2D Vector Math for Games

http://cse.unr.edu/~moberberger/2dvector.pdf

C# Source Code:

http://cse.unr.edu/~moberberger/2dvector.zip

Transformation

- We are talking about planar spaces
- 3d spaces need to be transformed
 - For instance, <x,y> = <-a,0,b>
 - There are infinite numbers of possible transformations
 - May include rotations
 - May include scaling
 - Probably won't require translations

Planar Coordinates

• We will use the following planar coordinate system:

Basic 2d Vector Operations

- Vector Addition (and implicitly subtraction)
- Scalar Multiplication (division, negation)
- Magnitude (vector length)
- Unit Vectors (magnitude, division)
- Vector Comparison (FP precision errors)
- Angle Conversion (to/from radians)
- Dot Product

Variables

- Uppercase: Vector Lowercase: Scalar
- <x,y> A Vector comprised of Scalar x and y
- Vectors- P: Point, V: Velocity
- Scalars- h: Heading, s: Speed
- $D = P_2 P_1$
 - D is a vector from P_1 to P_2
 - $-|D|=Distance between P_1 and P_2$

Angle Conversion

- Basic Trigonometry RADIANS!
- From Angle to Vector:
 x = cos(h) y = sin(h)
 <x,y> is a unit vector, say V_u: V = V_u *s for Velocity
- From Vector to Angle $h = \operatorname{atan2}(y, x)$ $s = \operatorname{length}(\langle x, y \rangle) \quad \operatorname{atan2}(y, x) = \begin{cases} \operatorname{arctan}(\frac{y}{x}) & x > 0 \\ \pi + \operatorname{arctan}(\frac{y}{x}) & y \ge 0, x < 0 \\ -\pi + \operatorname{arctan}(\frac{y}{x}) & y < 0, x < 0 \\ \frac{\pi}{2} & y > 0, x = 0 \\ -\frac{\pi}{2} & y < 0, x = 0 \end{cases}$

y = 0, x = 0

Desired Heading and Speed

- We approximate acceleration
- You know: t,P, V, Δs_{max} , Δh_{max} , s_{des} , h_{des} THEN: $h = atan2(V_v, V_x), s = |V|$ $\Delta h = h_{des} - h$ IF $abs(\Delta h) > \Delta h_{max} : \Delta h = sign(\Delta h) * \Delta h_{max}$ $\Delta s = s_{des} - s$ IF $abs(\Delta s) > \Delta s_{max}$: $\Delta s = sign(\Delta s) * \Delta s_{max}$ s += t Δ s h += t Δ h make sure: $-\pi <= h <= \pi$ V = s * <*cos*(h),*sin*(h)>

Moving towards a Point

- Vector to the target: $D = P_{target} P$
- Desired Angle to target: *atan2*(D_v, D_x)
- Desired Speed:
 - To reach target in 1 time unit, use |D|
 - Check against your "maximum speed"

Dot Product

- Analogous to the Law of Cosines
 c² = a² + b² 2abcos(θ)
- Dot Product is a scalar value
 A·B = A_X * B_X + A_Y * B_Y
 A·B = |A||B|cos(Θ)
- Rearranged

 cos(θ) = (A·B) / (|A||B|)
 θ = cos⁻¹((A·B) / (|A||B|))

Interception of Moving Objects

- Things We Know about Coyote and Roadrunner P_{c} , P_{R} , V_{R} , s_{c} : Positions, Tgt Velocity and My Speed t = time, $s_R = |V_R|$, D = P_c - P_R, d=|D| P_1 = Point of Interception S_ct $cos \Theta = (V \cdot D) / (ds_R)$
- Law of Cosines tells us: $(s_{C}t)^{2} = (s_{R}t)^{2} + d^{2} - 2s_{R}tdcos\theta$

This reduces to a Quadratic Equation in 't'

Interception Continued

- Using simple algebra, the equation becomes: $(s_c^2-s_R^2)t^2 + (2ds_R cos \Theta)t - d^2 = 0$ $a = (s_c^2-s_R^2)$ $b = (2ds_R cos \Theta)$ $c = -d^2$ You know all of these values already, even cos Θ !
- Solving the quadratic, you will get t₁ and t₂
 Set 't' to the smaller positive value of t₁ and t₂
 P₁ = P_R + V_R t
 Set desired heading based on "Moving Towards a

Point" using P_c and P₁

Interception Continued

- Degenerate Cases:
 - You are already at your target
 - Your target's speed is zero
 - If your target is not moving, then your target IS your intercept point
- Cases Preventing Interception
 - Your max speed is zero- you cannot move
 - The Quadratic cannot be solved
 - Or, it can be solved but both t₁ and t₂ are negative