

Object Tracking Using Piecewise Feature Clustering

Amol Ambardekar, Mircea Nicolescu and Monica Nicolescu
Department of Computer Science and Engineering

University of Nevada, Reno
U.S.A.

ambardek@cse.unr.edu, mircea@cse.unr.edu, monica@cse.unr.edu

ABSTRACT
Object tracking is a complex, yet essential task to be
addressed in any video surveillance application. Many
real-time techniques proposed in the literature rely on a
frame-to-frame matching of objects. This paper describes
a technique which takes into consideration the inherent
temporal coherence that exists across frames, thus being
able to robustly perform tracking while handling difficult
situations such as object acceleration and partial
occlusion. SIFT (Scale Invariant Feature Transform)
approaches have been shown to perform well for object
recognition, due to their robustness to noise, changes in
illumination and viewpoint. In this work we propose to
use a SIFT-based method for tracking image features
across frames. Tracked SIFT features provide the
displacement of each interest point in the image, which
along with image coordinates and frame number
constitute a feature vector. All feature vectors are added
to a temporal buffer and clustered in order to identify and
track coherently moving regions. The proposed clustering
method uses an improved K-Means technique where K is
determined using a CI (Confidence Interval) metric. We
demonstrate our method in the context of a real-time
traffic surveillance application.

KEY WORDS
Computer vision, object tracking, and clustering analysis

1. Introduction

Robust and efficient matching of image features or
regions is an important prerequisite to many problems in
computer vision. The success of higher level processes
such as object recognition, classification or tracking
depends heavily on the quality of image matching. A
simple and fast approach to matching is through region
correlation – however, this technique has little use in real
world applications where changes in illumination,
viewpoint or scale, as well as partial occlusions are
common. Objects that undergo partial occlusion or even
complete occlusion for a few frames pose particular
challenges. Various techniques [1][2] that rely on the
continuous appearance of the entire object for the purpose
of recognition fail in this context. Employing local
features in matching helps alleviate this problem and has

led to successful approaches in many applications
including object recognition, texture recognition, and
image retrieval [3][4][5]. It has been shown that SIFT-
based descriptors perform particularly well in this respect
[6].

Visual object tracking appears as an essential component
of many applications in videoconferencing, vision-based
surveillance and monitoring, or image and video
understanding. A wide range of methods have been
presented in literature, targeting the problem of visual
tracking. One of the most common methods – with many
variations – is blob tracking, which usually emphasizes
the difference between the current image observation and
a model of the background. Such approaches assume that
the image regions (blobs) extracted in this manner
correspond to the actual foreground objects in the scene
[7]. These algorithms have particular difficulty handling
shadows, non-stationary parts of the background and
occlusions.

A closely related approach to blob tracking is based on
tracking active contours representing the boundary of an
object. Active contour-based tracking algorithms [8]
represent the outline of moving objects as contours, which
are updated dynamically in successive frames. These
algorithms have drawbacks, such as their tracking
accuracy is limited by a lack of precision in the location
of the contour.

Feature-based tracking algorithms perform tracking of
objects by extracting elements, clustering them into
higher level features and then matching the features
between images. Feature-based tracking algorithms can
further be classified into three subcategories: global
feature-based methods, local feature-based methods, and
dependence-graph-based methods. Global feature-based
methods rely on features like color, centroid, and
perimeters [9]. The features used in local feature-based
algorithms include line segments, curve segments, and
corner vertices [10]. In general, feature-based tracking
methods can adapt successfully and rapidly to allow real-
time processing and tracking of multiple objects with the
exception of dependence-graph-based methods [11].

In a different direction of research, recent efforts employ
statistical models for representing video content. Each
frame is represented in feature space (e.g. color, texture)

via models such as a GMM model. Tracking across
frames is then achieved by extended models, such as
HMMs [12]. Greenspan et al. proposed a piecewise GMM
model for probabilistic video modeling [13]. The video
sequence is divided into temporal buffers which are
segmented using GMM modeling. The results show a
great potential for considering piecewise clustering as a
viable option for tracking. However, their approach
considers an entire image for modeling and therefore is
less suitable for real-time application. A further difference
between our approach and [13] is that color information is
used in the feature vectors described in [13] instead of
image velocity components. The results illustrate
primarily objects without texture, where textured objects
might indeed be difficult to handle by their algorithm.
Our approach proceeds with a stage of background
modeling and foreground extraction. SIFT features are
extracted at points of interest inside the regions detected
as foreground, then used for matching from one frame to
the next. Each matched pair of SIFT features provides a
displacement vector, equivalent to the image velocity of
the point of interest. Within a temporal buffer we collect
feature vectors that consist of this displacement, the
image coordinates and the frame number. The frame
number is normalized by the size of the temporal window
considered. All feature vectors are processed using an
improved K-Means algorithm to find the most dominant
clusters, where the number of clusters is determined using
a novel cluster statistics metric. The contribution of this
work is the development of a robust, real-time SIFT-
based approach for object tracking that enforces the
inherent temporal coherence across image frames,
therefore handling difficult situations caused by
significant object acceleration and partial occlusion.

The remainder of the paper is organized as follows:
Sections 2 describes the piecewise feature clustering
algorithm, Section 3 presents and discusses our
experimental results and Section 4 provides the
conclusions and future extensions of this work.

2. Piecewise Feature Clustering

2.1. Background Modeling and Foreground Detection

Our method proceeds by detecting foreground regions in
each image frame. This part of the system detects the
moving objects (blobs) as simple image regions, without
any assumption about the objects that they represent –
e.g., vehicle or non-vehicle.

