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The inability of current "classical" AI systems to handle un- 
constrained interaction with tbe real world has recently lead to 
a search for new control architectures for autonomous agents. 
We argue that simpler natural animals already exhibit most of 
the properties required by an autonomous agent, and suggest 
that designers of autonomous agents should draw directly 
upon the neural basis of behavior in these animals. The rele- 
vant behavioral and neurobiological literature is briefly re- 
viewed. An artificial nervous system for controlling the behav- 
ior of a simulated insect is then developed. The design of this 
artificial insect is based in part upon specific behaviors and 
neural circuits from several natural animals. The insect exhibits 
a number  of characteristics which are remarkably reminiscent 
of natural animal behavior. 

1. Introduction 

The real world is complex, unpredictable, and 
dynamic. It is simply not possible for a designer to 
foresee all of the circumstances that might be 
faced by an agent in continuous, long-term inter- 
action with such an environment. Any truly intel- 
ligent agent must therefore possess a considerable 
degree of autonomy. It must be capable of flexibly 
adapting its behavioral repertoire to the moment 
to moment  contingencies which arise without ex- 
plicitly being told what to do in each situation. 
How should the control architecture of such an 
autonomous agent be organized? 

The classical AI answer to this question is 
largely drawn from introspection on conscious 
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human reasoning. Essentially the same process by 
which we deliberately reason through, say, an ana- 
gram is hypothesized to underlie all intelligent 
behavior. Abstractly, this technique can be for- 
mulated as the appropriate manipulation of sym- 
bolic representations of the situation. The problem 
of crossing a room, for example, can be for- 
mulated as a search over symbolic descriptions of 
the possible paths through all of the intervening 
obstacles in much the same way that solving an 
anagram can. The actual manipulations involved 
in the former problem may be very much more 
complex than for an anagram, and the structure of 
the symbolic representations may be very intri- 
cate, but the idea is essentially the same. This 
notion finds its strongest and most explicit expres- 
sion in the Physical Symbol System Hypothesis, 
which states that formal symbol manipulation is 
both a necessary and sufficient mechanism for 
general intelligent behavior [27]. 

In many ways, this methodology has served AI 
well. Thoughvarious issues were more difficult 
than originally anticipated, numerous fragments 
of intelligent behavior have now been generated in 
this manner. From the point of view of research 
on autonomous agents, however, all of these sys- 
tems currently suffer from several rather glaring 
deficiencies: (1) they are incapable of flexibly cop- 
hag with contingencies not explicitly foreseen by 
their designers, (2) their performance is extremely 
sensitive to the representational choices made by 
their designers, and brittle in the face of inevitable 
small deviations of the real world from these ab- 
stractions, and (3) their time complexity scales 
very poorly with problem size, becoming intracta- 
ble for even simple real world tasks. 

Of course, current shortcomings of the classical 
AI methodology do not necessarily compromise 
its fundamental soundness. The exploration of 
techniques for addressing these limitations is cur- 
rently an active area of AI research. However, in 
light of the continuing difficulties encountered by 
these efforts, we must at least face the possibility 
that much of our intelligent behavior, particularly 
that which involves taking action in the real world, 
is really not at all like conscious reasoning. For 
this reason, a number of researchers have begun to 
explore alternative architectures for the control of 
autonomous agents (e.g. [8,25,1,17]). 

Historically, AI has almost exclusively at- 

tempted to emulate human behavior. Our own 
approach to designing architectures for autono- 
mous agents is grounded in the recognition that 
human beings are not the only natural agents 
which exhibit interesting autonomous behavior. 
Given our current level of understanding, people 
may not even he the best examples to study at this 
time. When even the most mundane contingency 
arises in our everyday interactions with the real 
world, we may draw upon an incredibly diverse 
collection of cognitive skills and a lifetime's worth 
of accumulated knowledge to cope with it. But 
human beings are simply too complex to model 
whole, and very little is known about the mecha- 
nisms underlying human cognition. 

Therefore, our work has focused on the behav- 
ior of simpler natural animals, such as insects. 
While such animals cannot play chess or prove 
theorems, they are capable of autonomously 
adapting their limited behavioral repertoires to the 
moment to moment contingencies of the real world 
in ways that no current AI system can match. In 
order to tap this very rich source of potential 
insights for autonomous agent control structures, 
we have undertaken a careful study and simula- 
tion of the biological mechanisms underlying the 
autonomous behavior of simpler natural animals 
[4]. We call this endeavor Computational Neuro- 
ethology, since Ethology is the study of the behav- 
ior of animals in their natural environments [24], 
and Neuroethology is the study of the neural 
mechanisms underlying this behavior [9]. 

This paper is organized as follows. The next 
section describes some important principles of 
animal behavior. A brief introduction to some of 
the neural mechanisms which are known or hy- 
pothesized to underlie this behavior is then pro- 
vided in Section 3. With this background, Section 
4 describes an initial exploration into 
biologically-inspired control architectures for au- 
tonomous agents which we call the Artificial In- 
sect Project. By drawing upon specific behavioral 
principles and their underlying neural circuits from 
several natural animals, we have designed an 
artificial nervous system for controlling the behav- 
ior of a simulated insect. Finally, Section 5 dis- 
cusses the advantages and disadvantages of this 
approach to designing autonomous agent control 
architectures, and suggests some directions for 
future research. 
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2. Concepts in Animal Behavior 

Before embarking upon a detailed considera- 
tion of the underlying biological mechanisms, it is 
instructive to briefly consider the problem of nat- 
ural autonomous behavior from an ethological 
perspective. Unlike most artificial systems, natural 
animals obviously thrive very well in the real 
world. What are the common behavioral princi- 
ples exhibited by animals engaged in the everyday 
business of their existence? Which of these princi- 
ples might be useful in artificial autonomous 
agents? 

Perhaps the most important principle, readily 
apparent to even a casual observer, is that all 
animal behavior is adaptive in the following sense: 
as an animal confronts its environment, its behav- 
ior is continuously adjusted to meet the 
everchanging internal and external conditions of 
the interaction. For example, a feeding insect will 
suddenly turn and run if it is attacked by a 
predator [31]. In addition, a running insect will 
continuously alter its gait to compensate for 
changes in terrain and load, and can even adjust 
for amputations of one or more legs [15]. 

Broadly speaking, animal behavior can be di- 
vided into a number of major classes. Perhaps the 
simplest form of animal behavior is a reflex, in 
which some fast, stereotyped response is triggered 
by a particular class of environmental stimuli. The 
defining characteristic of a reflex is that the inten- 
sity and duration of the response is entirely 
governed by the intensity and duration of the 
stimulus [10]. Reflexes allow an animal to quickly 
adjust its behavior to sudden environmental 
changes. Reflexes are commonly employed for 
such things as postural control, withdrawal from 
painful stimuli, and the adaptation of gait to 
uneven terrain. 

