CS326 - Programming Languages, Concepts and Implementation

Homework 5

(Due April 11)

1. (25 pts) Suppose we are compiling for a machine with 1-byte characters, 2-byte shorts, 4byte integers, and 8 -byte reals, and with alignment rules that require the address of every primitive data element to be a multiple of the element's size. Suppose further that the compiler is not permitted to reorder fields. How much space will be consumed by the following array? Explain.
```
A : array [0..9] of record
    s : short
    c : char
    t : short
    d : char
    r : real
    i : integer
```

2. (25 pts) For the following code specify which of the variables $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are type equivalent under (a) structural equivalence, (b) strict name equivalence, and (c) loose name equivalence.

Type $\quad T=$ array [1..10] of integer $\mathrm{S}=\mathrm{T}$
a : T
b : T
c : S
d : array [1..10] of integer
3. (25 pts) We are trying to run the following C program:

```
typedef struct
{
    int a;
    char * b;
} Cell;
void AllocateCell (Cell * q)
{
    q = (Cell *) malloc ( sizeof(Cell) );
}
```

```
void main ()
{
    Cell * c;
    AllocateCell (c);
    c->a = 1;
    free(c);
}
```

The program produces a run-time error. Why?
Rewrite the functions AllocateCell and main so that the program runs correctly.
4. (25 pts) Consider the following C declaration, compiled on a 32-bit Pentium machine (with array elements aligned at addresses multiple of 4 bytes).

```
struct
{
    int n;
    char c;
} A[10][10];
```

If the address of $A[0][0]$ is 1000 (decimal), what is the address of $A[3][7]$? Explain how this is computed.
5. (Extra Credit - 10 pts) Write a small fragment of code that shows how unions can be used in C to interpret the bits of a value of one type as if they represented a value of some other type (non-converting type cast).

