exhibited by the data. Communication between tokens is performed through

convolution-like tensor voting, where each token casts a vote to its neighbors as a preference

for a certain position and orientation. Incorrect matches are then eliminated as they receive

little support, and layers are extracted as the most salient surfaces in the 4-D space.

The contribution of this work is demonstrated by addressing the problems of matching, motion

capture, and interpretation. The overall view of our approach is illustrated in Figure 1.6.

Given two sparse sets of point tokens, 4-D voting is first used to select the correct match for

each input point, as the most salient token, thus producing a sparse velocity field. By using the

same voting framework, a dense layer representation is determined in the motion capture

process, thus inferring dense velocities, motion boundaries and regions. Finally, the 3-D

structure and motion of the viewed objects is computed in the interpretation process. We

analyze several difficult cases – opaque and transparent motion, rigid and non-rigid motion,

curves and surfaces in motion, from sparse or dense inputs, by using motion cues only, or

motion augmented by monocular cues.

1.4 Outline

Chapter 2 provides a detailed review of the previous methods used to address the problem of

visual motion analysis. Chapter 3 examines the voting framework by first giving an overview

of the Tensor Voting formalism, and then discussing how the voting concepts are extended to

the 4-D case. Chapters 4 and 5 describe the proposed approach for the matching and motion

capture problems respectively, by using the 4-D voting framework. Chapter 6 describes how

monocular cues are integrated into the framework, in order to allow for handling real image

 18

sequences. Chapter 7 examines the approach for the problem of motion interpretation. Finally,

Chapter 8 summarizes our contributions.

 19

Chapter 2

Related Work

2.1 Introduction

The object of this dissertation is to establish a computational framework for the visual motion

analysis and interpretation, decomposed here into a matching process that recovers token

correspondences as a sparse velocity field, followed by a motion capture process that infers

motion boundaries and regions, and an interpretation process that determines the 3-D

structure and motion of the viewed objects.

Ullman presents an excellent analysis of the correspondence problem, from both a

psychological and a computational perspective [64]. Here we are following his conclusion,

that the correspondence formation is a low-level process, which takes place prior to any 3-D

interpretation. A certain similarity measure between correspondence tokens, called affinity, is

incorporated in the human visual system, and the correspondence between elements is

determined from their affinities, via local competition interactions. The entire process is

carried in a bottom-up fashion, as correspondences are not established between structured

entities, on the basis of their similarity, but is built up from matches between small

components of the images. The tokens involved in matching are non-complex elements, such

as points, blobs, edge and line fragments. In our approach we only study the case where the

input consists of identical point tokens.

 20

A comprehensive description of the motion analysis problem is given in the work of Hildreth

[25]. Several additional constraints that need to be incorporated in a computational framework

are identified and discussed. According to this analysis, in our research we have employed the

motion smoothness constraint, as the most general and probably the most important one that is

used by the human visual system.

The problem of visual motion analysis has been intensively studied, and good results have

been achieved, although for limited type of scenes, such as those containing a single, smooth

and textured surface. Most approaches rely on parametric models that restrict the types of

motion that can be analyzed, and involve iterative methods which depend heavily on initial

conditions and are subject to instability. Further difficulties are encountered in image regions

where motion is not smooth – typically around motion boundaries. This problem has lead to

numerous inconsistent methods, with ad-hoc criteria introduced to account for motion

discontinuities.

In the area of structure inference from motion, the inherent problem caused by the ambiguity

of 2-D to 3-D interpretation is usually handled by adding additional constraints, such as

rigidity. However, providing a successful computational approach has still been problematic,

especially in the combined presence of noise and multiple independent motions, or even non-

rigid motions. In this context it is very difficult to enforce a global constraint, as it is not clear

how to handle misfits – which may correspond to outlier noise, non-rigid, or independent

motion.

Barron, Fleet, and Beauchemin [5] provide a useful review of the computational

methodologies used in motion analysis and interpretation. In the following subsections we

discuss the most important research directions that have been investigated in the literature.

 21

2.2 Differential Methods

Differential methods of computing optical flow reduce the problem to that of solving a partial

differential equation within spatio-temporal space. The earliest example of this is the work of

Horn and Schunck [26]. Such an approach is based on the optical flow constraint equation:

As explained in Chapter 1, this is only one equation providing constraints on the optical flow

v
r

, an unknown with two components. Consequently, only the component of the optical flow

normal to the local intensity gradient is constrained, phenomenon known as the aperture

problem. The system is therefore underdetermined, requiring that additional constraints be

imposed to ensure a unique solution. Horn and Schunck augmented the constraints with a

global smoothness constraint on the optical flow. Their approach fails to account for

discontinuities in the motion field, that are present at motion boundaries.

Using the equation above it is possible to frame the problem in terms of a minimization within

a local neighborhood. Lucas and Kanade [37] applied this method by using a small window

with Gaussian weighting w. The quantity to be minimized is:

A combination of this approach with a Bayesian framework is also presented by Simoncelli et

al. [55].

Second-order differential techniques, which employ the second-order derivatives of I to

constrain the velocity v
r

 were introduced by Nagel et al. [42][43][44]. The applicable

0=
∂
∂+∇⋅

t

I
Iv

r
 (2.1)

()
2

2∑
∈

∂
∂+∇⋅=

Rx t

I
IvxwS

r (2.2)

 22

differential equation is derived from a requirement that the local intensity gradient I∇ is

conserved in time. In an attempt to properly handle occlusion, Nagel suggested that

smoothness only be imposed orthogonal to steep intensity gradients, to prevent smoothing

across what could possibly be motion boundaries. The problem is ultimately formulated as a

minimization of an energy functional. Unfortunately, the initial constraint does not permit

common types of motion such as rotation and expansion.

2.3 Region-Based Methods

In these methods, an attempt is made to determine the most likely displacement d of a region R

between consecutive frames of the image sequence. The parameters in such a calculation are

the spatial extent of the region to be matched, the range of possible displacements, and a

defined intensity metric between regions. The usual metrics employed are the normalized

cross-correlation coefficient (which is to be maximized), or the sum of squared distance

measure:

Anandan [2] has combined a sum of squared difference metric with a Laplacian pyramid

technique [9] to determine optical flow. In this technique, sub-pixel accuracy in this difference

metric is achieved with a quadratic approximation. In addition, Anandan employs a

smoothness constraint on the optical flow field v, which attempts to minimize the sum of the

Laplacians of the two components of the flow field, yx vv 22 ∇+∇ . Such a technique suffers

() () ()[]2

12∑
∈

+−=
Rx

dxIxIxwD (2.3)

 23

from an attempt to smooth the optical flow across motion boundaries, as well as restricting

input to data derived from only two neighboring frames.

Singh [56][57] attempts to remedy the latter difficulty by defining a new metric, which is the

average of the metrics in forward and reverse time, thereby incorporating information from

three neighboring frames. If D is the actual sum of squared difference, the sub-pixel

displacement is calculated as a weighted average of all possible displacements, the weighting

function being provided by:

A second step in the processing performs a Gaussian smoothing of the derived optical flow,

allowing velocity information to propagate locally. These derived values are then used as

input for repeated iterations of a similar calculation. Once again, since the smoothness

constraints use no knowledge of motion boundaries, this technique over-smoothes the optical

flow at these locations.

2.4 Energy-Based Methods

Energy-based techniques map the optical flow field in spatio-temporal space into Fourier

space. A simple application of the shift theorem to the optical flow constraint equation yields:

In this equation, F0 is the Fourier transform of I(x,0), ω is the temporal frequency, and k is the

spatial frequency. This shows that the power spectrum of a translating, fixed intensity pattern

() ()dcDedW −= (2.4)

() ()kvFkF ⋅+= ωδω 0, (2.5)

 24

must exist entirely within a plane passing through the origin of the 2D + t frequency space.

This restriction can then form the basis of new methods for calculating optical flow.

Heeger [22][23] exploits this restriction to provide a method that determines optical flow by

attempting a least-squares fit to a plane in frequency space. This approach suffers from the

defect that any object undergoing rotation or a non-rigid motion such as expansion cannot be

adequately represented.

2.5 Markov Random Fields

Several research efforts have investigated the usefulness of Markov Random Fields (MRF) in

treating discontinuities in the optical flow [8][24]. Gelgon and Bouthemy [16] perform motion

segmentation in three sequential steps. In the first step, the images in a sequence are each

partitioned at the pixel level according to an intensity-texture criterion, using a Markov

Random Field procedure [30]. This provides a spatial region graph, which acts as an

abstraction of the pixel-level representation of the image.

In a second step, the spatial region graph is partitioned according to motion criteria, through

the minimization of an energy function. This energy function is a weighted sum of two terms,

one being a discrepancy term which favors identical motion labels in the graph when

associated motions are similar, the second being a regularization term which favors identical

labels for neighboring regions (represented by neighboring nodes in the spatial graph).

In the third step, the optical flow of the regions is determined through a merging of motion

data from sets of regions with identical motion labels derived in the previous stage. While this

technique gives some good results, it relies heavily on a proper spatial segmentation early in

 25

the algorithm, which will not be realistic in many cases. And since the granularity of the

spatial region representation is necessarily coarse, little freedom is provided for capturing

intricate structure in the optical flow.

2.6 Layered Representations and EM

Significant improvements have been achieved by casting the problem in terms of layered

descriptions [11][29][27]. This formalism has many advantages. It is a natural way to

accommodate discontinuities present in the motion field. Also, it inhibits information transfer

between layers as spatially separated regions, and may resolve local uncertainties.

The work of Ayer and Sawhney [4] attacks this problem through an application of the

Expectation-Maximization (EM) algorithm [38] together with a mixture model. The mixture

model describes each location in the image in terms of probabilities distributed among a finite

set of discrete states. These states can be thought of as corresponding to discrete objects in the

image, each providing a smooth flow field. In a given image, an optical flow discontinuity

manifests as an abrupt change in the state containing the highest probability density.

An EM algorithm discovers the motion discontinuities in an iterative fashion. During the

expectation step, the state probabilities are optimized for the current value for the optical

flow. During the maximization step, the parameters governing the optical flow are optimized

while holding the state probabilities fixed. An initialization step provides a reasonable set of

probability densities.

Since the number of possible states can increase without bound, Ayer and Sawhney

incorporate an intermediate Minimum Description Length (MDL) criterion between the

 26

expectation and maximization stages, in order to compromise between the simplicity and

accuracy of the representation.

While this technique provides a basis for much subsequent study, it still suffers from three

major defects. First, the procedure requires an initialization step, which is essentially

arbitrary. Second, the algorithm is iterative, and subject to stability concerns. Third, the

description of the optical flow is parameterized, and does not permit a general description as

would be desirable.

Many other current methods use common motion to group regions, usually performing a

parameterized fit to motion data [28][65]. Weiss [66] provides a good overview of the

difficulties involved in this estimation process, which range from inadequate representation of

motion as rigid, to the over-fitting and instabilities resulting from higher-order

parameterizations.

Weiss uses a layered representation in combination with the EM algorithm, where a dense

smooth flow field is fit to multiple layers. In this case, the number of layers is computed

automatically by initially over-estimating the partitioning. A final step in the algorithm merges

layer indices that are judged to be similar.

The expectation step in the algorithm assigns the most likely layer labels to each pixel based

upon a Markov Random Field that favors identical labels for neighboring pixels. The

maximization step adjusts the optical flow associated with each layer by maximizing the

conditional posterior probability of the optical flow based upon a fixed set of pixel layer

indices. A functional is minimized which incorporates a Horn-Schunck term as well as term

which penalizes a lack of smoothness in the optical flow field.

 27

A novel feature of the method is the representation of the optical flow field as a linear

combination of localized flow functions. The Horn-Schunck optical flow criterion is translated

into a large-scale linear system combining the localized flow functions with the layer labels. A

subsequent substantial reduction in the dimensionality of the linear system renders the method

computationally feasible.

While the results obtained by this method are good, it is still an iterative technique, subject to

all associated liabilities. In addition, it performs a mathematical fit of the optical flow, even

allowing spatially separated regions to influence each other. This precludes any possibility of

incorporating higher-level knowledge (e.g. occlusion information) into the calculation. It is

possible for unrelated regions to be accidentally merged into a single layer simply because of

similar motion profiles, despite the presence of conflicting occlusion evidence, while the

merging of spatially diffuse regions is more appropriately the domain of higher-level

processing.

2.7 Variational Methods

Due to the ambiguity of the general vision problem, which is inherently ill-posed, attempts

have been made to identify and model the physical constraints that make it determined and

solvable. The under-constrained nature of the motion analysis problem has led to the

development of a class of methods that use variational principles to impose specific physical

constraints. These methods are derived from the regularization theory for solving ill-posed

problems, which are transformed into a non-linear, scalar functional optimization framework.

 28

However, the discontinuity aspect of the constraint involved is hard to express along with

smoothness in such a functional optimization framework. The most limiting factor in the

regularization theory is that the solution corresponds to a minimum which globally reduces the

error. As such, discontinuities in the data are not preserved.

Recent approaches [17][13] augment the regularization formalism by replacing the quadratic

regularization term (usually used to recover a smooth solution) with a particular function of

the gradient flow, specifically derived to allow for flow discontinuities in the solution. These

techniques attempt to explicitly preserve discontinuities by weakening the smoothing in areas

that exhibit strong intensity gradients. The main issues of variational methods are

convergence, numerical stability, parameter and initialization dependency. In addition, an

incorrect assumption is also made here, that the motion boundaries can always be detected in

advance, based on intensity only.

2.8 Basis Set Methods

An example of using basis set methods (in the form of steerable flow fields) is the work of

Fleet, Black, and Jepson [14]. At each pixel location, the optical flow is expanded as a linear

combination of basis functions. But, in order to accommodate the presence of motion

discontinuities, an additional parameter θ is included which incorporates the orientation of a

potential motion boundary.

The optical flow equation is used to enable a least squares fit solution to the vectors of

unknown coefficients. In order to provide a continuously varying set of motion boundary

angular orientations in the basis set, the basis functions are permitted to acquire imaginary

 29

components, since coefficients of the form θie are equivalent to rotation operators in the

complex plane.