Taxes or orientation responses are another sim- 
ple class of behavior [9]. These behaviors involve 
the orientation of an animal toward or away from 
some environmental agent, such as light, gravity, 
or chemical signals. For example, female crickets 
exhibit positive phonotaxis during courtship, that 
is they orient to the calling song of a male [26]. 

Fixed-action patterns are a somewhat more 
complex form of behavior [24]. A fixed-action 
pattern is an extended, largely stereotyped re- 
sponse to a sensory stimulus. The triggering 
stimulus for a fixed-action pattern is generally 

more complex and specific than for reflexes. The 
response usually involves a complex temporal se- 
quence of component acts. While such a pattern 
may be triggered by the occurrence of a specific 
sensory stimulus, its intensity and duration is not 
particularly stimulus-governed. In fact, once a 
fixed-action pattern has been triggered, it will 
usually run to completion even if the triggering 
stimulus is removed. An example of a fixed-action 
pattern is an escape response, in which some dis- 
tinguishing characteristic of an imminent predator 
attack triggers a sequence of evasive maneuvers on 
the part of the prey (e.g. cockroaches escaping 
from toads; [31]). The fixed-action patterns of 
individual animals can also be interrelated in intri- 
cate ways, as is demonstrated by the elaborate 
courtship rituals between the male and female 
members of many animal species (e.g. guppies; 
[31). 

Despite the ubiquity of such responses as re- 
flexes, taxes and fixed-action patterns, animal be- 
havior is by no means solely reactive. Factors 
internal to an animal can also play an important 
role in the initiation, maintenance, or modulation 
of a given behavior. The sign or intensity of re- 
flexes, for example, can change depending upon 
internal factors. The threshold for triggering most 
fixed-action patterns similarly varies with internal 
state. 

Behaviors which show no simple or rigid de- 
pendence on external stimuli, but are instead 
governed primarily, by the internal state of the 
animal, are known as motivated behaviors. In these 
behaviors, an animal's propensity to exhibit a 
given behavior such as feeding depends not only 
upon the presence of the appropriate environmen- 
tal stimuli (i.e. food), but also upon internal 
motivational variables (i.e. hunger). Motivated be- 
haviors are typically characterized by (1) grouping 
and sequencing of component behavior in time, 
(2) goal-directedness: the sequence of component 
behaviors generated can only be understood by 
reference to some goal, (3) spontaneity: the behav- 
ior can occur in the complete absence of any 
eliciting stimuli, (4) changes in responsiveness: the 
modulatory effect of the motivational state varies 
depending upon its level of arousal or satiation, 
(5) persistence: the behavior can greatly outlast 
any initiating stimulus, and (6) associative learn- 
ing [21]. 

Any individual animal consists of a large col- 
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lection of reflexes, taxes, and fixed-action pat- 
terns, many aspects of which are under at least 
some motivational control. As an animal con- 
fronts its environment with this diverse behavioral 
repertoire, it must properly coordinate its many 
possible actions into coherent behavior directed 
toward its long-term survival. Toward this end, 
the behavioral repertoire of a natural animal typi- 
cally exhibits a certain organization. Some behav- 
iors normally take precedence over others. Some 
behaviors are mutually exclusionary (i.e. any be- 
haviors which utilize the same motor apparatus 
for incompatible actions). Switches between dif- 
ferent behaviors depend both upon environmental 
conditions and internal state. These relationships 
are often described as rigid and strictly hierarchi- 
cal, with cleanly delineated behaviors and simple 
all or nothing switching between them. In reality, 
the relationships may be nonhierarchical, the 
organization can change depending upon the be- 
havioral context, and behaviors can partially over- 
lap so that discrete switches between them are 
sometimes difficult to identify. 

Though the number and variety of behavior 
clearly varies from species to species, all of the 
principles described above are exhibited in one 
form or another by all natural animals. This basic 
organization of behavior supports the abihty of 
natural animals to flexibly cope with real world 
environments. In addition to this propensity for 
adaptive behavior, however, natural animals also 
exhibit various forms of plasticity. Aspects of their 
future behavior can be modified as a result of 
their past history of interactions with the environ- 
ment. The time scale of these modifications may 
range from seconds to years. 

Several simple forms of plasticity have been 
identified in natural animals [18]. In habituation, 
the magnitude of response to a given stimulus 
decreases with repeated exposure to the stimulus. 
For example, while a loud clap may initially pro- 
duce a startle response in an animal, subsequent 
claps will produce a progressively weaker re- 
sponse. In some cases, the startle response may 
disappear altogether. Dishabituation is the sudden 
restoration of an habituated response following a 
particularly strong or noxious stimulus to the 
habituated sensory apparatus. An extremely loud 
clap, for example, might restore the habituated 
startle response. Sensitization involves an en- 
hancement of a response to a wide variety of 

stimuli following the presentation of another 
strong stimulus. For example, a strong pinch might 
increase the sensitivity of the startle response to 
sound. These simple forms of plasticity allow an 
animal to adjust its responsiveness to its environ- 
ment. 

None of the above forms of plasticity depend 
upon a pairing of the strong stimulus with the 
weaker one. In associative learning, on the other 
hand, pairing between two stimuh is crucial. In 
one form of associative learning, called classical 
conditioning, repeated pairing of an initially neu- 
tral stimulus with one which normally elicits some 
response will eventually lead to a situation in 
which the neutral stimulus alone triggers the re- 
sponse. A common example of classical condition- 
ing is when dogs salivate at the sound of a bell if 
the bell has been paired with the appearance of 
food in the past. In another form of associative 
learning, called instrumental conditioning, an 
animal's behavior is reinforced by events in its 
environment. For example, a rat will learn to 
avoid a particular food if prior ingestion of that 
food was followed by sickness [13]. These associa- 
tional forms of plasticity allow an animal to take 
into account the causal relationships within its 
particular environment. However, it is important 
to realize that most animals cannot make arbitrary 
associations, but only those that are biologically 
relevant. For example, though a rat can easily 
learn to associate illness with a particular odor or 
taste, it by and large cannot learn to associate 
illness with auditory or visual stimuli. 

Though there are several other forms of behav- 
ioral plasticity, we will mention only one more 
here. Latent learning is plasticity which does not 
involve particularly strong stimuh or obvious re- 
ward or punishment, as when an animal learns 
about its environment through exploration. For 
example, even ants can learn to run a maze simply 
by repeatedly being placed within it [33]. By these 
and many other forms of behavioral plasticity, 
animals fine-tune the behavioral repertoire with 
which they are genetically endowed to the exigen- 
cies of the particular environment in which they 
find themselves. 

