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ABSTRACT 
Object tracking is a complex, yet essential task to be 
addressed in any video surveillance application. Many 
real-time techniques proposed in the literature rely on a 
frame-to-frame matching of objects. This paper describes 
a technique which takes into consideration the inherent 
temporal coherence that exists across frames, thus being 
able to robustly perform tracking while handling difficult 
situations such as object acceleration and partial 
occlusion. SIFT (Scale Invariant Feature Transform) 
approaches have been shown to perform well for object 
recognition, due to their robustness to noise, changes in 
illumination and viewpoint. In this work we propose to 
use a SIFT-based method for tracking image features 
across frames. Tracked SIFT features provide the 
displacement of each interest point in the image, which 
along with image coordinates and frame number 
constitute a feature vector. All feature vectors are added 
to a temporal buffer and clustered in order to identify and 
track coherently moving regions. The proposed clustering 
method uses an improved K-Means technique where K is 
determined using a CI (Confidence Interval) metric. We 
demonstrate our method in the context of a real-time 
traffic surveillance application. 
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1.  Introduction 
 
Robust and efficient matching of image features or 
regions is an important prerequisite to many problems in 
computer vision. The success of higher level processes 
such as object recognition, classification or tracking 
depends heavily on the quality of image matching. A 
simple and fast approach to matching is through region 
correlation – however, this technique has little use in real 
world applications where changes in illumination, 
viewpoint or scale, as well as partial occlusions are 
common. Objects that undergo partial occlusion or even 
complete occlusion for a few frames pose particular 
challenges. Various techniques [1][2] that rely on the 
continuous appearance of the entire object for the purpose 
of recognition fail in this context. Employing local 
features in matching helps alleviate this problem and has 

led to successful approaches in many applications 
including object recognition, texture recognition, and 
image retrieval [3][4][5]. It has been shown that SIFT-
based descriptors perform particularly well in this respect 
[6]. 

Visual object tracking appears as an essential component 
of many applications in videoconferencing, vision-based 
surveillance and monitoring, or image and video 
understanding. A wide range of methods have been 
presented in literature, targeting the problem of visual 
tracking. One of the most common methods – with many 
variations – is blob tracking, which usually emphasizes 
the difference between the current image observation and 
a model of the background. Such approaches assume that 
the image regions (blobs) extracted in this manner 
correspond to the actual foreground objects in the scene 
[7]. These algorithms have particular difficulty handling 
shadows, non-stationary parts of the background and 
occlusions.  

A closely related approach to blob tracking is based on 
tracking active contours representing the boundary of an 
object. Active contour-based tracking algorithms [8] 
represent the outline of moving objects as contours, which 
are updated dynamically in successive frames. These 
algorithms have drawbacks, such as their tracking 
accuracy is limited by a lack of precision in the location 
of the contour.  

Feature-based tracking algorithms perform tracking of 
objects by extracting elements, clustering them into 
higher level features and then matching the features 
between images. Feature-based tracking algorithms can 
further be classified into three subcategories: global 
feature-based methods, local feature-based methods, and 
dependence-graph-based methods. Global feature-based 
methods rely on features like color, centroid, and 
perimeters [9]. The features used in local feature-based 
algorithms include line segments, curve segments, and 
corner vertices [10]. In general, feature-based tracking 
methods can adapt successfully and rapidly to allow real-
time processing and tracking of multiple objects with the 
exception of dependence-graph-based methods [11]. 

In a different direction of research, recent efforts employ 
statistical models for representing video content. Each 
frame is represented in feature space (e.g. color, texture) 



via models such as a GMM model. Tracking across 
frames is then achieved by extended models, such as 
HMMs [12]. Greenspan et al. proposed a piecewise GMM 
model for probabilistic video modeling [13]. The video 
sequence is divided into temporal buffers which are 
segmented using GMM modeling. The results show a 
great potential for considering piecewise clustering as a 
viable option for tracking. However, their approach 
considers an entire image for modeling and therefore is 
less suitable for real-time application. A further difference 
between our approach and [13] is that color information is 
used in the feature vectors described in [13] instead of 
image velocity components. The results illustrate 
primarily objects without texture, where textured objects 
might indeed be difficult to handle by their algorithm.  
Our approach proceeds with a stage of background 
modeling and foreground extraction. SIFT features are 
extracted at points of interest inside the regions detected 
as foreground, then used for matching from one frame to 
the next. Each matched pair of SIFT features provides a 
displacement vector, equivalent to the image velocity of 
the point of interest. Within a temporal buffer we collect 
feature vectors that consist of this displacement, the 
image coordinates and the frame number. The frame 
number is normalized by the size of the temporal window 
considered. All feature vectors are processed using an 
improved K-Means algorithm to find the most dominant 
clusters, where the number of clusters is determined using 
a novel cluster statistics metric. The contribution of this 
work is the development of a robust, real-time SIFT-
based approach for object tracking that enforces the 
inherent temporal coherence across image frames, 
therefore handling difficult situations caused by 
significant object acceleration and partial occlusion. 