The results of this technique are good, but the use of a gradient descent solution to the

resulting system of equations is heavily dependent on initial conditions and parameters

governing movement in the coefficient solution space.

2.9 Wavelets

Wu, Kanade, Cohn and Li [67] have applied the wavelet techniques of Cai and Wang [10] to

the problem of optical flow determination. Optical flow is described as a linear combination of

2D wavelets. A coarse to fine adjustment is enabled by using different velocity space

resolutions in a hierarchical pyramid. This permits capture of a wide range of velocity

magnitudes without the instability created by applying coarse to fine adjustment in the

intensity space, which can create poor optical flow values at low-resolution where image

structure is lost. Instead, full image resolution is used at all levels of the velocity space

pyramid.

Based on the optical flow constraint previously described, the sum of squared difference

quantity also used by the region-based methods is minimized. While the results of this

technique are fairly adequate, motion discontinuities are modeled poorly due to over-

smoothing. The presence of iteration in the solution of the system of equations also leaves

open the possibility of instability.

 30

2.10 Graph-Based Methods

Shi and Malik [52] have approached the problem of motion segmentation in terms of recursive

partitioning of the spatio-temporal space through normalized cuts within a weighted graph

[51]. The associated graph encodes similarities between the motion profiles of points in

spatio-temporal space, with similar pairs of points supporting graph edges of low weight. The

cuts are normalized in such a way as to not favor partitions with small surface area.

Motion profiles encode regional similarities in probabilities of displacements. The results are

relatively good, but no prescription is offered for deciding when spatio-temporal space has

been adequately partitioned.

2.11 Voting Methods

Little et al. [34] developed a parallel algorithm for computing the optical flow by using a local

voting scheme based on similarity of planar patches. However, their methodology cannot

prevent motion boundary blurring due to over-smoothing and is restricted to short-range

motion only.

The first to propose using Tensor Voting in addressing the motion analysis problem were

Gaucher and Medioni [15]. They employ successive steps of voting, first to determine the

boundary points as the tokens with maximal motion uncertainty, and then to locally refine

velocities near the boundaries by allowing communication only between tokens placed on the

same side of the boundary. However, in their approach the voting communication between

 31

tokens is essentially a two-dimensional process that does not inhibit neighboring elements with

different velocities from influencing each other.

 32

Chapter 3

The Tensor Voting Framework

3.1 Tensor Voting Overview

The use of a voting process for structure inference from sparse data was introduced by Guy

and Medioni [18][19] and then formalized into a unified tensor framework [31][32][33]

[59][61][40]. The smoothness constraint is used in order to generate descriptions in terms of

surfaces, curves, and junctions, from sparse and noisy data in 2-D or 3-D.

The methodology is grounded on two elements: tensor calculus for data representation, and

non-linear voting for data communication. An overall illustration of the method, summarizing

its different components, is given in Figure 3.1, which shows the 3-D version.

Each input token can be a point, a point with an associated tangent direction, a point with an

associated normal direction, or any combination of the above. Every such token is encoded

into a second order symmetric tensor. In a first voting stage, tokens communicate their

preferred information in a neighborhood through a predefined tensor field, and cast a tensor

vote. The preference information includes proximity, smoothness, and continuity. Each site

collects all the votes cast at its location and encodes them into a new tensor. After this

refinement process, each token is now a generic second order symmetric tensor, which encodes

curve and surface orientation information (given by the tensor orientations), and confidence of

this knowledge (given by the tensor size).

 33

In a second voting stage, these generic tensor tokens propagate their information at each

discrete location in their neighborhood, leading to a dense tensor map that encodes feature

saliency at every point in the domain. In practice, the domain space is digitized into a uniform

array of cells.

Points Curves Surfaces

Input tokens
(sparse)

Encode

Tensor tokens
(sparse)

Tensor Voting

Tensor tokens
(refined)

Tensor Voting

Saliency tensor
field (dense)

Surface
saliency map

Curve
saliency map

Junction
saliency map

Feature extraction

Decompose

Figure 3.1. Tensor Voting overview

 34

The resulting dense tensor map is decomposed by building a saliency map for each feature

type. Surface, curve, and junction features are obtained by extracting local extrema of the

corresponding saliency values along normal directions. The final output is the aggregate of the

outputs for each of the components.

This methodology is non-iterative and robust to considerable amounts of outlier noise. The

only free parameter is the scale of analysis, which is indeed an inherent property of visual

perception.

3.1.1 Tensor Representation

Points can simply be represented by their coordinates. A local description of a curve is given

by the point coordinates, and its associated tangent or normal. A local description of a surface

patch is given by the point coordinates, and its associated normal. Here, however, it is not

known in advance what type of entity (point, curve, surface) a token may belong to.

Furthermore, because features may overlap, a location may actually correspond to multiple

feature types at the same time.

To capture the geometric information and its singularities, a second order symmetric tensor is

used. It captures both the orientation information and its confidence, or saliency. Such a

tensor can be visualized as an ellipse in 2-D, or an ellipsoid in 3-D. Intuitively, the shape of

the tensor defines the type of information captured (point, curve, or surface element), and the

associated size represents the saliency. For instance, in 2-D, a very salient curve element is

represented by a thin ellipse, whose major axis represents the estimated tangent direction, and

whose length reflects the saliency of the estimation.

 35

To express a second order symmetric tensor S, graphically depicted by an ellipsoid in 3-D, the

associated quadratic form is diagonalized, leading to a representation based on the eigenvalues

λ1, λ2, λ3 (where λ1≥λ2≥λ3≥0), and the eigenvectors e1, e2, e3:

The eigenvectors represent the principal directions of the ellipsoid and the eigenvalues encode

the size and shape of the ellipsoid.

An input token that represents a surface element will be encoded as an elementary stick

tensor, where e1 represents the surface normal, while λ1=1 and λ2=λ3=0. An input token that

represents a curve element will be encoded as a plate tensor, where e3 represents the curve

tangent, while λ1=λ2=1 and λ3=0. An input token that represents a point element will be

encoded as a ball tensor, with no preferred orientation, while λ1=λ2=λ3=1. Figure 3.2 shows

the elementary tensors that corespond to surface, curve and point tokens, in the 3-D case.

3.1.2 Tensor Decomposition

As a result of the voting procedure, generic second-order, symmetric tensors are produced

from the elementary tensors described above, therefore the need to handle generic tensors. Any

tensor can be expressed as a linear combination of these three cases:

In this equation, e1e1
T describes a stick, (e1e1

T+e2e2
T) describes a plate, and

(e1e1
T+e2e2

T+e3e3
T) describes a ball.

S = λ1e1e1
T+λ2e2e2

T+λ3e3e3
T (3.1)

S = (λ1-λ2)e1e1
T + (λ2-λ3)(e1e1

T+e2e2
T) + λ3(e1e1

T+e2e2
T+e3e3

T) (3.2)

 36

At each location, the estimate of each of the three types of information and their associated

saliency are captured as follows:

• point-ness: no orientation, saliency is λ3

• curve-ness: tangent orientation is e3, saliency is λ2 -λ3

• surface-ness: normal orientation is e1, saliency is λ1-λ2

In 2-D, there is no surface-ness, and curve-ness is expressed by e2 for the tangent orientation,

and by λ1-λ2 for curve saliency.

3.1.3 Tensor Communication

We now describe the communication and computation scheme, which allows a site to

exchange information with its neighbors, and infer new information.

Token refinement and dense extrapolation. The input tokens are first encoded as elementary

tensors. In 3-D, a point token is encoded as a 3-D ball. A point associated with tangent

Figure 3.2. Tensor decomposition

 37

direction is encoded as a 3-D plate. A point associated with normal direction is encoded as 3-

D stick. These initial tensors communicate with each other in order to:

• derive the most preferred orientation information, or refine the initial orientation if

given, for each of the input tokens (token refinement), and

• extrapolate the above inferred information at every location in the domain for the

purpose of coherent feature extraction (dense extrapolation).

In the token refinement case, each token collects all the tensor values cast at its location by all

the other tokens. The resulting tensor value is the tensor sum of all the tensor votes cast at the

token location.

In the dense extrapolation case, each token is first decomposed into its independent elements,

then it broadcasts this information. In this case ball tensors do not vote, as they define isolated

features, which do not need to propagate their information. While they may be implemented

differently for efficiency, these two operations are equivalent to a voting process, and can be

regarded as a tensor convolution with voting fields (kernels).

Derivation of the voting fields. The size and shape of the voting neighborhood, and the vote

strength and orientation are encapsulated in predefined voting fields, one for each feature type

– there is a stick voting field, a plate voting field, and a ball voting field in the 3-D case. The

fields are generated based on a single parameter – the scale factor σ. Vote orientation

corresponds to the best (smoothest) local curve continuation from voter to recipient, while

vote strength)(dVS
r

 decays with distance || d
r

between them, and with curvature ρ:

 +−

=
2

22||

)(σ
ρd

edVS

r

r
 (3.3)

 38

All voting fields can be derived from the fundamental 2-D stick field, by rotation and

integration. Figure 3.3(a) shows how votes are generated to build the 2-D stick field. A tensor

P where curve information is locally known (illustrated by curve normal PN
r

) casts a vote at

its neighbor Q. The vote orientation is chosen so that it ensures a smooth curve continuation

(through a circular arc) from voter P to recipient Q. To propagate the curve normal N
r

 thus

obtained, the vote)(dVstick

r
 sent from P to Q is encoded as a tensor according to the equation

below, where PQ −=d
r

.

Note that vote strength at both Q’ and Q” is smaller than at Q – because Q’ is farther, and Q”

requires a higher curvature than Q. Figure 3.3(b) shows the 2-D stick field, with its color-

coded strength. When the voter is a ball tensor, with no information known locally, the vote is

generated by rotating a stick vote in the 2-D plane and integrating all contributions, according

to the equation below. The corresponding 2-D ball field is shown in Figure 3.3(c).

T
stick NNdVSdV

rrrr
⋅=)()((3.4)

θθθ

π

θ dRdRVRdV T
stickball)()(1

2

0

rr
−∫= (3.5)

Figure 3.3. Voting in 2-D

(b) 2-D stick field (a) Vote generation

Q

Q’

Q”

P

N
r

PN
r

(c) 2-D ball field

 39

The 3-D stick field is obtained by first rotating a fundamental 2-D stick field Vstick with 90°

about the z-axis (denote it by V’stick). Then, V’stick is rotated about the x-axis, and the

contributions are integrated by tensor addition during the rotation. To obtain the 3-D plate

field, the 3-D stick field obtained above is rotated about the z-axis, integrating the

contributions by tensor addition. To obtain the 3-D ball field, the 3-D stick field is rotated

about the y-axis and z-axis, integrating the contributions by tensor addition.

3.1.4 Feature Extraction

At each receiving site, the collected votes are combined through simple tensor addition (sum

of matrices)(dV
r

), thus producing generic tensors. During voting, tokens that lie on a salient

geometric feature (curve, surface) reinforce each other, and the tensors deform according to

the prevailing orientation.

At the end of the voting process, a dense tensor map has been produced, which is then

decomposed in three dense maps: the surface map, the curve map, and the junction map. Each

voxel of these maps has a 2-tuple ()vs ˆ, , where s is a scalar indicating strength and v̂ is a

unit vector indicating direction:

• Surface map (SMap): s = λ1-λ2, and v̂ = e1 indicates the normal direction.

• Curve map (CMap): s = λ2-λ3, and v̂ = e3 indicates the tangent direction.

• Junction map (JMap): s = λ3, and v̂ is arbitrary.

These maps are then used as input to an extremal-extraction algorithm similar to a marching

process [36], in order to generate features such as junctions, curves, and surfaces. The

 40

definition of point extremality, corresponding to junctions, is straightforward: it is a local

maximum of the scalar value s. A point P is on an extremal surface if its strength s is locally

extremal along the direction of the normal. A point P is on an extremal curve if any

displacement from P on the plane normal to the tangent will result in a lower s value. Detailed

implementation can be found in [60][40].

Results of applying the tensor voting methodology in the 3-D case are shown in Figure 3.4.

3.2 Tensor Voting in 4-D

We formulate our methodology for matching and motion capture by using a Tensor Voting

framework in a four-dimensional space. In this section we describe how the Tensor Voting

formalism is extended to the 4-D case.

noisy input surfaces curves

noisy input surfaces

Figure 3.4. Pipe and two linked tori

 41

The Tensor Voting framework is general enough to be extended to any dimension readily,

except for some implementation changes, mainly for efficiency purposes [62]. The main issues

that need to be addressed are the tensor representation of the features in the desired space, the

generation of voting fields, and the data structures used for vote collection.

Before discussing how the issues above affect the Tensor Voting framework, we need to make

a few clarifying comments on the possible geometric varieties that may exist within an

arbitrary dimensional space.

In any N-dimensional space there are N types of geometric features (varieties), whose

dimensionality ranges from 0 to N-1. The dimensionality of each of these features is given by

the number of parameters that are needed to describe the feature in a parametric model. For a

given feature, the number of such parameters is the same, regardless of the N-dimensional

space.

For example, in any N-D space (with dimensions x1, x2 … xN) a curve has dimensionality 1,

because it is parametrically described through one parameter p, by the set of equations:

Similarly, in any N-D space a surface has dimensionality 2 because it is parametrically

described through two parameters p and q, by the set of equations:

Moreover, each feature can be considered as defined locally by a number of tangent vectors.

The number of tangent vectors is the same as the dimensionality of the feature, because each

() Nkpxx kk ...1where == (3.6)

() Nkqpxx kk ...1where, == (3.7)

 42

such vector is given by the partial derivatives of the dimension variables x1, x2 … xN with

respect to one of the parameters.

For instance, a surface is defined by two tangent vectors:

Equivalently, if nt is the number of tangent vectors, a feature can also be locally determined

by a number of normal vectors nn = N - nt. Following the example above, a surface in N-D is

also defined by 2 normal vectors. In fact all these tangent and normal vectors together

represent an orthonormal basis for the N-dimensional space.