In this section, we have focused primarily on 
characterizing the behavior of simpler animals. 
This emphasis should not be misunderstood. Hu- 
man beings are obviously not insects, and there 
are many aspects of human behavior of interest to 
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AI which clearly cannot be directly addressed 
through a study of simpler animals. We maintain, 
however, that there are many more which can. In 
particular, we strongly believe that the behavior of 
simpler animals has all of the ingredients which 
artificial autonomous agents require in order to 
flexibly cope with the real world: it is goal-ori- 
ented, adaptive, opportunistic, plastic, and robust. 
While the specifics of any given animal behavior 
are unlikely to be of direct use to an engineered 
agent, the general principles most certainly are. 

Furthermore, it is important to stress that sim- 
pler animals are not simple. Even C. elegans, a 
millimeter long worm with only 302 nerve cells (it 
has less than 1000 cells in its entire body!) has 
been shown to be capable of associative learning 
[20]. In addition, several species of insects are 
known to possess elaborate social structures and 
to employ complex forms of communication [42]. 
Finally, and perhaps most importantly from our 
perspective, the neurobiological mechanisms un- 
derlying many of the abovementioned behavioral 
principles are beginning to be worked out in sim- 
pler animals. It is to these neural mechanisms 
which we now turn. 

3. Neurobiological Basis of Animal Behavior 

Consider the following problem: You must de- 
sign the control system for a device which can 
autonomously accomplish some open-ended task 
(such as "stay out of trouble" or "keep this area 
clean") in a complex, dynamic, unpredictable, and, 
in many ways, operdy hostile environment. You 
have considerable general information about the 
structure of this environment, but cannot assume 
that this information is complete in any sense. 
Your system must therefore be capable of flexibly 
applying whatever behavioral repertoire you 
choose to give it to the actual situations it encoun- 
ters. At the same time, it must be capable of 
modifying aspects of that repertoire to better fit 
the particular environment in which it finds itself. 
This task is far easier than the one that evolution 
faces, because evolution cannot benefit from the 
knowledge of any conscious designer. The only 
information that it has about the environment is 
whether or not a given design succeeds in repro- 
ducing itself. On the other hand, because it has so 
tittle information to go on, its designs make the 

fewest possible assumptions, resulting in the most 
robust control systems in existence. Evolution's 
answer to this challenge is nervous systems. 

One of the most important facts about nervous 
systems is that they are extremely heterogeneous. 
Individual nerve cells possess complex intrinsic 
dynamics which endow ' them with often unique 
response properties. The activity of a nerve cell at 
any point in time is a function not only of the 
activity of other nerve cells which synapse upon it, 
but also of its shape, the characteristics and distri- 
bution of its current channels, its chemical en- 
vironment, and its internal biochemical state. Far 
from being unimportant biological details, most of 
these properties appear to be functional: nervous 
systems actually take advantage of them for con- 
trolling the behavior of animals [34,23]. 

Nervous systems are not only heterogeneous in 
their elements, but also in the interconnections 
between those elements. Nervous systems consist 
of a great many specific circuits which are 
organized into highly structured architectures. 
These architectures are constructed during the de- 
velopment of an animal, and have been designed 
over the course of evolution. They are responsible 
for the basic complement of behavior with which 
an animal is endowed [36]. 

How are nervous systems organized to support 
the behavioral principles discussed in the previous 
section? By a careful analysis of both the behavior 
and the underlying neural circuitry, this question 
is beginning to be answered in simpler animals. 
Underlying reflexes in all animals, for example, 
are essentially direct connections between the 
sensory neurons which recognize the sensory 
stimulus and the motor neurons responsible for 
the response. Because these reflex circuits typically 
consist of short, fast pathways involving no more 
than one or two synapses, they are capable of only 
rudimentary sensory analysis and stereotyped mo- 
tor responses. However, these reflex circuits may 
be affected by other circuits which interact with 
the neurons involved in the reflex [38]. Similarly, 
taxes and other orientation responses appear to be 
controlled by circuits which compare information 
from sensory receptors on each side of an animal's 
body [32]. 

All behaviors more complex than reflexes and 
taxes require the generation of temporally ex- 
tended patterns of motor activity (e.g. fixed-action 
patterns). What is the neural basis of such pat- 
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terns of behavior? How are the sequencing and 
timing of the individual components controlled? 
These questions have been most fully addressed in 
the context of rhythmic patterns of behavior, such 
as swimming or walking. The neural circuits un- 
derlying rhythmic behaviors are called central pat-  
tern generators [12]. They can be divided into two 
general categories: those employing pacemaker 
ceils and those employing network oscillators. 
Pacemaker cells are neurons which are capable of 
producing rhythmic bursts solely by virtue of their 
own intrinsic dynamics. Network oscillators, on 
the other hand, are networks of neurons which 
generate rhythmic patterns due to the synaptic 
interactions between their component neurons, 
none of which are capable of rhythmic activity in 
isolation. Often, central pattern generators involve 
networks of neurons with intrinsic bursting prop- 
erties, so that the final pattern depends both upon 
the intrinsic dynamics of each cell as well as the 
interconnections between them (e.g. [34]). In ad- 
dition, the details and phasing of the basic pattern 
produced by a central pattern generator can be 
greatly affected by sensory feedback, sometimes 
making it difficult to distinguish between a central 
pattern generator and a peripheral one [29]. 

What are the neural mechanisms by which the 
internal state of an animal affects its behavior? 
There is no simple answer to this question. Many 
internal processes exist which can effect the func- 
tion of particular neural circuits over time: (1) as 
already described, individual nerve cells have in- 
trinsic cellular dynamics which influence their op- 
eration; (2) reverberating pathways exist in which 
any activity in a circuit leads to increased activity 
within that same circuit via positive feedback 
loops; (3) the activity of one nerve cell can dy- 
namically alter the interactions between several 
others because neurons form connections on dif- 
ferent parts of other neurons; and (4) the activity 
of a given neural circuit can be greatly influenced 
by a variety of chemical means, such as hormones 
[35]. 

Many situations require that a decision be made 
whether or not to generate a specific behavior (e.g. 
some fixed-action pattern) in a given context. An 
early notion regarding the neural basis of such 
decisions was that of a command neuron [22]. In 
this view, sensory information converges on a 
single neuron which initiates the response by 
activating the appropriate pattern generation cir- 

cuitry only when the proper sensory stimulus is 
present. A few examples of putative command 
neurons have been found. However, though neu- 
rons whose activation can elicit specific motor 
patterns certainly exist, the notion of a single 
neuron being uniquely responsible for a given 
behavior has proven to be an oversimplification. 
Even for simpler animals, it now appears that 
behavioral choice is a much more distributed pro- 
cess. In general, decisions regarding which behav- 
iors to generate in a given environmental context 
appear to be achieved by consensus involving in- 
teractions between the circuits responsible for each 
behavioral pattern [2]. 

