
2D Vector Math for Games

http://cse.unr.edu/~moberberger/2dvector.pdf

C# Source Code:

http://cse.unr.edu/~moberberger/2dvector.zip

http://cse.unr.edu/~moberberger/2dvector.pdf
http://cse.unr.edu/~moberberger/2dvector.pdf
http://cse.unr.edu/~moberberger/2dvector.zip
http://cse.unr.edu/~moberberger/2dvector.zip

Transformation

• We are talking about planar spaces

• 3d spaces need to be transformed

– For instance, <x,y> = <-a,0,b>

– There are infinite numbers of possible
transformations

• May include rotations

• May include scaling

• Probably won’t require translations

Planar Coordinates

• We will use the following planar coordinate
system:

Basic 2d Vector Operations

• Vector Addition (and implicitly subtraction)

• Scalar Multiplication (division, negation)

• Magnitude (vector length)

• Unit Vectors (magnitude, division)

• Vector Comparison (FP precision errors)

• Angle Conversion (to/from radians)

• Dot Product

Variables

• Uppercase: Vector Lowercase: Scalar

• <x,y> - A Vector comprised of Scalar x and y

• Vectors- P: Point, V: Velocity

• Scalars- h: Heading, s: Speed

• D = P2 - P1

– D is a vector from P1 to P2

– |D|=Distance between P1 and P2

Angle Conversion

• Basic Trigonometry – RADIANS!

• From Angle to Vector:

x = cos(h) y = sin(h)

<x,y> is a unit vector, say VU: V = VU *s for Velocity

• From Vector to Angle

h = atan2(y, x)

s = length(<x,y>)

Desired Heading and Speed

• We approximate acceleration

• You know: t,P, V, Δsmax, Δhmax, sdes, hdes THEN:

h = atan2(Vy,Vx), s = |V|

Δh = hdes – h

IF abs(Δh) > Δhmax : Δh = sign(Δh) * Δhmax

Δs = sdes – s

IF abs(Δs) > Δsmax : Δs = sign(Δs) * Δsmax

s += tΔs h += tΔh make sure: –π <= h <= π

V = s * <cos(h),sin(h)>

Moving towards a Point

• Vector to the target: D = Ptarget – P

• Desired Angle to target: atan2(Dy, Dx)

• Desired Speed:

– To reach target in 1 time unit, use |D|

– Check against your “maximum speed”

Dot Product

• Analogous to the Law of Cosines
c2 = a2 + b2 – 2abcos(ɵ)

• Dot Product is a scalar value
A·B = AX * BX + AY * BY

A·B = |A||B|cos(ɵ)

• Rearranged
cos(ɵ) = (A·B) / (|A||B|)

ɵ = cos-1((A·B) / (|A||B|))

• Very useful for Interception of Moving Objects

Interception of Moving Objects

• Things We Know about Coyote and Roadrunner

PC, PR, VR, sC: Positions, Tgt Velocity and My Speed

t = time, sR = |VR|, D = PC – PR, d=|D|

PI = Point of Interception

cosɵ = (V·D) / (dsR)

• Law of Cosines tells us:

(sCt)2 = (sRt)2 + d2 - 2sRtdcosɵ

This reduces to a Quadratic Equation in ‘t’

Interception Continued

• Using simple algebra, the equation becomes:

(sC
2-sR

2)t2 + (2dsRcosɵ)t – d2 = 0

a = (sC
2-sR

2) b = (2dsRcosɵ) c = –d2

You know all of these values already, even cosɵ!

• Solving the quadratic, you will get t1 and t2

Set ‘t’ to the smaller positive value of t1 and t2

PI = PR + VR t

Set desired heading based on “Moving Towards a
Point” using PC and PI

Interception Continued

• Degenerate Cases:

– You are already at your target

– Your target’s speed is zero

• If your target is not moving, then your target IS your
intercept point

• Cases Preventing Interception

– Your max speed is zero- you cannot move

– The Quadratic cannot be solved

• Or, it can be solved but both t1 and t2 are negative