According to the discussion above, in a 4-D space there are four possible features:

• point (0-D) - having no tangents and 4 normals

• curve (1-D) - having 1 tangent and 3 normals

• surface (2-D) - having 2 tangents and 2 normals

• volume (3-D) - having 3 tangents and 1 normal

Tensor representation. After this brief geometric interlude, we return to the problem of

tensor representation in 4-D. The four possible geometric features mentioned above

correspond to the four elementary tensors for the 4-D space. Table 3.1 shows how each of

these features is encoded as an elementary tensor, by specifying the values of the eigenvalues

and eigenvectors in each case.

)(

)(

21
2

21
1

q

x

q

x

q

x
t

p

x

p

x

p

x
t

N

N

∂
∂

∂
∂

∂
∂

=

∂
∂

∂
∂

∂
∂

=

L
r

L
r

 (3.8)

 43

Table 3.2 shows how each of the four geometric features can be extracted from a generic

tensor, which is produced after voting. It is now clear that by following these rules, the tensor

representation can be easily extended into any dimension.

In our computational framework for visual motion analysis we represent the motion layers as

surfaces embedded in a 4-D space. Therefore, throughout this study we are mainly interested

in extracting salient surfaces from the input data.

Voting fields. The voting fields are a key part of the formalism – they are responsible of the

size and shape of the neighborhood where the votes are cast, and also control how the votes

depend on distance and orientation. As explained in the previous subsection, there is only one

fundamental voting field – the 2-D stick field. All other voting fields – for different features

and in higher dimensional spaces – are derived from the 2-D stick.

Feature λ1 λ2 λ3 λ4 e1 e2 e3 e4 Tensor

point 1 1 1 1 any orthonormal basis ball

curve 1 1 1 0 n1 n2 n3 t C-plate

surface 1 1 0 0 n1 n2 t1 t2 S-plate

volume 1 0 0 0 n t1 t2 t3 stick

Table 3.1. Elementary tensors in 4-D

Table 3.2. A generic tensor in 4-D

Feature Saliency Normals Tangents

point λ4 none none

curve λ3 - λ4 e1 e2 e3 e4

surface λ2 - λ3 e1 e2 e3 e4

volume λ1 - λ2 e1 e2 e3 e4

 44

The 4-D voting fields are obtained as follows. First the 4-D stick field is generated in a similar

manner to the 2-D stick field, as it was explained in the previous section and illustrated in

Figure 3.3. Then, the other three voting fields are built by integrating all the contributions

obtained by rotating a 4-D stick field around appropriate axes. In particular, the 4-D ball field

– the only one directly used in this work – is generated according to:

where x, y, u, v are the 4-D coordinates axes, θxy, θxu, θxv are rotation angles in the specified

planes, and the stick field corresponds to the orientation (1 0 0 0).

Data structures. In the 2-D or 3-D case, the data structure used to store the tensors during

vote collection was a simple 2-D grid or a red-black tree. Because we need a data structure

that is gracefully scalable to higher dimensions, the solution used in our approach is an

approximate nearest neighbor (ANN) k-d tree [3].

Since we use efficient data structures to store the tensor tokens, the space complexity of the

algorithm is linear, or O(n), where n is the input size. The average time complexity of the

voting process is O(µn) where µ is the average number of tokens in the neighborhood.

Therefore, in contrast to other voting techniques, such as the Hough Transform, both time and

space complexities of the tensor voting methodology are independent of the dimensionality of

the desired feature. The running time for an input of size 700 is about 20 seconds on a

Pentium III (600 MHz) processor.

Space non-isotropy. A key component of our framework is the 4-D layered representation of

data. Within the 4-D space of image positions (x y) and potential pixel velocities (vx vy),

∫ ∫ ∫ −=
π

θθθθθθθθθ θθθ
2

0

1)()(xvxuxy
T

stickball dddRdRVRdV
xvxuxyxvxuxyxvxuxy

rr
 (3.9)

 45

moving regions are represented as smooth surface layers, and are extracted through a voting

process that enforces the motion smoothness constraint.

Although both image positions (x y) and velocities (vx vy) are measured in pixels, they

represent conceptually different, independent entities. Consequently, the 4-D space used here

is not an isotropic one. However, the domain of image velocities is finite, as it is bounded by

the image size – for an image with a size of SxS pixels, possible velocities range between –S

and S. In practice, since typical image motions are rather small (usually between –S/10 and

S/10), the distance between layers in velocity space is small compared to the image size.

Therefore, before voting we scale the velocities (vx vy) so that the typical separation between

layers is in the same order of magnitude as the image size. For all image sequences analyzed

in this work, we have scaled the velocity values with the same factor of 10.

Quantization effects. In the general tensor voting framework, an important issue is the

underlying grid that is chosen for extracting dense salient geometric features. The size of

voxels in the grid directly influences the feature extraction procedure (similar to a Marching

Cubes algorithm), in terms of processing time, memory requirements, and precision of the

extracted features.

In our 4-D voting framework for motion analysis, we do not use a marching algorithm to

extract dense motion layers. Instead, we generate discrete velocity candidates at each pixel

location, collect votes at each candidate, and choose the most salient candidate as the most

likely velocity at that pixel. Furthermore, the size of the underlying grid is fixed in the image

space (1 pixel), as we are interested in inferring velocity values at each image location. In

velocity space, in order to obtain velocity values with subpixel precision, the candidates are

generated at every 1/4 pixel.

 46

Chapter 4

Matching

4.1 Introduction

In this chapter we present our approach for the problem of matching from two sparse sets of

identical point tokens, when only motion cues are available [45]. The entire approach is based

on the 4-D voting framework that has been presented in the previous chapters. An overview of

the processes involved in the various stages of data processing is shown in Figure 4.1.

The input consists of two frames containing identical point tokens, in a sparse configuration.

For illustration purposes, we give a step-by-step description of the approach by using a

specific example – the random point tokens represent an opaque translating disk against a

static background. Later we also show how our method performs on several other examples.

In the first stage we generate candidate matches from the image data, as (x y vx vy) points in

the 4-D space. These points are then encoded as 4-D ball tensors, and their mutual affinities

are propagated through a step of sparse voting. From the 4-D generic tensors resulted after

voting, the ones that have maximal surface saliency are retained, while the others are

eliminated as wrong matches. The final result is a set of 4-D points that represent the correct

matches, and thus a sparse velocity field.

 47

Since the goal is to extract the correct velocity (match) for each token, while eliminating the

wrong matches, the process implemented here can be seen as a classification of the (x y vx vy)

points into inliers and outliers.

Before presenting in more detail each of the steps involved, we need to make a brief comment

on how we display the intermediate results (i.e. those in 4-D). For illustration purposes, the

Figure 4.1. The matching process

Generating candidate matches

(x y vx vy) points in 4-D

Tensor encoding

4-D ball tensors

Affinity propagation

4-D generic tensors

Selection

(x y vx vy) points in 4-D

Input

Sparse voting

Sparse velocity field
(correct matches)

 48

last component of each 4-D point has been dropped to allow a three-dimensional display.

More specific, the three dimensions shown are the image coordinates x and y (in the horizontal

plane), and the vx component of the image velocity (the height).

4.2 Generating Candidate Matches

We take as input two sparse sets of identical point tokens, as shown in Figure 4.2(a).

Candidate matches are generated as follows: for each token in the first frame, we simply

create a potential match with every point in the second frame that is located within a

neighborhood (whose size is given by the scale factor) of the first token. The resulted

candidates appear as a cloud of (x,y,vx,vy) points in the 4-D space. The translation example

Figure 4.2. Translating disk

(a) Input (b) Candidate matches

(d) Recovered vx velocities (c) Sparse velocity field

 49

has 400 input points, and by using the procedure described above we generate an average of

5.3 candidate matches per point, among which at most one is correct.

Note that in the case where monocular information is to be integrated (sequences of real

images), this step is replaced by an intensity-based procedure, such as cross-correlation, that

produces candidate matches in the form of a sparse and possibly noisy velocity field.

Figure 4.2(b) shows the candidate matches. Note that the correct matches can be already

perceived as they are grouped in two parallel layers surrounded by noisy matches.

4.3 Tensor Encoding

Each potential match is then encoded into a 4-D tensor as follows. The tensor position in the

4-D space is given by the point (x y vx vy). Next we need to specify the eigenvalues and

eigenvectors. Since no information is initially known, each potential match is encoded into a

4-D ball tensor – the eigenvalues and eigenvectors are the following:

The eigenvectors e1, e2, e3 and e4 given above do not have any special significance – they now

simply define an arbitrary orthonormal basis in the 4-D space. The fact that this tensor

represents a pure 4-D ball is given by the encoding of the eigenvalues, which show equal

preference for all directions. Note that among the 4-D feature saliency values (21 λλ − for

volumes, 32 λλ − for surfaces, 43 λλ − for curves, and 4λ for points), the only non-zero

λ1=1 e1 = (0 0 0 1)T

λ2=1 e2 = (0 0 1 0)T

λ3=1 e3 = (0 1 0 0)T

λ4=1 e4 = (1 0 0 0)T

(4.1)

 50

saliency value is 4λ which corresponds precisely to the desired situation, that no particular

orientation is initially preferred.

4.4 Affinity Propagation

After encoding, each token propagates its preferred information in a certain neighborhood

through a step of voting. This is a sparse process, in the sense that votes are accumulated only

at input token locations. The size of the neighborhood where each token casts votes is given

by the only parameter of our voting scheme, the scale factor σ, which is an inherent

characteristic of human vision.

The affinities propagated are encapsulated in the strength and orientation of the votes cast.

Since the tensors involved are ball tensors, only the 4-D ball voting field is used. The vote

strength decays with distance and with the orientation – in the sense that smooth surface

continuations are encouraged. The vote orientation corresponds to the best (smoothest)

possible local surface continuation from voter to recipient.

During voting there is strong support between tokens that lie on a smooth surface (layer),

while communication between layers is inhibited by the spatial separation between tensors in

the 4-D space of both image coordinates and velocities. Wrong matches appear as isolated

points that receive little or no support.

The output of this process consists of 4-D generic tensors.

 51

4.5 Selection

The next step is to eliminate the incorrect matches. After propagating mutual token affinities

in the voting stage, the wrong candidates have received little support compared to the correct

ones, which reinforce each other. A measure of this support is encapsulated into the surface

saliency.

For each group of tokens that have common (x y) coordinates but different (vx vy) velocities we

retain the token with the strongest surface saliency (that is, with the maximum value for λ2-

λ3), while rejecting the others as outliers.

The output represents the good matches in a sparse configuration. Since votes have been cast

only at the input token locations, no new points have been inferred. Therefore, the result is a

sparse velocity field.

It is worth mentioning that the entire process described in this chapter not only extracts the

correct matches, but also simultaneously determines the local orientation of the layers at every

token location. Indeed, after voting the first two eigenvectors e1 and e2 of the tensor give the

orientation the two normals to the locally estimated layer at each tensor location. Later in the

process of motion capture (in order to extract the layers), these estimated layer orientations

will be refined through another voting step that includes only the correct matches recovered

here.

For the translating disk example, a comparison with the ground truth shows that the matching

was 100% accurate - all 400 matches have been recovered correctly, despite the large amount

of approximately 500% noise present. Figure 4.2(c) shows a 3-D view of the recovered

 52

matches, where the height represents the vx component of the velocity, while Figure 4.2(d)

shows the recovered sparse velocity field.

4.6 Results

The case illustrated so far may be considered too simple since the only motion involved is

translation. Indeed, image regions undergoing translation will be represented in the 4-D space

by planar surfaces parallel to the (x y) plane, because all pixels in a region have the same

velocity. However, no assumption – such as translational, planar, or rigid motion – has been

made. The only criterion used is the smoothness of image motion. To support this argument,

we show next that our approach also performs very well for several other configurations.

Rotating disk (Figure 4.3). The input consists of two sets of 400 point tokens each,

representing an opaque rotating disk (about 7°, counter-clockwise) against a static

background. The average number of candidate matches per point is 5.6. Comparing the

resulting matches with the true motion shows that only 2 matches among 400 are wrong. Our

method still works very well in this case, despite the fact that now the motion layer

corresponding to the disk is not a horizontal plane, but a tilted surface.

Figure 4.3. Rotating disk

 53

Expanding disk (Figure 4.4). The input consists of two sets of 400 point tokens each,

representing an opaque disk in expansion against a static background. The average number of

candidate matches per point is 6.1. Comparing the resulting matches with the true motion

shows that only 1 match among 400 is wrong. This example demonstrates that, without

special handling, our framework can easily accommodate both rigid and non-rigid image

motions.

Rotating ellipse (Figure 4.5). The input consists of two sets of 100 point tokens each,

representing a rotating ellipse. The average number of candidate matches per point is 5.9.

Comparing the resulting matches with the true motion shows a 100% accuracy – all the 100

matches have been correctly recovered. Many methods would fail on this example (used in

literature to illustrate the aperture effect, and adapted from [25]) – one difficulty is that at the

Figure 4.4. Expanding disk

Figure 4.5. Rotating ellipse

 54

points where the rotated ellipse “intersects” the original one, the velocity could be wrongly

estimated as zero.

Rotating square (Figure 4.6). The input consists of two sets of 100 point tokens each,

representing a rotating square. The average number of candidate matches per point is 5.7.

Comparing the resulting matches with the true motion shows a 100% accuracy – all the 100

matches have been correctly recovered. This example is similar to the rotating ellipse and is

used to show that the presence of non-smooth curves does not produce additional difficulty for

our methodology.

Transparent motion (Figure 4.7). The input consists of two sets of 500 point tokens each,

representing a transparent disk in translation against a static background. The average number

of candidate matches per point is 8.9. Comparing the resulting matches with the true motion

Figure 4.6. Rotating square

Figure 4.7. Transparent motion

 55

shows a 100% accuracy – all the 500 matches have been correctly recovered. This example is

extremely relevant to illustrate the power of our approach. If the analysis had been performed

in a two-dimensional space, most methods would have failed, because the two motion layers

are superimposed in 2-D. In our framework, using the 4-D space provides a very natural

separation between layers, separation that is consistent with the human perception. In this

representation, the process of affinity propagation through voting offers a consistent

approach, as the presence of transparent motion does not create any more difficulties than

opaque motion.