The cellular basis of several forms of behavioral 
plasticity have been extensively studied in some 
invertebrates. For example, in the marine mollusc 
Aplysia,  studies of habituation have shown that 
the decrement in the animal's response to a repe- 
titive stimulus is associated with synaptic depres- 
sion: due to the nature of the biochemical 
processes responsible for synaptic transmission, 
the efficacy of a specific synapse between the 
sensory neuron and the motor neuron involved in 
the response decreases with repeated use. Simi- 
laxly, sensitization is caused by an enhancement of 
synaptic transmission within the affected pathway. 
This enhancement is triggered by another neuron 
associated with the sensitizing stimulus which 
forms a synapse near the affected synapse and 
releases chemicals which increase its efficacy. Fi- 
nally, associative conditioning has similarities to 
sensitization in that the efficacy of a neural path- 
way is enhanced. In Aplysia,  it appears that the 
prior activity of the neuron that receives rein- 
forcement allows the affected synapse to be fur- 
ther enhanced by the mechanisms previously de- 
scribed for sensitization [19]. 

As a solution to the problem posed at the 
beginning of this section, nervous systems have 
many advantages. The flexibility and complexity 
of the individual neurons allow them to be config- 
ured in a large variety of ways. Because of their 
complexity, individual nerve cells can be utilized 
to process large amounts of information in paral- 
lel. The architectures that are typical of nervous 
systems are also highly distributed, with different 
parts performing overlapping, but not identical 
functions. Finally, the intrinsic properties of neu- 
rons, and their complex interactions, endow them 
with a rich dynamics that may be capable of 
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responding much more effectively to the rapidly 
changing exigencies of the real world than more 
discrete, centralized systems. 

4. The Artificial Insect Project 

In the preceding sections, we have argued that 
artificial autonomous agents should aspire to the 
behavioral capabilities of simpler natural animals. 
Given the current state of the art, a robot with 
"only" the behavioral repertoire of an insect 
would, we believe, be quite an !mpressive achieve- 
ment. We have further argued that the control 
architectures we design for our autonomous agents 
could benefit from a knowledge of the neural 
mechanisms underlying natural animal behavior. 
To test these ideas, we have undertaken the con- 
struction of a simulated insect whose behavior is 
controlled by an artificial nervous system. The 
overall design of this insect is inspired by the 
principles of natural animal behavior described in 
the previous two sections, and its nervous system 
is based in part on specific neural circuits in 
several natural animals. At present, the simulated 
insect is capable of locomotion, wandering, edge- 
following, and feeding, as well as properly manag- 
ing the interactions between these behaviors in 
order to survive within its environment for an 
extended period of time. In this section, we pro- 
vide an overview of this Artificial lnsect Project, 
which represents a first cut at designing a com- 
plete, biologically-inspired artificial agent. Full de- 
tails can be found in [4]. 

4.1. Physical Models 

As for a natural animal, the physical character- 
istics of an autonomous agent's body and environ- 
ment have a significant impact on the design of its 
controller. The body model we have chosen for the 
artificial insect is shown in Fig. 1. Though this 
design is loosely based on the American Cockroach 
[7], it resembles the basic body plan of many 
insects. The antennae contain tactile and chemical 
sensors. The mouth can open and close, and also 
contains tactile and chemical sensors. The insect 
has an internal store of energy, as well as a simple 
metabolism in which energy is consumed at a 
fixed rate. If its energy level ever reaches zero, the 
insect is removed from its environment. When the 

Fig. 1. Body model. 

insect's mouth closes over a patch of food, a fixed 
amour~t of energy is transferred from the food 
patch to the insect's internal energy store. 

The artificial insect has six legs, each with a 
foot that may be either up or down. When its foot 
is up, a leg assumes a fixed length and any forces 
it applies cause it to swing. When its fo6t is down 
(denoted by a black square), a leg stretches be- 
tween its foot and the body, and any forces it 
generates may result in movement of the body. 
Despite the fact that the insect is only two-dimen- 
sional, it can fall down. The insect becomes stati- 
cally unstable whenever its center of mass lies 
outside of the polygon formed by the feet which 
are down. If this condition persists for longer than 
40 msec, the insect is considered to have fallen 
down and the legs are no longer allowed to move 
the body. 

The environment in which the artificial insect 
exists contains unmovable obstacles and food 
patches. When an insect encounters an obstacle, it 
bounces back along its direction of motion a small, 
fixed amount. Food patches are circular areas of 
the environment which contain energy. These 
patches emit an odor whose strength is propor- 
tional to the number of food units in the patch, 
which is in turn proportional to its area. As odors 
diffuse through the environment, their intensity 
falls off as the inverse square of the distance from 
the center of the food patch. 

4.2. Neural Model 

In order to utilize neurobiological principles for 
controlling the behavior of an artificial agent, we 
must choose a neural model which strikes the 
proper balance between biological reality and 
computational and conceptual tractability. We 
cannot possibly model an entire nervous system at 
the detailed biophysical level. On the other-hand, 
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Fig. 2. Neural model. 

pair of intrinsic currents to design a model pace- 
maker neuron which is employed in several cir- 
cuits within the artificial insect's nervous system. 

Finally, our neural model supports compound 
synapses, in which the output of one neuron ef- 
fects the connection between two others. Com- 
pound synapses come in two varieties. Gating syn- 
apses allow the activity of one neuron to enable or 
disable connections between two others. Modula- 
tory synapses, on the other hand, allow a neuron 
to modify the strength of a connection between 
two others in a multiplicative fashion. 

as discussed in Section 3, certain biological char- 
acteristics appear to be fundamental to the way 
nervous systems control behavior. Our neural 
model is therefore intermediate in complexity be- 
tween biological nerve cells and the formal neu- 
rons typically employed in artificial neural net- 
works. The model is shown schematically in Fig. 
2. 

The output of a model neuron corresponds to 
the firing frequency of a nerve cell. In the model, 
this frequency is a nonlinear function of the neu- 
ron's potential. We have employed saturating lin- 
ear threshold functions with an initial jump dis- 
continuity to represent this relationship (see inset). 
Three parameters characterize this function: the 
threshold voltage at which the neuron begins to 
fire, the minimum firing frequency, and the gain. 
An RC circuit is used to capture the ability of 
nerve cells to temporally sum their inputs. Model 
neurons are interconnected by weighted synapses 
through which they can inject current into one 
another. These aspects of the model are similar, 
though not identical, to several neural models that 
have been previously explored in the field of artifi- 
cial neural networks (e.g. [16]). 