The remainder of the paper is organized as follows: 
Sections 2 describes the piecewise feature clustering 
algorithm, Section 3 presents and discusses our 
experimental results and Section 4 provides the 
conclusions and future extensions of this work. 
 
 
2.  Piecewise Feature Clustering 
 
2.1. Background Modeling and Foreground Detection 

Our method proceeds by detecting foreground regions in 
each image frame. This part of the system detects the 
moving objects (blobs) as simple image regions, without 
any assumption about the objects that they represent – 
e.g., vehicle or non-vehicle. 

In general, we assume that a static camera is used to 
capture the video in our application domain. However, 
due to inherent changes in the background itself, such as 
wavering trees and flags, rain or water surfaces, the 
background of the video may not be completely 
stationary. These types of backgrounds are referred to as 
quasi-stationary backgrounds. For our application 

purposes, we impose as requirements for the background 
modeling process that it is able to handle such quasi-
stationary backgrounds, while being fast enough for real-
time operation.  

We propose using a simple recursive learning method to 
model the background in order to satisfy these 
requirements. We employ an adaptive background model 
for the entire region of awareness, and for segmenting the 
novel objects that appear in foreground. Our approach 
involves learning a statistical color model of the 
background, and process a new frame using the current 
distribution in order to segment foreground elements.  

The algorithm has three main stages: learning, 
classification and post-processing. In the learning stage, 
we establish the background model using recursive 
learning [14]. We use all channels (red, green, and blue) 
of a color image for increased robustness. We assume that 
the pixel values tend to have Gaussian distribution and we 
estimate the mean and variance of the distribution using 
consecutive frames. In the classification stage, we classify 
the image pixels into foreground and background pixels 
based on the background model. As we assume a fixed 
camera position, we also specify a region of interest 
(ROI) in the scene where objects are expected to appear 
(the image regions corresponding to the road). This is 
done in order to further diminish the effects of quasi-
stationary backgrounds such as moving tree branches. 
Another advantage of using a ROI template is that it 
reduces the overall area to process for foreground object 
detection, hence speeding the algorithm.  

We calculate the background model by updating the 
values of mean and variance in the background model for 
each pixel in the image. Mean and variance are calculated 
by using the following formulas: 
݉݁ܽ݊ሺݔ, ሻݕ ൌ ሺ1 െ ሻܴܮ ൈ ݉݁ܽ݊ሺݔ, ሻݕ  ܴܮ ൈ ,ݔሺܫ    ሻݕ
,ݔሺݎܽݒ ሻݕ ൌ ሺ1 െ ܴܮ ൈ ሻܴܮ ൈ ,ݔሺݎܽݒ ሻݕ  ሺܴܮ ൈ
ሺܫሺݔ, ሻݕ െ ݉݁ܽ݊ሺݔ,   ሻ ሻ ሻଶݕ
where ܴܮ is the learning rate. 

In the classification stage, the pixel is classified as 
foreground if it satisfies the following inequality: 
,ݔሺܫ| ሻݕ െ ݉݁ܽ݊ሺݔ, |ሻݕ  ܶ ൈ ඥݎܽݒሺݔ,  , ሻݕ
where, ܶ is the threshold that determines the amount of 
foreground to be detected. 

Finally, in a post-processing stage, we group the detected 
foreground pixels into connected components and we 
create a list of blobs (foreground objects) associated with 
the current image frame. 
 
2.2. Estimation of a Feature Vector 

We propose to use a five-dimensional feature vector    
ൌ ݒ  ሺݔݒ, ,ݕݒ ,ݔ ,ݕ  are the image ݕݒ and ݔݒ ሻ, whereݐ
velocity components of an interest point, ݔ and ݕ are the 
coordinates of the interest point in the image plane, and t 



 
Fig. 1. SIFT features detected in an image. 

is time (frame number) normalized with respect to the 
temporal window considered. 

The interest points are determined by finding local 
extrema in the Difference-of-Gaussian (DoG) scale-space. 
The SIFT features are extracted for all such interest points 
detected. Each feature is classified as corresponding to 
one of the foreground blobs or to the background. For 
every feature corresponding to a particular blob, we try to 
find a match with the features found in the next frame 
within a neighborhood window. We consider that a match 
is found between two SIFT features when the Euclidean 
distance between the best match feature and the next best 
match feature is more than 60%. All the matching features 
for a corresponding blob are averaged to find the 
displacement vector. The new position of the blob is 
determined by the previous position of the blob and the 
displacement vector. Fig. 1 shows an example of detected 
SIFT features in an image. The arrows represent the 
direction and position of the SIFT features detected. Fig. 
2 shows the pseudo-code of the algorithm used for finding 
the best match SIFT features in consecutive frames. If 
match is found it returns the displacement vector between 
the matched features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Algorithm for calculating the displacement vector. 
 