Translating circle (Figure 4.8). The input consists of two sets of 400 point tokens each,

representing a translating circle against a translating background. The average number of

candidate matches per point is 6. Comparing the resulting matches with the true motion shows

Figure 4.8. Translating circle

Figure 4.9. Rotating disk – translating background

 56

a 100% accuracy – all the 400 matches have been correctly recovered. This example shows

that we can successfully handle both curves and surfaces in motion.

Rotating disk – translating background (Figure 4.9). The input consists of two sets of 400

point tokens each, representing an opaque rotating disk (about 7°, counter-clockwise) against

a translating background. The average number of candidate matches per point is 5.8.

Comparing the resulting matches with the true motion shows that only 2 matches among 400

are wrong. This is a very difficult case even for human vision, due to the fact that at the left

extremity of the disk the two motions (of the disk and the background) are almost identical. In

that part of the image there are points on different moving objects that are not separated, even

in the 4-D space. In spite of this inherent ambiguity, our method is still able to accurately

recover correct velocities. The key fact is that the local layer orientations generated through

voting are still different from one region to another, and therefore provide a good affinity

measure.

 57

Chapter 5

Motion Capture

5.1 Introduction

This chapter describes our approach for the problem of motion capture from two sparse sets

of identical point tokens [46]. The process starts with the sparse set of correspondences

recovered during the matching step – described in the previous chapter – and is responsible

for inferring a scene representation defined by a dense velocity field, motion regions and

motion boundaries.

It is interesting to note that in solving the motion capture problem, the proposed framework

uses exactly the same token affinity measure that has been used in the matching process.

Indeed, in the motion capture process in order to determine that a token belongs to a certain

region is equivalent to establishing that it has a stronger affinity to the tokens in that region

than to tokens in other regions. It is the same affinity that has been used in matching, in the

sense that establishing a correspondence between two tokens implies the fact that their mutual

affinity (or preference to each other) is greater than the affinity to other tokens.

Since token affinities here are conceptually the same as in matching, the computational

approach that handles them in motion capture is also the same. The motion capture

methodology is again based on the 4-D voting framework that has been presented in the

 58

previous chapters. An overview of the processes involved in the various stages of motion

capture is shown in Figure 5.1.

The input consists of a sparse velocity field – described by (x y vx vy) points in the 4-D space –

that has been produced by the matching process. The approach is illustrated with the same

 Correct matches (sparse)

Figure 5.1. The motion capture process

(x y vx vy) points in 4-D

Tensor encoding

4-D ball tensors

Orientation refinement

4-D generic tensors

Densification

Dense 4-D tensor field

Grouping

Labeled tokens

Boundary extraction

Curves

Sparse voting

Dense velocity field

Dense voting

Regions

Boundaries

 59

specific example – the random point tokens represent an opaque translating disk against a

static background. Later we also show how the method performs on several other examples.

In the first stage, the 4-D points are encoded as 4-D ball tensors, and a refined description of

the layer orientations is obtained through a step of sparse voting. The 4-D tensors resulted

after this process are then used in another step of dense voting, in order to produce tensors at

every image location.

(a) Recovered vx velocities (b) Sparse velocity field

(c) Dense velocity field (d) Regions

(e) Boundaries

Figure 5.2. Translating disk

 60

Next, we group the resulted dense set of tokens into layers (regions), based on their velocities

and local normal orientations that have been produced at the voting stage. Finally, we extract

the motion boundary for each region.

The following sections present each of the processing stages in more detail. Similar to the

convention in the previous chapter, for illustration purposes the last component of each 4-D

point has been dropped to allow a three-dimensional display. The three dimensions shown are

the image coordinates x and y (in the horizontal plane), and the vx component of the image

velocity (the height).

5.2 Tensor Encoding

The input is a set of 4-D points that represent the pixel velocities (matches) recovered in the

matching process, as shown in Figure 5.2(a). At this stage we need to obtain an estimation of

the layer orientations as accurate as possible. Although local layer orientations have already

been determined as a by-product during the matching process (after voting, the eigenvectors e1

and e2 represent the normals to layers), they may have been corrupted by the presence of

wrong correspondences.

Therefore, we perform an orientation refinement through another sparse voting process, but

this time with the correct matches only. To this purpose, every 4-D point is again encoded into

a 4-D ball tensor.

 61

5.3 Orientation Refinement

As explained above, the goal is to get an accurate estimation of the layer orientation at every

token location. The token affinities are propagated again, as in the step of matching, but this

time without the corrupting influence of wrong matches.

This process is performed through a step of sparse voting, very similar to the one involved in

the matching stage. However, now we are interested in both the saliency values as a measure

of affinity, and also in the layer orientations that result after voting. In Chapter 3 we have

shown that the voting process simultaneously generates information regarding all geometric

varieties (curves, surfaces, volumes, etc.) that exist in the chosen space (in this case 4-D).

Because in this process we are looking for the layer orientations – and the layers are surfaces

embedded in the 4-D space – the desired orientations (as normals to layers) are found at each

token after voting as the first two eigenvectors e1 and e2. We remind the reader that in a 4-D

space, a surface is characterized by two normal vectors.

In figure 5.2(b) we show a 3-D view of the tokens with refined layer orientations. Obviously,

only one of the normal vectors is shown at each token.

5.4 Densification

At this stage we have determined the accurate layer orientations at each token location. In

order to attain the very goal of the motion capture problem – that is, to recover boundaries

and region as continuous curves and surfaces, respectively – it is necessary to first infer

velocities and layer orientations at every location in the image.

 62

The previously developed Tensor Voting framework allows for a densification procedure that

extracts geometric features such as curves and surfaces from sparse data. However, the way

in which this process is conducted is not appropriate for the particular problem addressed in

this work. The existing densification algorithm proceeds by choosing the most salient tensor

from the sparse set of tokens, and then growing the surface or curve around it, in a manner

similar to a marching process. The curve or surface orientation and saliency are estimated at

all neighbors of the current token (in a discrete grid) through voting. They are then analyzed

with sub-voxel precision in order to determine how the curve or surface crosses the current

grid cell (square in 2-D, or cube in 3-D). This procedure is then repeated for the neighboring

cell grids that correspond to the direction in which the curve or surface extends. Chapter 3

provides a more detailed description of this process.

The aspect that makes this approach undesirable for the current problem is that it is still not

clear when to stop growing. If, for example, a closed surface such as a sphere is to be

extracted, the results will be very good. On the other hand, if we need to extract an open

surface such as a plane, the resulted surface will be over-extended. The reason is that the

existing densification process grows the surface until the saliency drops below a certain level,

Figure 5.3. Layer over-extension

 63

due to the decay with the distance from the supporting tokens. A result of applying this

procedure to our translating disk example is shown in Figure 5.3.

Since in addressing the motion capture problem it is crucial to obtain accurate motion

boundaries, such an approach is not appropriate. Therefore we devised a different

densification scheme that addresses the specific constraints of our problem – to extract dense

layers while maintaining the motion boundaries.

The key of our approach lies in the fact that the 4-D space we use is not isotropic. We need to

obtain a tensor value at every (x y) location in the image, but certainly not at every (vx vy)

location in the velocity space.

Our densification method is illustrated in Figure 5.4. For each pixel (x y) in the image we try

to find the best (vx vy) location at which to place a newly generated token. The candidates

considered are all the discrete points (vx vy) between the minimum and maximum velocity

Figure 5.4. Densification

vx, vy

x

y

 64

values present in the sparse token configuration. To improve the speed, we actually consider

only the minimum and maximum velocities from the sparse tokens within a neighborhood of

the (x y) point. At each candidate position (x y vx vy) we accumulate votes from the sparse

tokens, according to the same Tensor Voting framework that has been used so far. After

voting, the candidate token whose surface saliency (λ2-λ3) is maximal is retained, and its (vx

vy) coordinates represent the most likely velocity at (x y). By following this procedure at every

(x y) image location, we generate a dense velocity field.

The densification process described above uses the same token affinities that have been

employed in the previous stages, which are encapsulated in the voting framework. The best

velocities at each image location are determined by trying different candidates, based on their

affinity to the existing, sparse tokens. The token affinity is again measured through the

surface saliency, by accumulating support for smooth surface orientations.

The output at this stage is the dense velocity field, the first of the three goals that have been

mentioned in Chapter 1, when the problem of visual motion analysis has been formulated.

Note that in this process, along with velocities (given by the last two coordinates in the 4-D

space), we simultaneously infer layer orientations (given by the first two eigenvectors e1 and

e2 as normals to the layer). Figure 5.2(c) shows a 3-D view of the dense set of tokens that

have been generated, including their associated layer orientations.

Although the 4-D representation allows for the presence of overlapping layers, this procedure

precludes us from obtaining multiple velocity values at each image location, such as in the

case of transparent motion. A potential solution would be to choose not just the most salient

velocity candidate, but all the candidates whose saliency values are locally maximal.

 65

However, as it is not very clear how this choice would affect the motion boundaries, such

strategy still needs to be further investigated.

5.5 Grouping

After obtaining a dense velocity field, the next step is to group tokens into regions that

correspond to distinct moving objects, as perceived by the human vision. A main advantage of

our approach is that we have already inferred both velocities and layer orientations at each

image location.

The smoothness criterion is used again to assign tokens to regions. We start from an arbitrary

point in the image, assign a region label to it, and try to recursively propagate this label to all

its image neighbors. In order to decide whether the label must be propagated to a neighbor

(that is, whether the neighbor and the current point should be placed in the same region), we

use the smoothness of both velocity and layer orientation as a grouping criterion. Having both

pieces of information available is especially helpful in situations where neighboring pixels

have very similar velocities, and yet they must belong to different regions. Most methods that

are based only on velocity discontinuities would fail on these cases. We will show such an

example later.

The output consists of region-labeled tokens at each image location, which means that we

have recovered the motion regions, the third of our goals in the problem of motion analysis.

After assigning region labels to every token, for illustration purposes we perform a

triangularization of each of the regions detected. The resulted surfaces are presented in Figure

5.2(d).

 66

5.6 Boundary Extraction

It may have been noticed that the “upper” surface shown in Figure 5.2(d) does not exactly

correspond to a disk. This is a normal outcome, and it is due to the fact that the input set of

points was sparse. The irregularity of the surface boundary became apparent in the

densification process, and it depends on the density distribution of the input points. Moreover,

in terms of the human visual system, this boundary irregularity is more or less perceived

according to the scale factor. Indeed, on a small scale (viewing the scene from a small

distance) the boundary will appear very “rugged”. By increasing the scale factor (viewing

from a larger distance), the boundary will be perceived as less and less irregular, until at some

point it will appear as totally convex. In fact, at that moment the region boundary is perceived

as the convex hull of all the sparse input points in the region.

Therefore we have implemented a method to extract the boundary for each region as a

“partially convex hull”. The process is controlled by only one parameter – the scale factor –

which determines the degree of irregularity – in other words, the departure from the actual

A2

Figure 5.5. Boundary extraction

S

N2

C
N1

A1

 67

convex hull. The entire algorithm is performed in the 2-D image space, by using the x and y

coordinates of each token.

The approach is illustrated in Figure 5.5. We start at some arbitrary point S on the boundary

– for example, the point with the largest x coordinate in the region. From there the boundary

curve is grown so that at every current point C, the curve is locally convex. For the current

point C, the next boundary point N1 is chosen so that all the points within the neighborhood A1

are inside (to the right of) the boundary found so far, including the segment CN1. The size of

this neighborhood is given by the scale factor, which determines the perceived level of detail.

If the scale factor has a larger value – corresponding to the neighborhood A2 – then the next

point selected from C will be N2, and the resulting boundary will be closer to the true convex

hull.

Figure 5.6. Rotating disk

(a) Dense velocity field (b) Regions

(c) Boundaries

 68

At this point we have determined the motion boundaries, the last remaining goal of the three

that we enumerated for the problem of motion analysis. The resulted boundary curves for the

current example of the translating disk are presented in Figure 5.2(e).

5.7 Results

We conclude this chapter by presenting our results for several other configurations, that

illustrate how our approach performs for different classes of sparse inputs, when only motion

cues are available. The examples presented below have also been used in Chapter 4 when

addressing the matching problem – therefore, a description of their input will not be repeated

here.

Figure 5.7. Expanding disk

(c) Boundaries

(a) Dense velocity field (b) Regions

 69

For each example we show the dense velocity field as 4-D point tokens, the detected regions

as continuous surfaces, and the extracted motion boundaries as continuous curves.

Rotating disk – Figure 5.6.

Expanding disk – Figure 5.7.

Rotating disk – translating background – Figure 5.8.

The last example is the most difficult one and deserves a few comments. As it was mentioned

in Chapter 4, this example is problematic even for the human perception, because at the left

extremity of the disk the two motions (of the disk and the background) are almost identical. In

that part of the image there are points on different moving objects that are not separated even

in the 4-D space. In spite of this inherent ambiguity, our method is still able to accurately

Figure 5.8. Rotating disk – translating background

(a) Dense velocity field (b) Regions

(c) Boundaries

 70

recover the regions and boundaries. The key fact is that in grouping we rely not only on the

smoothness of recovered velocities, but also on the smoothness of local layer orientations that

are determined simultaneously at every token location.

5.8 Scale Sensitivity

Since the only parameter involved in our voting framework is the scale factor that defines the

voting fields (kernels), we analyzed how it influences the quality of the analysis. We ran our

algorithm on the translating disk example for a large range of scale values and we found that

the method is remarkably robust to varying scale factors. Figure 5.9 shows the number of

Figure 5.9. Scale factor influence

Candidate matches kernel size = 5 kernel size = 50

kernel size = 100 kernel size = 175 kernel size = 250

 71

incorrect matches (for an input of 400 points) obtained for different values of the voting field

size (in pixels). Comparatively, the image size is 200 by 200.

When the field is too small (kernel size < 30), the input tokens fail to communicate to each

other, and the performance starts to degrade abruptly. At the other end (kernel size > 200), the

degradation is more graceful, even for voting fields that are larger than the image size. Note

the broad range of applicable field sizes, between 50 and 175.