One of the most striking differences between 
real nerve cells and the formal neurons that are 
typically employed in artificial neural network 
research is their rich internal dynamics. Nerve 
cells are not simple functions, but dynamical sys- 
tems which are capable of spontaneous activity 
and whose input /output  characteristics change 
over time. Without modeling the detailed bio- 
physical mechanisms responsible for these char- 
acteristics, we have nevertheless captured their net 
effect through the addition of intrinsic currents to 
our model. These currents may be both time and 
voltage dependent. For example, we have used a 

4.3. Locomotion 

All of the other behaviors require some means 
for the artificial insect to traverse its environment. 
Therefore, the first behavior we sought to imple- 
ment was locomotion [6]. In locomotion, each leg 
must swing rhythmically. However, because the 
insect can fall down, the controller must also 
properly coordinate the movements of the six indi- 
vidual legs in order to achieve successful locomo- 
tion. 

The design of the neural circuit which controls 
locomotion in the artificial insect is largely based 
on the work of Pearson and his colleagues on the 
neural basis of locomotion in the American 
cockroach [28]. While a complete circuit has not 
yet been worked out, several principles of its oper- 
ation have been identified [30]. (1) each leg is 
probably controlled by a separate central pattern 
generator, (2) reflexes involving leg position and 
load play an important role in shaping the output 
of the central pattern generators, and (3) the 
central pattern generators controlling different 
pairs of legs are probably coupled by some form 
of inhibition. 

During walking, each leg rhythmically alter- 
nates between a swing phase and a stance phase. 
During the swing phase, the foot is up and the leg 
is swinging forward. During the stance phase, the 
foot is down and the leg is swinging back, propell- 
ing the body forward. These basic movements are 
produced by the pattern generator circuit shown 
in Fig. 3. There are six copies of this circuit, one 
for each leg, except that a single command neuron 
LC makes the same two connections on all six leg 
controllers. The design of this circuit is based 
upon Pearson's Flexor Burst-Generator Model 
[281. 
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Fig. 3. Leg controller. 

The alternating swing and stance movements of 
each leg are primarily produced by the central 
pattern generator shown in sold lines in Fig. 3. 
Each leg is controlled by three motor neurons. 
The swing and stance motor neurons determine 
the force with which the leg is swung forward or 
backward, respectively, while the foot motor neu- 
ron controls whether the foot is up or down. A 
stance phase is produced when the foot is down 
and the stance motor neuron is active. Periodi- 
cally, a swing phase is initiated by a burst of 
activity produced by the pacemaker neuron P. 
This activity lifts the foot and swings the leg 
forward by inhibiting the foot and stance motor 
neurons and exciting the swing motor neuron. 
Another stance phase begins when the pacemaker 
burst terminates. The alternating swing/stance 
cycle required for walking can thus be produced 
by rhythmic bursting in P. Note that both the 
force applied by the leg during each stance phase 
and the time between bursts in P depend upon the 
steady level of excitation supplied by the locomo- 
tion command neuron LC. 

Most central pattern generators require some 
sensory feedback to fine-tune the basic pattern. In 
our controller, this information is supplied by two 
sensors which signal when a leg has reached an 
extreme forward or backward angle (shown with 
dashed lines in Fig. 3). When a leg is all the way 
back, the backward angle sensor encourages it to 
swing by exciting the pacemaker. The forward 
angle sensor, on the other hand, encourages the leg 

to terminate the current swing by inhibiting the 
pacemaker. In addition, the direct connections 
from the forward angle sensor to the motor neu- 
rons (shown with dotted lines in Fig. 3), comprise 
a stance reflex which smooths the transition from 
swing to stance. 

In order to generate statically stable gaits, the 
movements of each individual leg must be prop- 
erly coordinated or the insect will fall down. This 
coordination is achieved by appropriate coupling 
of the central pattern generators controlling each 
leg. One useful rule of thumb is that adjacent legs 
should not swing at the same time. This constraint 
is implemented by mutual inhibitory connections 
between the pacemakers of adjacent legs, as shown 
in Fig. 4. For example, when the middle right leg 
is swinging, the front and back right legs and the 
middle left leg are discouraged from also swing- 
ing, but the other legs are unaffected. 

While these constraints generate statically sta- 
ble gaits at high speeds of walking, at lower speeds 
they are not sufficient to guarantee statically sta- 
ble gaits. The slower gaits of many animals exhibit 
a stepping sequence known as the metachronal 
wave, in which a wave of swings progresses from 
the rear of the animal to the front. In insects, for 
example, the back leg swings, then the middle leg, 
then the front leg on each side of the body. This 
appears to be a particularly stable pattern of 
stepping. Metachronal waves were implemented in 
our model by increasing the leg angles of the two 
rear legs, which lowers the natural frequency of 
their pattern generators due to the sensory feed- 
back [14]. Because of the inhibitory coupling be- 
tween the pacemakers of adjacent legs, this results 
in entrainment between the pacemakers on each 
side of the body. In the stable phase relationship 

< / 

( ) :  i 
Fig. 4. Central coupling between pacemakers. 
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Fig. 5. A comparison of the gaits generated by the artificial insect (fight) and natural insects (left; [41]). Leg labeling conventions are 
shown at top. 

results from this entrainment, the swing of any 
given leg immediately follows the one behind it. 

Using this locomotion controller, the insect ex- 
hibits a continuum of statically stable gaits as the 
firing frequency of the locomotion command neu- 
ron LC is varied. Gaits can be conveniently de- 

scribed by their footfall patterns. In this represen- 
tation, a black bar is displayed during the swing 
phase of each leg. The space between bars repre- 
sents the stance phase. Selected gaits exhibited by 
the artificial insect are shown at the right in Fig. 5 
as the firing frequency of LC is varied from lowest 
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(Top) to highest (Bottom). At low levels of LC 
activity, the metachronal waves on each side of the 
body are very apparent. However, they increas- 
ingly overlap as LC activity increases until the 
tripod gait appears at the fastest walking speed. In 
this gait, the front and back legs on each side of 
the insect swing and stance together with the 
middle leg on the opposite side. This sequence of 
gaits bears a striking resemblance to those that 
have beeri described by Wilson [41] for natural 
insects (Fig. 5; Left). 

This sequence of gaits emerges from the inter- 
action between the dynamics of the neural cir- 
cuitry responsible for locomotion and the body 
and environment in which it is embedded. In 
order to better understand the operation of this 
neural network, we undertook a series of lesion 
studies, in which the response of the controller to 
the removal of various elements was examined 
[11]. We briefly summarize some of our results 
here. 

In general, we found the locomotion controller 
to be remarkably robust to removal of any single 
element or connection. The lesion of one compo- 
nent often led to compensatory effects in other 
components, although the overall robustness of 
the controller to further perturbations always de- 
creased with any lesion. Indeed, we found the 
interaction between the central and peripheral 
components of the controller to be quite unex- 
pectedly subtle. For example, lesioning connec- 
tions from the backward angle sensors to the 
pacemakers in the rear legs completely abolished 
the metachronal wave in slower speed gaits, but 
left the tripod gait virtually unaffected. In con- 
trast, higher speed gaits were more sensitive to 
lesions of the central inhibitory connections be- 
tween pacemakers than were lower speed gaits. 
This suggests that the higher speed gaits are prim- 
arily generated centrally, while lower speed gaits 
are more dependent upon sensory information. 