 

2.3 Clustering 

Feature vectors corresponding to the foreground blobs are 
inserted into the temporal buffer. For all our experiments 
we used a temporal window of N=10 frames. After N 
frames have elapsed, all the feature vectors in the buffer 
are subjected to a clustering analysis process. Fig. 3 
depicts the block diagram of the piecewise feature 
clustering stage for object tracking, which also estimates 
the number of tracks (clusters). The subsequent N frames 
provide another set of clusters, which are matched using a 
nearest neighbor algorithm to create time consistent 
tracks. Fig. 4 shows the pseudo-code of the algorithm 
used for piecewise feature clustering. 

K-means [15] is one of the simplest unsupervised learning 
algorithms that address the well-known clustering 
problem. In order to classify a given data set into a certain 
number of clusters (assume k clusters) fixed a priori, the 
algorithm defines k centroids, one for each cluster. These 
centroids should be placed in such a way so that they are 
as far away from each other as possible. K-means may 
produce a poor clustering as the final result highly 
depends on initial cluster choices. 

A simpler way to prevent poor clustering due to 
inadequate seeding is to modify the basic k-means 
algorithm to obtain the improved k-means algorithm [16]. 

 
Fig. 3. Block diagram of the piecewise feature clustering. 
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Feature vectors are 
added to the temporal 
buffer for every 
frame. 

Next set of N frames 

Temporal buffer

Clustering analysis Clustering analysis 

List of clusters 

Nearest neighbor matching to establish tracks 

List of clusters 

Match(f1, PrevFeatureList(PF)) 
-matchScore1=99999 
-matchScore2=99999 
-For each SIFT feature f2 in the PF (Feature 
list of the previous frame) 
  matchScore= match(f1, f2) 
  If matchScore<matchScore1 then 
    matchScore2=matchScore1 
    matchScore1=matchScore 
  Else If matchScore<matchScore2 then 
    matchScore2=matchScore 
-If matchScore1<0.6*matchScore2 then 
  SIFT features f1 and f2 match 
  -Return the displacement vector between f2     
  and f1 
-Else 
  Return displacement vector=0 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Algorithm for the piecewise feature clustering. 
  
In improved k-means algorithm, we start with a large 
number of uniformly distributed seeds in the bounded 5-
dimensional feature space, but we reduce them 
considerably by eliminating those that are too close to one 
another. The test threshold is the average distance 
between seed vectors, which may be computed from a 
sample of seeds. Thus, we obtain a smaller number K of 
initial seeds that are uniformly distributed. Next, we 
assign each of the feature vectors to a seed with minimum 
distance and then eliminate the empty clusters and any 
clusters of a size less than p. Iteration now converges 
quickly to a large number of relatively small clusters. The 
closest ones are merged until stopping criteria are met or 
until there is only one cluster remaining. The XB (Xie-
Beni) measure [17] is one of the metrics used in previous 
approaches as a stopping criterion. However, the Xie-
Beni clustering validity measure used with the improved 
k-means algorithm does not always estimate the correct 
number of clusters. We introduce a new CI metric 
(Confidence Interval metric) that improves the clustering 
validity and gives optimal clusters in most cases.  

The CI metric uses the covariance of the clusters and tries 
to find the variance in the direction of the line joining the 
two cluster centers:  
if ܥ כ ሺ12ܫܥ  21ሻܫܥ  ൌ   |ܦ| 
then merging of the clusters continues. 

Here ܥ is the constant which controls the overlap, 12ܫܥ is 
the confidence interval of cluster 1 in the direction of 
cluster 2, 21ܫܥ is the confidence interval of cluster 2 in 
the direction of cluster 1, and ܦ is the Euclidean distance 
between the cluster centers. 

After eliminating small clusters, the improved K-means 
algorithm proceeds with merging. The conventional 
technique is a simple and effective one, merging the two 
clusters with the minimum distance between their cluster 
centers. But this strategy might fail in the case where two 

clusters are very close but still very compact and there is 
almost no overlap between them. In this case merging 
such clusters leads to erroneous results, because the 
minimum distance merging technique does not take into 
consideration the spread of individual clusters. To 
overcome this issue, we propose to use a confidence 
interval overlap measure (ܫܥைெ) in order to choose the 
best neighboring clusters which naturally belong to one 
cluster. The confidence interval overlap measure is 
calculated by the following formula for clusters 1 and 2: 
ைெܫܥ   ൌ  ሺ12ܫܥ   .|ܦ| / 21ሻܫܥ

This ratio is calculated for all combinations of clusters 
and the two clusters for which the ratio is maximal are 
chosen to be merged. Using this merging technique along 
with the minimum distance merging approach has been 
shown to produce very good results in most of our 
experiments. 
 
