Homework 4

(Due March 19)

1. (24 pts) Translate the following expression into (a) postfix and (b) prefix notation:
$(b+\operatorname{sqrt}(b \times b-4 \times a \times c)) /(2 \times a)$
2. (26 pts) Some languages (e.g., Algol 68) do not employ short-circuit evaluation for Boolean expressions. However, in such languages an if...then...else construct (which only evaluates the arm that is needed) can be used as an expression that returns a value. Show how to use if...then...else to achieve the effect of short-circuit evaluation for A and B and for A or B.
3. (24 pts) Consider a midtest loop, here written in C, that processes all lines in the input until a blank line is found:
```
for ( ; ; )
{
    line = read_line();
    if (all_blanks(line)) break;
    process_line(line);
}
```

Show how you might accomplish the same task in C using a (a) while and (b) do loop, if break instructions were not available.
4. (26 pts) Write a tail-recursive function in Scheme to compute n factorial ($\mathrm{n}!=1 \times 2 \times \ldots \times n$). You will probably want to define a "helper" function, as discussed in the textbook.
5. (Extra Credit - 10 pts) Give an example in C in which an in-line subroutine may be significantly faster than a functionally equivalent macro. Give another example in which the macro is likely to be faster. Hint: think about applicative versus normal-order evaluation of arguments.