Figure 5.10. Noise influence

noise n = 2 noise n = 3

noise n = 4 noise n = 5

 72

5.9 Noise Sensitivity

To demonstrate the robustness of our method, we have conducted an experiment in which

various amounts of noise are added to the data set. The input frames contain 400 point tokens,

that correspond to the translating disk sequence. For this experiment, we added 400n points

randomly selected in the image space, to the data set. At each step, n is incremented by one –

see Figure 5.10. It is interesting to note that the performance is very robust to large amounts

of noise, and it only starts to fail when n ≥ 5.

 73

Chapter 6

Integrating Monocular Cues

6.1 Introduction

So far we have only presented cases where no monocular information (such as intensity) is

available, and the entire analysis has been performed based on motion cues only. Human

vision is able to handle these cases remarkably well, and their study is fundamental for

understanding the motion analysis process. Nevertheless they are very difficult from a

computational perspective – most existing methods cannot handle such examples in a

consistent and unified manner, or without relying on unrealistic assumptions about the motion.

In the case of real image sequences, in addition to motion cues, there is a wealth of monocular

information that can be used in the inference of salient structures. The human vision system is

able to decouple the two sources of information, as the analysis is possible from each of them

separately. However, when both monocular and motion cues are available, they seem to be

used in conjunction, although the integration process is yet unclear.

From a computational point of view, we need to decide how the two types of information

should be combined, and in what order. If monocular cues are to be used first, such as in

Figure 6.1(b), which shows the intensity edges detected in Figure 6.1(a), it would be very

difficult to process such raw information. On the other hand, if motion cues are used, it is

much easier to perceive the two salient regions (the box and the background), based on their

 74

different image velocities, as shown by the velocity map in Figure 6.1(c). Although the

boundaries are still incorrect, the general position and shape of the regions are detected, and

can be locally refined by using monocular cues, as intensity edges from original images

(Figure 6.1(d)).

This chapter describes the additional difficulties induced by the case of real image sequences,

an overview of the proposed method, the extensions to the framework in order to address these

difficulties, and the experimental results that have been obtained.

In order to incorporate monocular information into our framework, we need to address a

number of problems specific to the case when the input consists of a sequence of intensity

images. In particular, the issues to be handled in this context are:

• generation of candidate matches

• rejection of outliers due to image areas lacking texture

(c) Velocities (d) Local boundary refinement

(a) One input image (b) Intensity edges

Figure 6.1. Combining motion and monocular cues

 75

• inference of accurate motion boundaries in the presence of occlusion

The pre-processing step where candidate matches are generated is replaced by an intensity-

based cross-correlation procedure, where all peaks of correlation are retained as candidate

matches. Furthermore, the procedure is repeated for several sizes of the correlation window, in

order to capture information at multiple scales.

In areas lacking texture, it is very likely that all matching candidates are incorrect, as there is

no reliable intensity information that can be used by the correlation process. In the selection

step described in Chapter 4, when only candidates with maximal saliency are retained at each

pixel, it is possible that the best candidate is still incorrect. Therefore, an additional step of

outlier rejection is employed, where all tokens that received very little support during voting

are eliminated.

Producing an accurate motion flow field is very difficult at motion boundaries. The motivation

of the motion segmentation problem stems from the fact that motion regions (pixels with

similar motion) usually correspond to distinct objects in the scene. Computationally, the

problem is addressed by first establishing pixel correspondences between images in order to

obtain velocity values at each image location. Based on their velocities, pixels are then

grouped into motion regions, separated by motion boundaries, thus producing a segmentation

of the image.

However, an inherent difficulty in this process is caused by the presence of the motion

boundaries themselves. The very source of information used for segmentation – pixel

velocities – are mostly unreliable exactly at the motion boundaries, where the segmentation

takes place. The example in Figure 6.2, showing a truck moving from left to right over a static

 76

background, is used to illustrate the problem. From area A that appears in the first image,

only half is visible in the second image, the other half being occluded by the moving region. At

the opposite side, area B is still visible in the second image, but is now split into two regions,

with new, un-occluded pixels in between. Even where no occlusion takes place, such as at the

upper boundary, area C is also split in the second image, due to the motion between regions.

Consequently, the apparent motion around boundaries cannot be precisely determined by

using any similarity criteria, since the areas being compared must have a finite extent.

Moreover, it is not realistic to assume that all the wrong matches can be later removed as

noise. Due to the similarity of partial areas, wrong correspondences are often assigned in a

consistent manner, resulting in over-extended image regions.

The key observation is that one should not rely on motion cues only, in order to perform

motion segmentation. Examining the original images reveals a multitude of monocular cues,

such as intensity edges, that can aid in identifying the true object boundaries. A second glance

at Figure 6.2 will confirm it.

A
B

C

A
B

C

Figure 6.2. Non-similarity at motion boundaries

 77

In this context, we formulate the problem of motion analysis as a two-component process,

that:

• enforces the smoothness of motion, except at its discontinuities

• enforces the smoothness of such discontinuities, aided by monocular cues

Here we present the extensions to our 4-D framework in order to handle real image data, and

integrate it with a 2-D voting-based method for accurate inference of motion boundaries

[49][47]. The extended approach we developed for the case of monocular cues is based on two

voting processes, in different dimensional spaces. First, motion layers as extracted as surfaces

in a 4-D space, by using a voting process to enforce the smoothness of motion and determine

an estimation of pixel velocities, motion regions and boundaries. This 4-D process is carried

out according to the same voting framework that has been presented in the previous chapters.

Although noisy correspondences are rejected as outliers after extracting the motion layers in

4-D, there are also wrong matches that are consistent with the correct ones. This mostly

occurs at the motion boundaries, where the occluding layer is typically over-extended towards

the occluded area.

The remaining stage is to infer the correct motion boundary by adding monocular information

from the original images. First we define zones of boundary uncertainty along the margins of

layers. Within these zones we create a 2-D saliency map that combines the following

information: the position and overall orientation of the layer boundary, and the strength and

orientation of the intensity edges from the original images. Then we enforce the smoothness

and continuity of the boundary through a 2-D voting process, and extract the true boundaries

 78

as the most salient curves within these zones. Finally, correct velocities are computed for the

pixels near boundaries, as they are reassigned to the appropriate regions.

6.2 Establishing Initial Correspondences

The input consists of two image frames that involve general motion – that is, both the camera

and the objects in the scene may be moving. For illustration purposes, we give a description of

the proposed approach by using a specific example, the candy box sequence – the two

images in Figure 6.3 are taken with a handheld moving camera, where the candy box and the

background exhibit distinct motions due to their different distances from the camera.

For every pixel in the first image, the goal at this stage is to produce candidate matches in the

second image. We use a normalized cross-correlation procedure, where all peaks of

correlation are retained as candidates. When a peak is found, its position is also adjusted for

sub-pixel precision according to the correlation values of its neighbors. Finally, each

candidate match is represented as a (x,y,vx,vy) point in the 4-D space of image coordinates and

pixel velocities, with respect to the first image.

Figure 6.3. Candy box sequence – input images

 79

Since it is desirable to increase the likelihood of including the correct match among the

candidates, we repeat this process at multiple scales, by using different correlation window

sizes. Small windows have the advantage of capturing fine detail, and are effective close to the

motion boundaries, but produce considerable noise in areas lacking texture or having small

repetitive patterns. Larger windows generate smoother matches, but their performance

degrades in large areas along motion boundaries. We have experimented with a large range of

window sizes, and found that best results are obtained by using only two or three different

sizes, that should include at least a very small one. Therefore, in all the examples described in

this paper we used three correlation windows, with 3x3, 5x5 and 7x7 sizes.

The resulting candidates appear as a cloud of (x,y,vx,vy) points in the 4-D space. Figure 6.4

shows the candidate matches. In order to display 4-D data, the last component of each 4-D

point has been dropped – the 3 dimensions shown are x and y (in the horizontal plane), and vx

(the height). The motion layers can be already perceived as their tokens are grouped in two

layers surrounded by noisy matches.

Extracting statistically salient structures from such noisy data is very difficult for most

existing methods. Because our voting framework is robust to considerable amounts of noise,

we can afford using the multiple window sizes in order to extract the motion layers.

6.3 Extraction of Motion Layers in 4-D

The process of extracting the motion layers is very similar to that used in the case of sparse

input data, when only motion cues are available, and it has been described in detail in the

previous chapters. Here we only give a succinct description of the main steps involved,

 80

including the extensions that have been made in order to address the problem of motion

analysis in the case of intensity images.

Selection. Since no information is initially known, each potential match is encoded into a 4-D

ball tensor. Then each token casts votes by using the 4-D ball voting field. During voting

there is strong support between tokens that lie on a smooth surface (layer), while

communication between layers is reduced by the spatial separation in the 4-D space of both

image coordinates and pixel velocities. For each pixel (x y) we retain the candidate match with

the highest surface saliency (λ2-λ3), and we eliminate the others as they represent incorrect

matches. Figure 6.5 shows a 3-D view of the recovered matches (the height represents vx).

Orientation refinement. In order to obtain an estimation of the layer orientations as accurate

as possible, we perform an orientation refinement through another voting process, but now

with the selected matches only. After voting, the normals to layers are found at each token as

the first two eigenvectors e1 and e2.

Outlier rejection. In the selection step, we retained only the most salient candidate at each

pixel. However, there are pixels where all candidates are wrong, such as in areas lacking

texture. Therefore now we eliminate all tokens that have received very little support. Typically

Figure 6.4. Candidate matches Figure 6.5. Selected velocities

 81

we reject all tokens with surface saliency less that 10% of the average saliency of the entire

set.

Densification. Since the previous step created “holes” (i.e., pixels where no velocity is

available), we must infer their velocity from the neighbors by using a smoothness constraint.

For each pixel (x y) without an assigned velocity we try to find the best (vx vy) location at

which to place a newly generated token. The candidates considered are all the discrete points

(vx vy) between the minimum and maximum velocities in the set, within a neighborhood of the

(x y) point. At each candidate position (x y vx vy) we accumulate votes, according to the same

Tensor Voting framework that we have used so far. After voting, the candidate token with

maximal surface saliency (λ2-λ3) is retained, and its (vx vy) coordinate represents the most

likely velocity at (x y). By following this procedure at every (x y) image location we generate a

Figure 6.6. Dense layers

Figure 6.7. Layer velocities Figure 6.8. Layer boundaries

 82

dense velocity field. In this process, along with velocities we also simultaneously infer layer

orientations. A 3-D view of the dense layers is shown in Figure 6.6.

Grouping. The next step is to group tokens into regions, by using again the smoothness

constraint. We start from an arbitrary point in the image, assign a region label to it, and try to

recursively propagate this label to all its image neighbors. In order to decide whether the label

must be propagated, we use the smoothness of both velocity and layer orientation as a

grouping criterion. Figure 6.7 illustrates the recovered vx velocities within layers (dark

corresponds to low velocity), and Figure 6.8 shows the layer boundaries superimposed over

the first image.

6.4 Boundary Inference in 2-D

At this stage, the extracted motion layers can still be over or under-extended along the motion

boundaries. This situation typically occurs in areas subject to occlusion, where the initial

correlation procedure may generate wrong matches that are consistent with the correct ones,

and therefore could not be rejected as outlier noise.

However, now it is known how many moving objects are present in the scene and where they

are. The margins of the layers provide a good estimate for the position and overall orientation

of the true motion boundaries. We combine this knowledge with monocular cues (intensity

edges) from the original images in order to build a boundary saliency map along the layers

margins. Next we enforce the smoothness and continuity of the boundary through a 2-D

voting process, and extract the true boundary as the most salient curve within the map.

 83

This procedure is performed in two successive passes – by separately using the horizontal and

vertical components of the image gradient. In fact, during the first pass all edges are found,

with the exception of the ones “perfectly” horizontal. The second pass is actually used to only

detect the remaining edges. Note that the two steps are inter-changeable, and their order is not

important.

6.4.1 The Boundary Saliency Map

In the first pass, we start by finding the points that belong to the layer boundaries, identified

by changes in region labels along horizontal lines. For each such point (xc yc) we define a

horizontal zone of boundary uncertainty, centered at (xc yc). Since the over or under-extension

of motion layers is usually within the limits of the correlation window size, we chose the

largest size used in correlation as the zone width. The zone height is one pixel.

Next we make use of the monocular cues by computing the image gradient (from the intensity

I in first image) at each location within the zones of boundary uncertainty:

Since at this pass we are looking for non-horizontal edges, we initialize our saliency map with

the horizontal component of the gradient:

This choice is made in order not to be influenced in the analysis by purely horizontal edges,

which will be detected during the second pass. Diagonal edges that exhibit a significant

horizontal gradient contribute to the saliency map and they are detected in the first pass.

() ()
() ()1,,),(

,1,),(

−−=
−−=
yxIyxIyxG

yxIyxIyxG

y

x

(6.1)

),(yxGsal x=
 (6.2)

 84

Finally, we incorporate our estimation of the boundary position and orientation, as resulted

from motion cues, by introducing a bias towards the current layer boundaries. Within each

zone, we define a weight function W that is 1 at xc and decays exponentially by:

where σW corresponds to a weight of 0.2 at the zone extremities.

The saliency map is then updated by multiplying each existing value with the corresponding

weight.

6.4.2 Detecting the Boundary

At this stage we have a saliency value and an orientation at each location within the zones of

uncertainty. However, in order to extract the boundaries we need to examine how neighboring

locations agree upon their information, through a voting process.

We proceed by encapsulating all the existing information within a 2-D tensor framework.

Since we have boundary orientations, at each location in the uncertainty zones we create a 2-

D stick tensor, with the orientation (eigenvectors e1 and e2) given by the image gradient, and

the size taken from the saliency map:

Next, the tensors communicate through a 2-D voting process, where each tensor is influenced

by the saliency and orientation of its neighbors. After voting, the curve saliency values are

()
2

2

W

cxx

eW σ
−−

=
(6.3)

e1 = (Gx Gy) (normal to edge)
e2 = (-Gy Gx) (tangent to edge)

 λ1 = sal
 λ2 = 0

(6.4)

 85

collected at each tensor as (λ1-λ2) and stored back in the saliency map. Figure 6.9 shows the

tensors after voting, with the local curve tangent given by the eigenvector e2. The curve

saliency (λ1-λ2) is illustrated here as the length of the tangent vector. Note that although

strong texture edges are present in the uncertainty zone, after voting their saliency has been

diminished by the overall dominance of saliency and orientation of the correct object edges.