 
3.  Experimental Results 
 
We used the proposed approach for tracking vehicles in a 
vision-based traffic surveillance application. Fig. 5 shows 
an example of a tracked vehicle, where the green square 
represents the bounding box for the detected foreground 
region and the red arrow represents the displacement 
vector calculated using SIFT feature matching. Fig. 6 
shows an example of successful object tracking using 
piecewise feature clustering, where the red circles denote 
the clustered interest points. Their common color implies 
that they are in the same cluster (track) in this case. The 
vehicle shown in Fig. 6 was tracked successfully for more 
than 40 frames. Fig. 7 illustrates an example where object 
acceleration is present – a vehicle is turning and 
consequently the image velocity incorporated in the 
feature vector changes significantly. The successful 
tracking of the vehicle shows that our proposed algorithm 
is able to work even with such changes in the image 
velocity (which may be quite significant when the vehicle 
is close to the camera). Fig. 8 shows an example of 
successful tracking of three vehicles at the same time. The 
tracks for these vehicles are shown in three different 
colors, representing the separate tracks correctly 
identified. A potentially difficult situation should be noted 
in this example: the red circles overlap the green circles as 
the vehicle corresponding to red circles has arrived at the 
same place in the image where the vehicle corresponding 
to the green circles was a few frames ago. Despite this 
overlapping in the x and y coordinates, the algorithm 
successfully distinguished the tracks due to the inherent 
separation in the higher, five-dimensional feature space 
used, and that includes the normalized time component. 
Fig. 9 illustrates an example of object tracking in the 
presence of partial occlusion, where the green circles 
show that the car was successfully tracked although it 
passes behind parked cars and trees. The red circles 
represent another car that is currently out of this frame.  

PiecewiseClustering(PrevFeatureList(PF), Frame 
Number(FN), Temporal Buffer Length(N), 
PrevClusterList) 
-Calculate the SIFT features for the current 
frame and add them to the CurFeatureList 
-For each SIFT feature f1 in the PrevFeatureList
(Feature list of the previous frame) 
  DisplacemntVector(DV)=Match(f1,PF)  
  If |DV|>0 then 
    FeatureVector=(DVx, DVy, x, y, MOD(FN, N)) 
    -Insert the FeatureVector into the    
    Temporal Buffer 
-If MOD(FN, N)=0 
  -Do Clustering anlysis of the feature  
  vectors in Temporal Buffer using  
  Improved K-Means 
  -Add the clusters to the CurClusterList 
  -Do nearest neighbor matching for the  
  clusters in CurClusterList and  
  the clusters in PrevClusterList 
  -Clear the temporal buffer 
PrevClusterList=CurClusterList 
PrevFeatureList=CurFeatureList 



 
Fig. 5. An example foreground object detection (the green 
bounding box) and displacement vector calculated using 

SIFT feature matching (the red arrow). 
 
 

 
Fig. 6. An example of a successful object tracking using 

piecewise feature clustering. 
 
 

 
Fig. 7. An example of object tracking while the object 

(vehicle) was turning. 
 

 
Fig. 8. An example showing three objects being tracked 

simultaneously. The circles of three different colors 
represent three different tracks. 

 
 

 
Fig. 9. An example of object tracking in the presence of 

partial occlusion. 
 
4.  Conclusions and Future Work 
 
In this paper we have described a novel approach for 
object tracking using unsupervised clustering, through an 
improved k-means algorithm with a confidence interval 
metric. Our experimental results demonstrate the 
contribution of this work, as a robust, real-time SIFT-
based approach that enforces the inherent temporal 
coherence across image frames, therefore handling 
difficult situations caused by significant object 
acceleration and partial occlusion. 

Although the proposed algorithm works well in general, 
its performance degrades when the scene contains a large 
number of moving objects. In the presence of many blobs 
that are close to each other, the method tends to group 
these clusters together. This situation sometimes leads to 
an increased variance for the newly grouped cluster which 
attracts more distinct clusters to group with it, ultimately 



grouping all the feature vectors into a single cluster. The 
reason is that the current approach uses the piecewise 
clustering technique where clustering is done separately 
for each piece and the cluster matching is done on the 
nearest neighbor basis. The problem of over-merging can 
be addressed if the information from the previous piece 
can be used while clustering a new piece of video. A 
Kalman filter can be used to estimate the position of 
cluster centers and these cluster centers can be used as 
seeds for clustering during the next set of frames. GMM 
can also be used as a viable option to the improved k-
means algorithm employed in this paper. The accuracy of 
the clustering can also be increased if the SIFT features 
are augmented to the feature vector used for clustering. 
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