While the command neuron would appear to be 
important to the generation of all gaits, it is not, 
in fact, essential. For example, the full range of 
normal gaits were exhibited even after complete 
removal of LC if the insect was pushed along by 
an external force. In addition, removing all of the 
connections from LC to the six pacemakers had 
no effect whatsoever on a walking insect. 

When these same six connections were removed 
before an insect was allowed to establish a normal 

gait, the reason for these remarkable results be- 
came clear. A normal insect usually establishes a 
stable gait within a single step. However, an insect 
with this lesion required well over a dozen steps to 
achieve the proper coordination. O n t h e  other 
hand, once a normal gait was established, the 
lesioned insect was indistinguishable from a nor- 
mal one. It appears that LC normally acts to set 
the burst frequency of the pacemakers close to the 
final value required for a given speed of walking, 
and then the sensory information simply fine-tunes 
them. However, in the complete absence of this 
central information, the sensory feedback alone is 
still sufficient to establish normal gaits, though 
this process is cruder and takes longer than nor- 
mal. 

4. 4. Wandering 

Once an insect is capable of locomotion, it can 
begin to wander through its environment if it also 
has an ability to turn. In straight-line locomotion, 
the legs apply forces which translate the insect's 
body. Turning was implemented by also allowing 
the legs to apply lateral forces to the body, thereby 
rotating it. Since the neural circuitry responsible 
for wandering behavior in insects has not yet been 
worked out, we designed a simple neural network 
which is capable of generating the necessary mo- 
tor patterns [4]. In this controller, two pacemaker- 
like neurons whose burst and interburst character- 
istics vary randomly are used to excite the motor 
neurons controlling the lateral extension of the 
front legs at random intervals and for random 
periods of time. 

4.5. Edge-Following 

An animal must have some means for coping 
with any obstacles it encounters as it wanders 
through its environment. One strategy that is com- 
monly employed by insects is edge-following ([7], 
p. 373). During edge-following, an insect main- 
tains a nearly parallel orientation between its body 
and the edge of the obstacle it is following. If the 
angle between the insect and the edge is too small, 
the insect must turn toward the edge so as to 
increase this angle. If this angle is too large, the 
insect must decrease it by turning away from the 
edge. In addition, a momentary loss of contact 
with the edge should not terminate the behavior. 
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Of course, if the insect is unable to reestablish 
contact within a certain period of time, then its 
attempts to do so should cease. Thus, edge-follow- 
ing exhibits behavioral hysteresis: once triggered, 
it persists for a short period of time even after the 
sensory stimulus which initially triggered it has 
been removed. Unfortunately, the neural circuitry 
controlling edge-following behavior in insects is 
currently unknown. We therefore designed a neu- 
ral network which is capable of generating edge- 
following behavior with the characteristics de- 
scribed above [4]. There are two copies of this 
controller, one for each antenna. 

4.6. Feeding 

As previously discussed, motivated behaviors 
are among the most interesting and complex be- 
haviors exhibited by simpler animals. Feeding is a 
prototypical motivated behavior in which attain- 
ment of the goal object (food) is clearly crucial to 
an animal's survival. In this case, the relevant 
motivational state is hunger. When an animal is 
hungry, it will exhibit a sequence of appetitive 
behaviors which serve to identify and properly 
orient the animal to food. Once food is found, 
consummatory behaviors are generated to ingest it. 
On the other hand, a satiated animal may ignore, 
or even avoid, sensory stimuli which suggest the 
presence of food [21]. 

An animal's interest in feeding (its feeding 
arousal) may be a function of more than just its 
energy requirements. Other factors, such as the 
exposure of an animal to the taste, odor, or tactile 
sensations of food, can significantly increase its 
feeding arousal. This relationship between feeding 
and arousal, in which the very act of feeding 
further enhances an animal's interest in feeding, 
leads to a form of behavioral hysteresis. Once 
food is encountered, an animal may feed well 
beyond the internal energy requirements which 
initiated the behavior. In many animals, this hys- 
teresis is thought to play a role in the patterning 
of feeding behavior into discrete meals rather than 
continuous grazing [37]. At some point, of course, 
the ingested food must be capable o f  overriding 
the arousing effects of consummation, or the 
animal would feed indefinitely. 

Because the artificial insect possesses a simple 
metabolism and a limited energy store, it too 
requires some form of feeding behavior in order to 

Antenna Chemical Sensor Antenna Chemical Sensor 

Lelt ~ t r o n g l h  

~ Feeding Arousal 

Energy Sensor 
Fig. 6. Appetitive controller. 

survive for any extended period of time. Based in 
part upon neuroethological data on the feeding 
behavior of the marine mollusc Aplysia, we have 
designed neural controllers for feeding in this in- 
sect. An appetitive controller is responsible for 
finding food when the insect is in need of energy 
by following the odor which diffuses from a food 
patch. Once a food patch has been found, a sep- 
arate consummatory controller is responsible for 
the actual ingestion. This controller also imple- 
ments the arousal and satiation characteristics de- 
scribed above. 

The appetitive component of feeding behavior 
in the artificial insect is an example of a taxis. The 
appetitive controller is shown in Fig. 6. Its design 
follows the general outlines of several proposed 
neural circuits controlling taxes in various animals, 
but it is not directly based upon any specific 
circuit. This controller consists of two compo- 
nents. The first is responsible for orienting the 
insect to a food patch by following its odor. These 
odor signals detected by the chemical sensors in 
each antenna (ACS) are compared (by LOS and 
ROS) and the difference between them is used to 
generate a turn toward the stronger side by excit- 
ing the corresponding turn interneuron (LT or 
RT) by an amount proportional to the strength of 
the odor gradient. These turn interneurons con- 
nect to motor neurons controlling the lateral ex- 
tension of the front legs. 



R.D. Beer et aL/  Biological Perspectioe on Autonomous Agent Design 181 

Mogth Taetite Sensor Mouth Chernieel Sensor 

Food Present 

, ~ C o  . . . . . .  toryC . . . . .  d 

Mouth Open 

Fig. 7. Consummatory controller. 

Feeding Arousal 

Energy Sensor 

The second component of the appetitive con- 
troller is responsible for controlling when the in- 
sect orients to food. Though the odor gradient is 
continuously being sensed, the connections from 
the odor strength neurons (LOS and ROS) to the 
turn neurons (LT and RT) are normally disabled, 
preventing this information from actually turning 
the insect. As the insect's energy level falls, how- 
ever, so does the activity of its energy sensor (ES). 
This gradually releases the spontaneously active 
feeding arousal neuron (FA) from inhibition. 
When the insect becomes sufficiently aroused to 
fire the search command neuron (SC), the connec- 
tions between the odor strength neurons and the 
turn neurons are enabled by gating synapses from 
SC, and the insect begins to orient to food. 