 The true boundaries are extracted by choosing seeds with maximum curve saliency, and

growing the boundary from an uncertainty zone to the next, according to the local curve

saliency and orientation.

Figure 6.10. Refined velocities Figure 6.11. Refined boundaries

Figure 6.9. Boundary saliency map

 86

After marking the detected boundaries, the entire process is repeated in a similar fashion in the

second pass, this time using the vertical component of the gradient, in order to detect any

horizontal boundaries that have been missed during the first pass.

Finally, each zone of boundary uncertainty is revisited in order to reassign pixels to regions,

according to the new boundaries. In addition to changing the region label, their velocities are

recomputed in a 4-D voting process similar to the one used for densification. However, since

region labels are now available, the votes are collected only from points within the same layer.

Figure 6.10 shows the refined velocities within layers (dark represents small velocity), and

Figure 6.11 shows the refined motion boundaries, that indeed correspond to the actual object.

6.5 Results

We have also analyzed several other image sequences, and we present here the results

obtained. In all experiments we used three correlation windows, with 3x3, 5x5 and 7x7 sizes,

and for each window we retained all peaks of correlation. Therefore each pixel in the image

had at least 3 candidate matches, among which at most one was correct. For both the 4-D and

2-D voting processes, in all examples we used the same scale factor, corresponding to an

image neighborhood with a radius of 16 pixels.

 87

Fish sequence (Figure 6.12). To quantitatively estimate the performance of our approach we

created a synthetic sequence from real images. The silhouette of a fish was cropped from its

image and inserted at different locations over a background image, in order to generate a

motion sequence with ground truth. The average angular error we obtained is 0.42° ± 1.2° for

100% field coverage, which is very low despite the multitude of texture edges from the

cluttered background, that were competing with the true object edges. This example is also

used to show that we can successfully handle more detailed and non-convex motion

boundaries.

Figure 6.12. Fish sequence

(d) Layer velocities (e) Layer boundaries (f) Boundary saliency map

(a) One input image (b) Candidate matches (c) Dense layers

(g) Refined layers (h) Refined boundaries

 88

Barrier sequence (Figure 6.13). We analyzed the motion from two frames of a sequence

showing two cars moving away from the camera. The analysis is difficult due to the large

ground area with very low texture, and because the two moving objects have relatively small

sizes in the image. Also note that the image motion is not translational – the front of each car

has a lower velocity than its back. This is visible in the 3-D view of the motion layers, which

appear as tilted surfaces. In fact, our framework does not make any assumption regarding the

type of motion – such as translational, planar, or rigid motion – the only criterion being used

is the smoothness of image motion.

Figure 6.13. Barrier sequence

(d) Layer velocities (e) Layer boundaries (f) Boundary saliency map

(a) One input image (b) Candidate matches (c) Dense layers

(g) Refined layers (h) Refined boundaries

 89

Yosemite sequence (Figure 6.14). We analyzed the motion from two frames of the Yosemite

sequence (without the sky), to further provide a quantitative estimate for the performance of

our approach, as compared to other methods. Although this is an artificial fly-through

sequence, it uses real images as texture for the valley model. The average angular error

obtained by using the described approach is 3.74° ± 4.3° for 100% field coverage. Table 6.1

compares our results with the performance of other methods, as reproduced from [5]. In terms

of average angular error, the proposed method significantly outperforms all others, which are

also applied on 100% image coverage. Some methods obtain slightly better performance, but

only when they restrict the coverage to a lower percent of the image. Also note that most

(c) Velocities vx

(a) One input image

(d) Velocities vy

(b) Dense layer

Figure 6.14. Yosemite sequence

 90

methods listed here require more than two frames for the analysis, while our method uses two

frames only.

Uniform square sequence (Figure 6.15). This example, showing a uniform square in

translation against a static uniform background, is used to illustrate the main difficulties in

motion analysis, and how they are addressed by our method. The experiment is very difficult,

as both image regions lack any texture, and the aperture effect is present at each location

around the intensity edges.

Figure 6.15(b) shows two intensity maps corresponding to the candidate velocities, separately

for the vx and vy components. As only the corners provide texture for the correlation process,

note the uncertainty around the middle part of the edges, due to the aperture effect. Since there

is no possibility to determine the motion of the static uniform background, we assigned zero

Technique Average error Standard deviation Density

Nicolescu and Medioni 3.74° 4.3° 100%

Anandan 15.54° 13.46° 100%

Uras et al. (unthresholded) 16.45° 21.02° 100%

Horn and Schunck 22.58° 19.73° 100%

Lucas and Kanade (λ2 ≥ 5.0) 3.55° 7.11° 8.8%

Uras et al. (det(H) ≥ 2.0) 3.75° 3.44° 6.1%

Fleet and Jepson (τ = 2.5) 4.29° 11.24° 34.1%

Fleet and Jepson (τ = 1.25) 4.95° 12.39° 30.6%

Lucas and Kanade (λ2 ≥ 1.0) 5.20° 9.45° 35.1%

Uras et al. (det(H) ≥ 1.0) 5.97° 11.74° 23.4%

Heeger 11.74° 19.0° 44.8%

Table 6.1. Yosemite results

 91

motion to all pixels where no texture is found during correlation. This is the reason for the

incorrect motion that is reported in the interior of the square.

Figure 6.15(c) shows the layer velocities after the sparse and dense voting. The uncertainty

due to the aperture effect has been eliminated, and the interior pixels of the square have been

assigned correct velocities during densification.

The remaining problem is that the extracted layers are over-extended (with half the correlation

window size), as the only texture used in correlation is represented by the intensity edges.

However, the correct layers are inferred by augmenting the motion information with the

intensity edges – the refined velocities are shown in Figure 6.15(d).

Sparse disk and boundary sequence (Figure 6.16). In the previous chapters we have shown

that our framework is able to perform the analysis based on monocular cues only, when the

input consists of sparse data. The extended framework, described in this chapter, handles

Figure 6.15. Uniform square sequence

(c) Layer velocities (d) Refined velocities

(a) Input images (b) Candidate velocities

 92

motion augmented with monocular cues, as in real image sequences. Here we show that the

extended framework is also able to analyze motion and monocular cues in the case of sparse

input data. The example in Figure 6.16 illustrates a sparse input corresponding to a disk in

translation against a static background. The monocular cues are represented by the higher

density of points on the disk boundary, creating the salient perception of a circle.

As expected, the recovered motion layers (Figure 6.16(c)) are over-extended due to occlusion.

However, as the input points from the correct boundary form a salient structure, the true

boundary (Figure 6.16(e)) is inferred by the 2-D voting process, and the refined layers indeed

correspond to the correct perception of the translating disk, as shown in Figure 6.16(g).

6.6 Handling Transparent Motion

The human visual system can easily distinguish multiple motions that are transparently

combined in an image sequence. However, traditional computational models of the motion

Figure 6.16. Sparse disk and boundary sequence

(a) Input images (b) Candidate velocities (c) Dense velocities

(g) Refined layers (d) Boundary gradient (f) Refined velocities (e) Refined boundary

 93

perception process have largely been confused by scenes with multiple motions. Real world

examples of these viewing conditions are common – for example, people looking out of a

window often see both the outside world and a reflection of the objects inside the room. As

any driver has observed, the human visual system can perform accurate navigation functions

even when a large percentage of the image signal is obscured by a corrupting, but coherently

organized noise process, caused by rain or snow.

Transparent segregation can be performed on an image sequence that contains moving point

tokens, even when a static display of the tokens does not support such segregation. Ullman

[64] and Mulligan [41] have shown that human observers could easily segregate two

coherently moving sets of point tokens that were unseparable in static presentation. For both

image patterns and sparse point tokens stimuli, there is a perception of continuous surfaces

corresponding to what was used in the physical or synthetic construction of the stimulus.

Several computational approaches have been developed in order to address the perception of

transparent or multi-component motion, from 3 or more image frames. The algorithm of

Shizawa and Mase [53][54] computes two velocity vectors for each location in the image, by

using an energy integral minimization as a model fitting method, but does not address the

problem of perceptual grouping of coherently moving regions of the scene. Other methods

[6][28] compute global affine optical flow fields, but use local measurements that are only

capable of determining a single velocity estimate at each point.

The technique presented by Irani and Peleg [28] assumes a spatially dominant background,

whose parameters can be estimated based on the entire image data, since the outlier

contamination from the foreground will be relatively small. The background estimate can be

further refined using an iterative robust technique, re-estimating the parameters based only on

 94

the points with low residual error. The motion of a foreground object is then estimated based

only on the complement of the background support. With multiple objects, these recursive

estimate-and-segment approaches will fail when objects exist at the same scale. In this case,

the percentage of outliers in the signal, relative to the estimation of either object will exceed

the breaking point of the robust estimation method.

Darrell and Simoncelli [12] describe a hypothesize-and-test method, which assumes a prior

model of the global motion. Hypotheses are generated by sampling the parameter space, or by

fitting initial guesses to samples of data. Other methods [6][58] propose iterative methods that

recover multiple motions in the presence of reflections and transparency. However, their

techniques are restricted by the use of parametric motion models, such as translational or

affine.

A major benefit of our 4-D framework for motion analysis is that it allows for explicit

representation of overlapping motion layers, and for affinity propagation within each layer,

while inhibiting propagation across layers. Therefore, it can successfully handle images

containing reflections and transparency, as the interaction between tokens still takes place

within each smooth motion layer, as in the case of opaque motion. The limitation (also shared

by most other methods) is that we need to know how many overlapping layers are present in

the scene. Such knowledge is needed only for the selection of the most salient velocity

candidates, as opposed to the case of opaque motion, where only the most salient one needs to

be retained.

In our approach for the analysis of transparent motion we consider the image I(x,y,t) at time t

as a combination of two patterns A and B, which have independent motions a and b:

 95

In this equation, Ata denotes pattern A transformed by motion ta. In order to obtain the

dominant motion (assume it is a), we run a cross-correlation procedure, followed by a step of

voting as described in the Matching section, to eliminate noisy matches. Next we use a

“nulling” method [7][58], to estimate the remaining motion b. The pattern component A with

velocity a is removed from the sequence by moving each frame with a, then subtracting it

from the following frame. The resulting difference images are:

Assuming that we have three frames, the difference images are D0 = (Bb - Ba) and D1 = (Bb -

Ba)b, which show a pattern (Bb - Ba) moving with a single motion b. We use the same method –

cross-correlation followed by voting – to determine motion b from frames D0 and D1.

Finally, we put together the two sets of 4-D tokens with velocities a and b, and run a step of

dense voting and grouping (as described in the Motion Capture section) on the entire set. This

process also fills any holes in the layers, which may have been produced by the noisy matches

elimination. Note that the entire procedure recovers the motions without separating the image

patterns.

Transparent motion sequence (Figure 6.17). We analyzed the motion from three frames

captured with a moving camera, showing a face reflected in a framed picture. One of the input

frames is illustrated in Figure 6.17(a). In order to show the accuracy of our results, we

compute two “temporal average” images after registering the input frames using the two

tbta BAtyxI +=),,((6.5)

kbab

akbakbkak

a
k

BB

BABA

kyxIkyxID

)(

)()(

),,()1,,(
)1()1()1(

−=

+−+=

−+=
++++ (6.6)

 96

recovered motions, as shown in Figure 6.17(b) and Figure 6.17(c). In each of these, the

registered pattern is sharp, while the other one is blurred due to the image motion.

Fig. 6.17. Transparent motion sequence

(c) Registered foreground (b) Registered background (a) An input frame

 97

Chapter 7

Three-Dimensional Interpretation

7.1 Introduction

The goal of our approach for visual motion interpretation is the following: given two views of

a scene containing general motion, to recover the 3-D structure and 3-D motion of each

coherently moving region in the scene. The human vision system is able to make an

interpretation according to two alternative processes. One case corresponds to inferring 3-D

structure from image motion, by interpreting unrecognized objects in motion. The second case

is a process of inferring motion from structure, which uses previously recognized 3-D

structure in order to derive a motion interpretation. In this work we focus on the first process,

that infers 3-D structure and 3-D motion only from changes in image appearance.

The difficulties at this stage are caused by the inherent ambiguity of the 2-D to 3-D

interpretation, which can be handled by adding additional constraints, such as rigidity. From a

computational point of view, a problem usually encountered is the combined presence of noise

and multiple independent motions, even non-rigid motions. In this context it is very difficult to

enforce a global constraint, as it is not clear how to handle misfits, which may correspond to

outliers, non-rigid, or independent motion.

The case when the analysis is performed on two image frames and the scene is assumed to be

static corresponds to stereo vision. In this context, the assumption of a static scene and a

 98

moving camera represents an instance of the 3-D rigidity constraint. In particular, rigidity is

used in stereo vision by enforcing the epipolar constraint on the set of point correspondences,

in order to obtain the fundamental matrix that describes the rigid configuration of the camera

system or, equivalently, the camera motion. As the pixel disparities between the two frames

are assumed to have been produced by a single motion only (of the camera), the epipolar

constraint is globally enforced on the entire set of correspondences.

In order to estimate the scene geometry and motion from a set of point correspondences, it is

often needed to explicitly handle the presence of false matches and independently moving

regions. Given a pair of image frames, most methods first obtain the matching points, which

are then filtered by an outlier rejection step before they are used to solve for epipolar geometry

and for 3-D structure estimation. In the presence of moving objects, image registration

becomes a more challenging problem, as the matching and registration phases become

interdependent.

The problem of recovering the epipolar geometry and 3-D scene structure has been intensively

studied and it is considered well understood. Given two views of a static scene, a set of

matching points – typically corresponding to salient image features – are first obtained by

methods such as cross-correlation. Assuming that matches are perfect, a simple Eight Point

Algorithm [35] can be used for estimating the fundamental matrix, and thus the epipolar

geometry of the cameras is determined. A dense set of matches can be then established, aided

by the epipolar constraint, and finally the scene structure is recovered through triangulation.

The simplistic approach described above performs reasonably well only in the case when the

following conditions are met:

 99

• the set of matches must contain no outlier noise

• the scene must be rigid – i.e., without objects having independent motions

However, the first assumption almost never holds, since image measurements are bound to be

imperfect, and matching techniques will never produce accurate correspondences, mainly due

to occlusion or lack of texture. In the presence of incorrect matches, linear methods, such as

the Eight Point Algorithm, are very likely to fail. The problem can be reliably solved by

robust methods, which involve non-linear optimization [1][68], and normalization of data

before fundamental matrix estimation [20].

If the second assumption is also violated by the presence of multiple independent motions,

even the robust methods may become unstable, as the scene is no longer a static one.

Depending on the size and number of the moving regions, these techniques may return a

totally incorrect fundamental matrix. Furthermore, even if the dominant epipolar geometry is

recovered (for example, the one corresponding to the static background), motion

correspondences are discarded as outliers.

The core inadequacy of most existing methods is that they attempt to enforce a global

constraint – such as the epipolar one – on a data set which may include, in addition to noise,

independent subsets that are subject to separate constraints. In this context, it is indeed very

difficult to recover structure from motion and segment the scene into independently moving

regions, if the two tasks are performed simultaneously.

In order to address these difficulties, we have developed a novel approach that decouples the

above operations, allowing for explicit and separate handling of matching, outlier rejection,

grouping, and recovery of camera and scene structure. In the first step, we determine an

 100

accurate representation in terms of dense velocities (equivalent to point correspondences),

segmented motion regions and boundaries, by using only the smoothness of image motion. In

the second step we proceed with the extraction of scene and camera 3-D geometry, separately

on each rigid component of the scene. Note that our approach follows Ullman’s interpretation

of visual motion [64], in that the correspondence process is a low-level process, which takes

place prior to 3-D interpretation. However, we also perform segmentation before 3-D

interpretation, based on smoothness of image motion only.

The main advantage of our approach is that, at the interpretation stage, noisy matches have

been already rejected, and matches have been grouped according to the distinctly moving

regions present in the scene. Therefore, standard methods can be applied in order to locally

enforce the rigidity constraint for each segmented data subset.

The computer vision literature offers a multitude of techniques for the estimation of epipolar

geometry, scene structure and camera motion. Linear methods, such as the Eight Point

Algorithm [35] can be used for accurate estimation of the fundamental matrix, in the absence

of noisy matches or moving objects. The algorithm recovers the essential/fundamental matrix

from two calibrated/uncalibrated images, by solving a system of linear equations. A minimum

of eight points is needed – if more are available, a least mean square minimization is used. To

ensure that the resulting matrix satisfies the rank two requirement, its singularity is usually

enforced [20].

In order to handle outlier noise, more complex, non-linear iterative optimization methods are

proposed [68]. These techniques use objective functions, such as distance between points and

corresponding epipolar lines, or gradient-weighted epipolar errors, to guide the optimization

process. Despite their increased robustness, iterative optimization methods in general require

 101

somewhat careful initialization for early convergence to the correct optimum. One of the most

successful algorithms in this class is LMedS [68], which uses the least median of squares and

data sub-sampling to discard outliers by solving a non-linear minimization problem.

RANSAC [63] consists of random sampling of a minimum subset with seven pairs of

matching points for parameter estimation. The candidate subset that maximizes the number of

inliers and minimizes the residual is the solution. Statistical measures are used to derive the

minimum number of sample subsets. Although LMedS and RANSAC are considered to be

some of the most robust methods, it is worth noting that these techniques still require a

majority of the data to be correct, or else some statistical assumption is needed. If false

matches and independent motions exist, these methods may fail or become less attractive,

since in the latter case, many matching points on the moving objects are discarded as outliers.

In [50], Pritchett and Zisserman propose the use of local planar homographies, generated by

Gaussian pyramid techniques. However, the homography assumption does not generally apply

to the entire image.

7.2 Overview of the Method

The first step of the proposed method – illustrated in Figure 7.1 – formulates the motion

analysis problem as an inference of motion layers from a noisy and possibly sparse point set

in a 4-D space. In order to compute a dense set of matches (equivalent to a velocity field) and

to segment the image into motion regions, we use the voting-based computational framework

described in the previous chapters. By letting the tokens communicate their mutual affinity

 102

through voting, noisy matches are eliminated as they receive little support, and distinct moving

regions are extracted as smooth, salient surface layers, in the 4-D space.

The second step interprets the image motion by estimating the 3-D scene structure and camera

geometry. First a rigidity test is performed on the matches within each region, to identify

potential non-rigid (deforming) regions, and also between regions, to merge those that move

rigidly together but have separate image motions due to depth discontinuities.

Figure 7.1. Overall view of the approach

Motion interpretation

Motion analysis

Matching
Outlier rejection

Grouping

3-D reconstruction

L1 LN

non-rigid rigid

Rigidity test

L1 LK LK+1 LN

S1 SK 3-D structure and motion

 103

Finally, the epipolar geometry is estimated separately for each rigid component by using

standard methods for parameter estimation (such as the normalized Eight Point Algorithm,

LMedS or RANSAC), and the scene structure and camera/object motion are recovered by

using the dense velocity field.

7.3 The Rigidity Constraint

So far we have not made any assumption regarding the 3-D motion, and the only constraint

used has been the smoothness of image motion. The observed image motion could have been

produced by the 3-D motion of objects in the scene, or the camera motion, or both.

Furthermore, some of the objects may undergo non-rigid motion.

For classification we use an algorithm introduced by McReynolds and Lowe [39], that verifies

the potential rigidity of a set of minimum six point correspondences from two views under

perspective projection. The rigidity test is performed on a subset of matches within each

region, to identify potential non-rigid regions, and also across regions, to merge those that

move rigidly together but have distinct image motions due to depth discontinuities.

The following discussion describes each case, as identified by the rigidity test.

Multiple rigid motions. This case occurs when multiple moving regions have been identified

by the layer extraction process, and the rigidity test shows that:

• each region moves rigidly

• the regions cannot be merged into a single rigid structure

 104

Consequently, the image sequence cannot correspond to a static scene viewed with a moving

camera, as multiple independent motions are present.

Single rigid motion. This is the stereo case, where the scene is static and the camera is

moving. However, note that it is still possible to have multiple layers extracted in the stage of

grouping from motion, if their image motions do not satisfy the smoothness constraint

together, due to depth discontinuities. In this case, the rigidity test will show that the regions

actually correspond to a single rigid configuration in motion, and therefore can be labeled as a

single object.

Non-rigid motion. This case occurs when objects suffer non-rigid 3-D motion (deformations).

The rigidity test will detect that the image motion, while still smooth, is not compatible to any

rigid 3-D motion. Therefore, the configuration is recognized as non-rigid, and no

reconstruction is attempted.

It is also worth mentioning that the rigidity test is actually able to only guarantee the non-

rigidity of a given configuration. Indeed, if the rigidity test fails, it means that the image

motion is not compatible to a rigid 3-D motion, and therefore the configuration must be non-

rigid. If the test succeeds, it only asserts that a possible rigid 3-D motion exists, that is

compatible to the given image motion. However, this computational approach corresponds to

the way human vision operates – as shown in [64], human perception solves this inherent

ambiguity by always choosing a rigid interpretation when possible.

 105

7.4 Estimating Epipolar Geometry

Given two images of a static scene viewed with a moving camera (or equivalently, a single

object in rigid motion), the epipolar geometry is described by the fundamental matrix, which –

for any pair of matching points x ↔ x’ in the two frames – satisfies:

If a sufficient number of point matches is provided, the fundamental matrix can be computed

by using a linear method, such as the Eight Point Algorithm [35]. For increased robustness,

we choose to use RANSAC [63] to recover the epipolar geometry for each rigid object.

RANSAC randomly selects a minimal set of matches (seven point correspondences) to

estimate the fundamental matrix, and measures the support for this estimation by using all

point matches available. The process is repeated a number of times, and the fundamental

matrix that received most support is chosen as the robust fit. The number of samples (sets of

matches) that are randomly tried is chosen sufficiently high to ensure with a probability p

(usually 95%), that at least one of the random samples of s points is free from outliers. If e is

the probability that a selected data point is an outlier, then the number of samples required is:

The RANSAC algorithm is summarized as follows:

1. Repeat for N samples:

(a) Select a random sample of the minimum number of point matches to make a
parameter estimate F.

(b) Calculate the distance of each match to the epipolar lines defined by F.

(c) Compute the number of inliers consistent with F.

2. Select the best solution – i.e., the largest consistent data set.

0' =xFx T (7.1)

))1(1log(/)1log(sepN −−−= (7.2)

 106

3. Re-estimate F using all the data that has been identified as consistent.

Note that the above procedure is applied separately for each rigidly moving region, as

determined by the rigidity test. Therefore, inconsistent matches due to independent motion do

not appear in the samples selected by the RANSAC algorithm.

7.5 Recovering Camera Motion and Scene Structure

Starting from a set of matches x ↔ x’ in the two images, that correspond to a set of 3-D

points Xi, the reconstruction task is to find the camera matrices P and P’, as well as the 3-D

points Xi, so that:

The camera matrices are determined as follows. Once the fundamental matrix F has been

computed, the epipoles e and e’ are first determined from:

By using a 3-D coordinate system aligned with the first camera, the camera matrices P and P’

can be then chosen as:

Note that the concept of camera motion is used here to denote either physical motion of the

camera, or of the scene. Indeed, if the camera is static and the scene moves, the configuration

is equivalent to a situation where the scene is static, and the camera moves with an inverse

motion.

iiii XPxPXx ''== for all i (7.3)

0'0 == eFFe T (7.4)

[] [][]'|''0| eFePIP ×== (7.5)

 107

Finally, from the dense set of point matches x ↔ x’ and the recovered camera matrices P and

P’, the 3-D points Xi can be computed by triangulation. In practice, as back-projecting rays

from the measured image points do not intersect precisely, it is necessary to estimate a best

solution for the 3-D points. In our approach, we used a solution that minimizes the

reprojection error for 3-D points that are mapped to the given image matches [21].

7.6 Results

Books sequence (Figure 7.2). The two input images are taken with a handheld moving

camera, while the stack of books has been moved between taking the two pictures. This

Figure 7.2. Books sequence

(a) Input images (b) Candidate matches

(c) Dense layers (d) Layer velocities (e) Layer boundaries

(f) Epipolar lines (g) 3-D structure and motion

 108

example corresponds to the multiple rigid motions case. Two sets of matches have been

detected, corresponding to the two distinct regions – the stack of books and the background.

The rigidity test shows that, while each region moves rigidly, they cannot be merged into a

single rigid structure. The recovered epipolar geometry is illustrated in Figure 7.2(f), while the

3-D scene structure and motion are shown in Figure 7.2(g). Note the displaced stack of books

in the 3-D reconstruction shown in the Figure 7.2(g) at left.

Cylinders sequence (Figure 7.3). This example, also illustrating the multiple rigid motions

case, is adapted from Ullman [64], and consists of two images of random points in a sparse

configuration, taken from the surfaces of two transparent co-axial cylinders, rotating in

opposite directions. This extremely difficult example clearly illustrates the power of our

approach, which is able to determine accurate point correspondences and scene structure –

(a) Input images (b) Candidate matches

(d) Dense layers (c) Velocities (e) 3-D structure

Figure 7.3. Cylinders sequence

 109

even from a sparse input, based on motion cues only (without any monocular cues), and for

transparent motion.

Car sequence (Figure 7.4). In this example, the sign and the background correspond to a rigid

configuration and can be merged, while the car exhibits an independent motion.

Figure 7.4. Car sequence

(a) Input images (b) Candidate matches

(c) Dense layers (d) Layer velocities (e) Layer boundaries

(f) Epipolar lines (g) 3-D structure and motion

 110

Candy box sequence (Figure 7.5). This is the single rigid motion case, where the scene is

static and the camera is moving. Due to the depth disparity between the box and the

background, their image motions do not satisfy the smoothness constraint together, and thus

they have been segmented as two separate regions. However, the rigidity test shows that the

two regions form a rigid configuration, and therefore are labeled as a single region. The

epipolar geometry estimation and scene reconstruction are then performed on the entire set of

matches. Along with the 3-D structure, Figure 7.5(g) also shows the two recovered camera

positions.

Figure 7.5. Candy box sequence

(a) Input images (b) Candidate matches

(c) Dense layers (d) Layer velocities (e) Layer boundaries

(f) Epipolar lines (g) 3-D structure and motion

 111

Waving flag sequence (Figure 7.6). This example illustrates the non-rigid motion case, and

consists of a synthetic sequence where sparse random dots from the surface of a waving flag

are displayed in two frames, as observed by a static camera. The configuration is recognized

as non-rigid, and therefore no reconstruction is attempted. However, since the image motion is

smooth, our framework is still able to determine correct correspondences, extract motion

layers, segment non-rigid regions, and label them as such.

Figure 7.6. Waving flag sequence

(d) Dense layers (vx) (c) Velocities (e) Dense layers (vy)

(a) One input image (b) Candidate matches (vx) (c) Candidate matches (vy)

 112

Static flag sequence (Figure 7.7). It is interesting to see what happens if the vy component of

the image motion is removed from the previous example. The new image sequence accepts a

rigid interpretation, which corresponds to a static flag observed by a translating camera. This

new configuration is recognized as rigid, and the 3-D reconstruction is shown in Figure 7.7(f)

– for illustration purposes, the image of a flag has been mapped on the 3-D model.

Figure 7.7. Static flag sequence

(d) Dense layers (vx) (c) Velocities (e) Dense layers (vy)

(a) One input image (b) Candidate matches (vx) (c) Candidate matches (vy)

(f) 3-D structure

 113

Chapter 8

Conclusion

This dissertation presented a novel, voting-based computational framework that addresses the

problem of visual motion analysis and interpretation. From two image frames involving

general motion, the proposed approach recovers the dense velocity field, motion boundaries

and regions, identifies rigid objects, and estimates the 3-D structure and motion for each such

object.