The consummatory component of feeding be- 
havior is a fixed-action pattern which is triggered 
by the presence of food. The consummatory con- 
troller is shown in Fig. 7. When chemical (MTS) 
and tactile (MCS) sensors in the mouth signal that 
food is present and the insect is sufficiently 
aroused to feeding, the consummatory command 
neuron CC fires. Both tactile and chemical signals 
are required to prevent attempts to ingest nonfood 

patches and to prevent consummation from begin- 
ning before the food is actually reached (due to 
the diffusion of odors). Once CC fires, it triggers 
the bite pacemaker neuron (BP) to generate the 
rhythmic bursts necessary for driving the motor 
neuron (MO) which opens the mouth. Because the 
threshold of the consummatory command neuron 
(CC) is lower than that of the search command 
neuron (SC), an insect which is not sufficiently 
aroused to actively search for food may neverthe- 
less consume food that is presented directly to its 
mouth. 

The motor neuron controlling the mouth also 
makes an excitatory connection onto the feeding 
arousal neuron, which in turn makes an excitatory 
modulatory connection onto the connection be- 
tween the command neuron and the bite pace- 
maker. The net effect of these excitatory connec- 
tions is a positive feedback loop: biting move- 
ments excite FA, which causes BP to burst more 
frequently, thereby generating more frequent bi- 
ting movements which further excite FA until its 
firing frequency saturates. This positive feedback 
loop is inspired by work on the neural basis of 
feeding arousal maintenance in Aplysia [39]. 

As the insect consumes food, its energy level 
begins to rise. This increasing activity both in- 
hibits FA directly, and decreases the gain of the 
positive feedback loop via an inhibitory modula- 
tory synapse onto the connection between MO 
and FA. At some point, this effect will overcome 
the positive feedback and activity in FA will cease, 
causing the insect to stop feeding. This neural 
mechanism is based upon a similar one hypothe- 
sized to underlie the satiation of feeding in Aplysia 
[40]. Thus, complex interactions between the en- 
ergy sensor (ES) and the feeding arousal neuron 
(FA) implement the motivational state governing 
feeding behavior in this insect. 

With these two neural controllers in place, the 
feeding behavior of t'he artificial insect exhibits 
four of the six characteristics of motivated behav- 
ior defined by Kupfermann (1974) and presented 
in Section 2: 

Grouping and sequencing of  behaoior in time. A 
"hungry" artificial insect generates appetitive and 
consummatory behaviors with the proper se- 
quence, timing, and intensity in order to obtain 
food. 

Goal-Directedness. Regardless of its environ- 
mental situation, a hungry insect will generate 
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movements which serve to obtain food. Thus, at 
certain times, the behavior of the artificial insect 
can be understood only by reference to an internal 
goal. 

Changes in responsiveness due to a change in 
internal state. While a hungry insect will attempt 
to orient to and consume any nearby food, a 
satiated one will ignore it. In addition, once a 
hungry insect has consumed sufficient food, it will 
walk right over the food patch which initially 
attracted it. 

Persistence. If the artificial insect is removed 
from food before i t  has fed to satiation, its feeding 
arousal will persist for some time. 

One technique that has been applied to the 
study of arousal and satiation in natural animals 
is to examine the time interval between successive 
bites as an animal feeds under various conditions. 
In Aplysia, for example, the interbite interval pro- 
gressively decreases as an animal begins to feed 
(showing a buildup of arousal) and increases as 
the animal satiates. In addition, the rate of rise 
and fall of arousal depends upon the initial degree 
of satiation [37]. 

It is interesting to compare these results to 
those obtained from similar experiments on the 
artificial insect. Food was directly presented to 
artificial insects with differing degrees of satiation, 
and the time interval between successive bites was 
recorded for the entire resulting consummatory 
response. Above approximately 80% satiation, in- 
sects could not be induced to bite. Below this 
level, however, insects began to consume the food. 
As these insects fed, the interbite interval de- 
creased until some minimum was reached as feed- 
ing arousal built up (Fig. 8). The rate of arousal 
build-up was slowest for insects with the highest 
initial level of satiation. In fact, an insect which 
was already 75% satiated never achieved full 
arousal. 

As the feeding insects neared satiation, the 
interbite interval again increased as arousal waned. 
It is interesting to note that, regardless of the 
initial level of satiation, all insects in which biting 
was triggered fed until their energy stores were 
approximately 99% full. The appropriate number 
of bites to accomplish this were generated in all 
eases. Feeding behavior in the artificial insect thus 
exhibits a number of very interesting characteris- 
tics which are quite reminiscent of natural animals. 
These issues are further explored in [5]. 
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Fig. 8. Build-up of arousal and satiation. 

4. 7. Behavioral Choice 

As described above, the artificial insect is capa- 
ble of locomotion, wandering, edge-following, and 
feeding (which in turn consists of appetitive and 
consummatory component behaviors). Many of 
these behaviors are potentially incompatible be- 
cause they share the same motor apparatus. For 
example, the wandering, edge-following, and ap- 
petitive controllers all utilize the lateral extensors 
of the front legs to turn the insect, often in oppo- 
site directions. In addition, while locomotion is 
crucial to these three behaviors, locomotion dur- 
ing the consummatory behavior would be disas- 
trous. The artificial insect must therefore con- 
stantly decide what to do next given its current 
internal and external situation. How should its 
nervous system be organized so that the many 
individual neural controllers always generate glob- 
ally coherent behavior? 

Generally speaking, feeding should take prece- 
dence over edge-following, which in turn should 
take precedence over wandering. The artificial in- 
sect's behavioral repertoire can therefore be 
organized as shown in Fig. 9. Each major behav- 
ior is represented by an ellipse. Locomotion is not 
explicitly represented as a separate behavior, since 
it is implicitly utilized by most of the other behav- 
iors. In addition, certain other important interac- 
tions, such as that between the edge-following 
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S 
Fig. 9. Behavioral organization. 

controllers on each side of the body (crucial in 
comers), are not explicitly represented in this di- 
agram. Sensory stimuli which play a role in tri- 
ggering a given behavior are shown as rectangular 
boxes, while the motivational state governing feed- 
ing is represented by a diamond. The interactions 
between these various components are illustrated 
by excitatory and inhibitory connections. This di- 
agram roughly corresponds to that which an 
Ethologist might construct to describe the interre- 
lationships between the various behaviors of a 
natural animal. 