We summarize the contributions of this work along four main directions:

• we developed a 4-D layered representation of data, where the moving regions are

conceptually represented as smooth layers in the 4-D space of image coordinates and

pixel velocities;

• within this data representation, we employed a voting scheme for token affinity

communication, where token affinities are expressed by their preference for being

incorporated into smooth surfaces, as statistically salient features; communication

between tokens is performed by tensor voting, which enforces the motion smoothness

while preserving motion discontinuities;

• we consistently integrated both motion and monocular cues in our voting framework,

in order to fully exploit the information available in real image sequences;

 114

• by using an approach that decouples the processes of matching, outlier rejection and

grouping, we segment the scene into rigidly moving regions, and produce a reliable 3-

D motion interpretation.

This formulation offers a consistent and unified approach for visual motion analysis and

interpretation, that allows for structure inference without using any a priori knowledge of the

motion model, based on the smoothness of motion only, while consistently handling both

smooth moving regions and motion discontinuities.

Using a 4-D space for the voting-based motion analysis is essential, since it allows for a

spatial separation of the points according to both their velocities and image coordinates.

Consequently, the proposed framework allows tokens from the same motion layer to strongly

support each other, while inhibiting the influence from other layers or from isolated tokens.

Despite the high dimensionality, the method is computationally robust – it does not involve

initialization or iterative search in a parametric space, and therefore does not suffer from local

optima or poor convergence problems. The only free parameter is scale, which is an inherent

characteristic of human vision, and its setting is not critical.

The contributions of the proposed framework have been demonstrated by successfully

analyzing a wide variety of difficult cases – opaque and transparent motion, rigid and non-

rigid motion, curves and surfaces in motion, from sparse and dense input configurations.

The current framework is still subject to a number of limitations, that must be addressed in

further research efforts. The first issue concerns the improvement of computation time, which

prohibits the use of the proposed method for real time applications. A potential way to

 115

increase the processing speed is to implement a parallel processing scheme for voting, as the

computations at each token are independent.

A second research direction is to incorporate information from multiple views, possibly in an

incremental inference, where existing structures are refined as new frames are added. The

primary concern here is how the representation must be augmented in order to allow encoding

past trajectories, and using their curvature values.

Finally, studying the use of an adaptive scale processing scheme would allow to

simultaneously capture details in regions with high density of data, and bridge the gaps where

data is very sparse.

 116

Reference List

[1] A. Adam, E. Rivlin, L. Shimshoni, “Ror: Rejection of Outliers by Rotations”, Trans.
PAMI, 23(1), pp. 78-84, 2001.

[2] P. Anandan, “A Computational Framework and an Algorithm for the Measurement of
Visual Motion”, IJCV, 2:283-310, 1989.

[3] S. Arya, D. Mount, N. Netanyahu, R Silverman, A. Wu, “An optimal algorithm for
approximate nearest neighbor searching in fixed dimensions”, Journal of the ACM,
45(6), pages 891-923, 1998.

[4] S. Ayer, H. Sawhney, “Layered Representation of Motion Video Using Robust
Maximum Likelihood Estimation of Mixture Models and MDL Encoding”, ICCV,
pages 777-784, 1995.

[5] J. Barron, D. Fleet, S. Beauchemin, “Performance of Optical Flow Techniques”, IJCV,
12(1):43-77, February 1994.

[6] J. Bergen, P. Burt, K. Hanna, R. Hingorani, P. Jeanne, S. Peleg, “Dynamic Multiple-
Motion Computation”, Artificial Intelligence and Computer Vision, pp. 147-156,
Elsevier, 1991.

[7] J. Bergen, P. Burt, R. Hingorani, S. Peleg, “A Three-Frame Algorithm for Estimating
Two-Component Image Motion”, IEEE Trans. PAMI, 14:9, pp. 886-896, 1992.

[8] Y. Boykov, O. Veksler, R. Zabih, “Markov Random Fields with Efficient
Aproximations”, CVPR, pp. 648-655, 1998.

[9] P. Burt, E. Adelson, “The Laplacian Pyramid as a Compact Image Code”, IEEE
Trans. Communications, 31:532-540, 1983.

[10] W. Cai, J. Wang, “Adaptive Multiresolution Collocation Methods for Initial Boundary
Value Problems of Non-Linear PDEs”, SIAM Numer. Anal., 33(3):937-970, 1996.

[11] T. Darrell, A. Pentland, “Robust Estimation of a Multilayered Motion Representation”,
IEEE Workshop on Visual Motion, pages 173-178, 1991.

[12] T. Darrell, E. Simoncelli, “Separation of Transparent Motion into Layers Using
Velocity-Tuned Mechanisms”, MIT Media Laboratory Vision and Modeling Group –
TR-244, 1993.

[13] R. Deriche, P. Kornprobst, G. Aubert, “Optical Flow Estimation while Preserving its
Discontinuities: A Variational Approach”, ACCV, pp. 290-295, 1995.

 117

[14] D. Fleet, M. Black, A. Jepson, “Motion Feature Detection Using Steerable Flow
Fields”, CVPR, pages 274-281, Santa Barbara, June 1998.

[15] L. Gaucher, G. Medioni, “Accurate Motion Flow Estimation with Discontinuities”,
Proc. ICCV, pages 695-702, Corfu, Greece, September 1999.

[16] M. Gelgon, P. Bouthemy, “A Region-Level Graph Labeling Approach to Motion-
Based Segmentation”, CVPR, pages 514-519, San Juan, Puerto Rico, June 1997.

[17] S. Ghosal, “A Fast Scalable Algorithm for Discontinuous Optical Flow Estimation”,
PAMI, 18:2, pp. 181-194, 1996.

[18] G. Guy, G. Medioni, “Inferring Global Perceptual Contours from Local Features”,
IJCV, 20(1/2):113-133, Oct 1996.

[19] G. Guy, G. Medioni, “Inference of Surfaces, 3-D Curves, and Junctions from Sparse,
Noisy 3-D Data”, PAMI, 19(11):1265-1277, 1997.

[20] R. I. Hartley, “In Defense of the 8-Point Algorithm”, Trans. PAMI, 19(6), pp. 580-
593, 1997.

[21] R. Hartley, A. Zisserman, “Multiple View Geometry in Computer Vision”, Cambridge
University Press, 2000.

[22] D. Heeger, “Model for the Extraction of Image Flow”, J. Opt. Soc. Amer., 4:1455-
1471, 1987.

[23] D. Heeger, “Optical Flow using Spatiotemporal Filters”, IJCV, 1:279-302, 1988.

[24] F. Heitz, P. Bouthemy, “Multimodel Estimation of Discontinuous Optical Flow Using
Markov Random Fields”, PAMI, 15(12):1217-1232, 1993.

[25] E. Hildreth, “The Measurement of Visual Motion”, MIT Press, 1983.

[26] B. Horn, B. Schunck, “Determining Optical Flow”, Artificial Intelligence, 17:185-204,
1981.

[27] S. Hsu, P. Anandan, S. Peleg, “Accurate Computation of Optical Flow by Using
Layered Motion Representation”, ICPR, 1994.

[28] M. Irani, S. Peleg, “Image Sequence Enhancement Using Multiple Motions Analysis”,
CVPR, pages 216-221, Champaign, Illinois, 1992.

[29] A. Jepson, M. Black, “Mixture Models for Optical Flow Computation”, CVPR, pages
760-761, New York, 1993.

[30] C. Kervrann, F. Heitz, “A Markov Random Field Model-Based Approach to
Unsupervised Texture Segmentation Using Local and Global Spatial Statistics”, IEEE
Trans. on Image Processing, 4(6):856-862, 1995.

 118

[31] M.-S. Lee, G. Medioni, “Inferred Descriptions in Terms of Curves, Regions, and
Junctions from Sparse, Noisy, Binary Data”, International Workshop on Visual Form,
pages 350-367, Capri, Italy, May 1997.

[32] M.-S. Lee, G. Medioni, “A Unified Framework for Salient Curves, Regions, and
Junctions Inference”, Asian Conference on Computer Vision, pages 315-322, Hong
Kong, PRC, Jan. 1998.

[33] M.-S. Lee, G. Medioni, “Inferring Segmented Surface Description from Stereo Data”,
CVPR, pages 346-352, Santa Barbara, CA, June 1998.

[34] J. Little, H. Bulthoff, T. Poggio, “Parallel Optical Flow Using Local Voting”, ICCV,
pp. 454-459, 1988.

[35] H. C. Longuet-Higgins, “A Computer Algorithm for Reconstructing a Scene from Two
Projections”, Nature, 293:133-135, 1981.

[36] W. Lorensen, H. Cline, “Marching Cubes: A High Resolution 3D Surface
Reconstruction Algorithm”, Computer Graphics, 21(4), 1987.

[37] B. Lucas, T. Kanade, “An Iterative Image Registration Technique with an Application
to Stereo Vision”, Proc. DARPA Image Understanding Workshop, pages 121-130,
1981.

[38] G. McLachlan, K. Basford, “Mixture Models Inference and Applications to
Clustering”, Marcel Dekker, Inc., New York and Basel, 1988.

[39] D. McReynolds, D. Lowe, “Rigidity Checking of 3D Point Correspondences Under
Perspective Projection”, Trans. PAMI, 18(12), pp. 1174-1185, 1996.

[40] G. Medioni, Mi-Suen Lee, Chi-Keung Tang, “A Computational Framework for
Segmentation and Grouping”, Elsevier Science, 2000.

[41] J. Mulligan, “Motion Transparency is Restricted to Two Planes”, Investigative
Ophtalmology and Visual Science Supplement, 33:1049, 1992.

[42] H.-H. Nagel, “Displacement Vectors Derived from Second-Order Intensity Variations
in Image Sequences”, Comput. Graph. Image Process., 21:85-117, 1983.

[43] H.-H. Nagel, W. Enkelmann, “An Investigation of Smoothness Constraints for the
Estimation of Displacement Vector Fields from Image Sequences”, PAMI, 8:565-593,
1986.

[44] H.-H. Nagel, “On the Estimation of Optical Flow: Relations between Different
Approaches and some New Results”, Artificial Intelligence, 33:299-324, 1987.

 119

[45] M. Nicolescu, G. Medioni, “Perceptual Grouping from Motion Cues Using Tensor
Voting in 4-D”, Proceedings of the European Conference on Computer Vision, vol.
III, pages 423-437, Copenhagen, Denmark, May 2002.

[46] M. Nicolescu, G. Medioni, “4-D Voting for Matching, Densification and Segmentation
into Motion Layers”, Proceedings of the International Conference on Pattern
Recognition, Quebec City, Canada, August 2002.

[47] M. Nicolescu, G. Medioni, “Motion Segmentation with Accurate Boundaries - A
Tensor Voting Approach”, USC Institute for Robotics and Intelligent Systems
Technical Report IRIS-02-418, December 2002.

[48] M. Nicolescu, G. Medioni, “Layered 4D Representation and Voting for Grouping from
Motion”, IEEE Transactions on Pattern Analysis and Machine Intelligence – Special
Issue on Perceptual Organization in Computer Vision, vol. 25, no. 4, pages 492-501,
April 2003.

[49] M. Nicolescu, G. Medioni, “Motion Segmentation with Accurate Boundaries - A
Tensor Voting Approach”, to appear in the Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Madison, Wisconsin, June 2003.

[50] P. Pritchett, A. Zisserman, “Wide Baseline Stereo Matching”, ICCV, pp. 754-760,
1998.

[51] J. Shi, J. Malik, “Normalized Cuts and Image Segmentation”, CVPR, pages 731-737,
San Juan, Puerto Rico, June 1997.

[52] J. Shi, J. Malik, “Motion Segmentation and Tracking Using Normalized Cuts”, ICCV,
pages 1154-1160, Bombay, India, January 1998.

[53] M. Shizawa, K. Mase, “Simultaneous Multiple Optical Flow Estimation”, CVPR,
1990.

[54] M. Shizawa, K. Mase, “A Unified Computational Theory for Motion Transparency
and Motion Boundaries Based on Eigenenergy Analysis”, CVPR, 1991.

[55] E. Simoncelli, E. Adelson, D. Heeger, “Probability Distributions of Optical Flow”,
CVPR, pages 310-315, Maui, 1991.

[56] A. Singh, “An Estimation-Theoretic Framework for Image-Flow Computation”, Proc.
ICCV, pages 168-177, 1990.

[57] A. Singh, “Optical Flow Computation: A Unified Perspective”, IEEE Computer
Society Press, 1992.

[58] R. Szeliski, S. Avidan, P. Anandan, “Layer Extraction from Multiple Images
Containing Reflections and Transparency”, CVPR, pp. 246-253, 2000.

 120

[59] C.-K. Tang, G. Medioni, “Integrated Surface, Curve, and Junction Inference from
Sparse 3D Data Sets”, ICCV, pages 818-824, Bombay, India, Jan. 1998.

[60] C.-K. Tang, G. Medioni, “Extremal Feature Extraction from 3D Vector and Noisy
Scalar Fields”, Visualization '98, pages 95-102, Research Triangle Park, North
Carolina, Oct 1998.

[61] C.-K. Tang, G. Medioni, “Robust Estimation of Curvature Estimation from Noisy 3D
Data for Shape Description”, ICCV, pages 426-433, Corfu, Greece, Sept 1999.

[62] C.-K. Tang, G. Medioni, M.-S. Lee, “Epipolar Geometry Estimation by Tensor Voting
in 8D”, ICCV, pages 502-509, 1999.

[63] P.H.S. Torr, D.W. Murray, “A Review of Robust Methods to Estimate the
Fundamental Matrix”, IJCV, 1997.

[64] S. Ullman, “The Interpretation of Visual Motion”, MIT Press, 1979.

[65] J. Wang, E. Adelson, “Representing Moving Images with Layers”, IEEE Trans. on
Image Processing Special Issue: Image Sequence Compression, 3(5):625-638, Sept
1994.

[66] Y. Weiss, “Smoothness in Layers: Motion Estimation Using Nonparametric Mixture
Estimation”, CVPR, pages 520-526, Puerto Rico, 1997.

[67] Y.-T. Wu, T. Kanade, J. Cohn, C.-C. Li, “Optical Flow Estimation Using Wavelet
Motion Model”, ICCV, pages 992-998, Bombay, India, January 1998.

[68] Z. Zhang, “Determining the Epipolar Geometry and Its Uncertainty: A Review”, IJCV,
27(2), pp. 161-195, 1998.