In general, whenever a higher order behavior is 
triggered, it suppresses lower order behaviors. 
Note, however, that the diagram in Fig. 9 is not 
strictly hierarchical. While feeding normally takes 
precedence over edge-following, this precedence 
reverses if an obstacle blocks the insect's path to 
food. In this case, the insect follows the edge of 
the obstacle in the hopes of getting around it. The 
relationship between these two behaviors is there- 
fore dependent upon the environmental context. 

The excitatory and inhibitory connections in 
Fig. 9 are meant only to illustrate the interactions 
between the artificial insect's various behaviors. 
How can the interactions in this diagram be im- 
plemented neurally? In some cases, the required 
interactions between two behaviors can be directly 
implemented by explicit connections between the 

corresponding command neurons. For example, 
edge-following behavior can suppress wandering 
via direct inhibitory connections from a key neu- 
ron in each of the edge-following controllers to a 
key neuron in the wandering controller. 

The neural implementation of other interac- 
tions is more complex. T h e  edge-following and 
appetitive controllers are particularly interesting 
in this regard. Neither of these controllers can 
simply suppress the other because situations exist 
in which either one should dominate. The neural 
implementation of this relationship therefore re- 
quires additional circuitry which modifies the in- 
teraction between these two controllers depending 
upon the environmental context. Thus, behavioral 
choice in the artificial insect is implemented in a 
distributed fashion: decisions are made by con- 
sensus among the various neural controllers rather 
than by a centralized decision module. A complete 
discussion of the neural circuitry which mediates 
these behavioral interactions can be found in [4]. 

The artificial insect's complete nervous system, 
which implements the behavioral repertoire il- 
lustrated in Fig. 9, contains a total of 78 model 
neurons and 156 model synapses. The capabilities 
of this nervous system are illustrated in Fig. 10, 
which shows the path followed by an artificial 
insect as it solves a simple but important problem 
in its environment. At (1), the insect is low on 
energy and immediately begins to locomote to- 
ward the food patch at the upper left (note that 
obstacles do not block the diffusion of odor). At 
(2), however, it collides with the intervening wall 
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Fig. 10. An illustration of the artificial insect's behavioral 
repertoire~ 
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and begins to follow its edge. When the insect 
loses contact with the wall at (3), it briefly tries to 
reestablish contact by turning back toward it. 
When no further contact is forthcoming, the insect 
begins to wander. Note that, due to the inverse 
square decay of odor intensity with distance, the 
insect's chemosensors can no longer detect the 
food patch at this point. After a short period of 
wandering, it collides with the right wall at (4) and 
begins to follow it, negotiating a comer in the 
process. As it continues to follow this edge, the 
insect once again comes within range of the odor 
at (5). It immediately leaves the wall it was follow- 
ing and heads toward the food patch, finally feed- 
ing successfully at (6). 

5. Discussion 

While it would certainly never be mistaken for 
a natural insect, the artificial insect described 
above nevertheless exhibits a number of character- 
istics which are strikingly reminiscent of the au- 
tonomous behavior of simpler natural animals. It 
is capable of locomotion, wandering, edge-follow- 
ing, and feeding. Its locomotion controller, which 
is directly based upon the neurobiological data for 
cockroach walking, can generate a continuum of 
statically stable gaits simply by varying the activ- 
ity of a single neuron. These gaits are quite similar 
to those that have been described for natural 
insects. Lesion studies of this controller have dem- 
onstrated a remarkable robustness and subtlety of 
operation. The feeding behavior of the artificial 
insect similarly displays many of the characteris- 
tics associated with motivated behavior in natural 
animals, including a build-up of arousal and satia- 
tion as feeding progresses. Finally, the artificial 
insect is capable of flexibly organizing its behav- 
ioral repertoire in a variety of ways in order to 
survive within its simulated environment. We be- 
lieve that this richness is a direct consequence of 
the biological details which we have incorporated 
into our model. 

The artificial insect currently suffers from a 
number of limitations in its present form. While 
portions of its nervous system are based directly 
upon neurobiological data (e.g. locomotion and 
feeding), other portions are rather ad hoc. Even 
the biologically-inspired controllers had to be 
fine-tuned by trial and error (there axe over 500 

parameters in the insect's nervous system). We 
would have preferred a more principled approach 
to these issues, but the required neurobiological 
data was simply not available. Because we were 
interested in designing a complete autonomous 
agent rather than modeling only isolated pieces of 
behavior, we were forced to fill in many missing 
details. Only further study of natural nervous sys- 
tems and considerably more design experience with 
artificial ones will increase the sophistication of 
our neural controller designs and deepen the 
principles upon which they are based. 

The behavioral repertoire of the artificial insect 
is also currently rather limited. While it does ex- 
hibit, in one form or another, most of the behav- 
ioral characteristics described in Section 2, its 
repertoire is stiU quite impoverished compared to 
that of any natural animal. In addition to locomo- 
tion, wandering, edge-following, and feeding, in- 
sect behavior typically includes fleeing, fighting, 
nest building, foragi_ng, grooming, mating, and 
communication. Some of these behaviors would 
certainly be useful to an artificial agent, and they 
are all interesting objects of study in their own 
right. Unfortunately, although there is a rich body 
of literature on the ethology of these behaviors, 
neural circuitry for many of them is not currently 
available. 

Also conspicuously absent from the artificial 
insect is any form of plasticity. Plasticity is clearly 
crucial to an autonomous agent, and several neu- 
ral mechanisms for it were mentioned in Section 3. 
However, we chose to focus first on nervous sys- 
tem design. Plasticity is a means by which evolu- 
tionarily good designs are fine-tuned to the par- 
ticular environment of an individual animal. It is 
not a process for producing good designs in the 
first place from unstructured controllers. Now that 
we have designed a nervous system which is capa- 
ble of endowing the artificial insect with the basic 
behavior essential to its survival, we cart begin to 
explore the behavioral implications of introducing 
plasticity into specific portions of this nervous 
system. 

In conclusion, we believe that the behavior of 
even simpler natural animals already exhibits most 
of the characteristics which we seek to instill in 
artificial autonomous agents. Animal behavior is 
goal-oriented, adaptive, opportunistic, plastic, and 
robust. All of these qualities are crucial for con- 
tinuous, long-term interaction with the real world. 
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F u r t h e r m o r e ,  we  feel  tha t  the  cu r r en t  level  o f  

u n d e r s t a n d i n g  of  the  neura l  basis  o f  b e h a v i o r  in 

s imp le r  an ima l s  is suf f ic ien t ly  m a t u r e  tha t  f ru i t fu l  

i n t e r ac t ions  b e t w e e n  N e u r o e t h o l o g y  and  A I  a re  

possible .  T h e  ar t i f ic ia l  insect  tha t  we  have  de-  

sc r ibed  represen t s  on ly  o n e  e x a m p l e  o f  such  in te r -  

ac t ion .  A grea t  m a n y  o the r s  a r e  poss ib le .  
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