In general, we assume that a static camera is used to
capture the video in our application domain. However,
due to inherent changes in the background itself, such as
wavering trees and flags, rain or water surfaces, the
background of the video may not be completely
stationary. These types of backgrounds are referred to as
quasi-stationary backgrounds. For our application

purposes, we impose as requirements for the background
modeling process that it is able to handle such quasi-
stationary backgrounds, while being fast enough for real-
time operation.

We propose using a simple recursive learning method to
model the background in order to satisfy these
requirements. We employ an adaptive background model
for the entire region of awareness, and for segmenting the
novel objects that appear in foreground. Our approach
involves learning a statistical color model of the
background, and process a new frame using the current
distribution in order to segment foreground elements.

The algorithm has three main stages: learning,
classification and post-processing. In the learning stage,
we establish the background model using recursive
learning [14]. We use all channels (red, green, and blue)
of a color image for increased robustness. We assume that
the pixel values tend to have Gaussian distribution and we
estimate the mean and variance of the distribution using
consecutive frames. In the classification stage, we classify
the image pixels into foreground and background pixels
based on the background model. As we assume a fixed
camera position, we also specify a region of interest
(ROI) in the scene where objects are expected to appear
(the image regions corresponding to the road). This is
done in order to further diminish the effects of quasi-
stationary backgrounds such as moving tree branches.
Another advantage of using a ROI template is that it
reduces the overall area to process for foreground object
detection, hence speeding the algorithm.

We calculate the background model by updating the
values of mean and variance in the background model for
each pixel in the image. Mean and variance are calculated
by using the following formulas:
݉݁ܽ݊ሺݔ, ሻݕ ൌ ሺ1 െ ሻܴܮ ൈ ݉݁ܽ݊ሺݔ, ሻݕ ܴܮ ൈ ,ݔሺܫ ሻݕ
,ݔሺݎܽݒ ሻݕ ൌ ሺ1 െ ܴܮ ൈ ሻܴܮ ൈ ,ݔሺݎܽݒ ሻݕ ሺܴܮ ൈ
ሺܫሺݔ, ሻݕ െ ݉݁ܽ݊ሺݔ, ሻ ሻ ሻଶݕ
where ܴܮ is the learning rate.

In the classification stage, the pixel is classified as
foreground if it satisfies the following inequality:
,ݔሺܫ| ሻݕ െ ݉݁ܽ݊ሺݔ, |ሻݕ ܶ ൈ ඥݎܽݒሺݔ, , ሻݕ
where, ܶ is the threshold that determines the amount of
foreground to be detected.

Finally, in a post-processing stage, we group the detected
foreground pixels into connected components and we
create a list of blobs (foreground objects) associated with
the current image frame.

2.2. Estimation of a Feature Vector

We propose to use a five-dimensional feature vector
ൌ ݒ ሺݔݒ, ,ݕݒ ,ݔ ,ݕ are the image ݕݒ and ݔݒ ሻ, whereݐ
velocity components of an interest point, ݔ and ݕ are the
coordinates of the interest point in the image plane, and t

Fig. 1. SIFT features detected in an image.

is time (frame number) normalized with respect to the
temporal window considered.

The interest points are determined by finding local
extrema in the Difference-of-Gaussian (DoG) scale-space.
The SIFT features are extracted for all such interest points
detected. Each feature is classified as corresponding to
one of the foreground blobs or to the background. For
every feature corresponding to a particular blob, we try to
find a match with the features found in the next frame
within a neighborhood window. We consider that a match
is found between two SIFT features when the Euclidean
distance between the best match feature and the next best
match feature is more than 60%. All the matching features
for a corresponding blob are averaged to find the
displacement vector. The new position of the blob is
determined by the previous position of the blob and the
displacement vector. Fig. 1 shows an example of detected
SIFT features in an image. The arrows represent the
direction and position of the SIFT features detected. Fig.
2 shows the pseudo-code of the algorithm used for finding
the best match SIFT features in consecutive frames. If
match is found it returns the displacement vector between
the matched features.

Fig. 2. Algorithm for calculating the displacement vector.

2.3 Clustering

Feature vectors corresponding to the foreground blobs are
inserted into the temporal buffer. For all our experiments
we used a temporal window of N=10 frames. After N
frames have elapsed, all the feature vectors in the buffer
are subjected to a clustering analysis process. Fig. 3
depicts the block diagram of the piecewise feature
clustering stage for object tracking, which also estimates
the number of tracks (clusters). The subsequent N frames
provide another set of clusters, which are matched using a
nearest neighbor algorithm to create time consistent
tracks. Fig. 4 shows the pseudo-code of the algorithm
used for piecewise feature clustering.

K-means [15] is one of the simplest unsupervised learning
algorithms that address the well-known clustering
problem. In order to classify a given data set into a certain
number of clusters (assume k clusters) fixed a priori, the
algorithm defines k centroids, one for each cluster. These
centroids should be placed in such a way so that they are
as far away from each other as possible. K-means may
produce a poor clustering as the final result highly
depends on initial cluster choices.

A simpler way to prevent poor clustering due to
inadequate seeding is to modify the basic k-means
algorithm to obtain the improved k-means algorithm [16].

Fig. 3. Block diagram of the piecewise feature clustering.

t

Set of N frames

Temporal buffer

Feature vectors are
added to the temporal
buffer for every
frame.

Next set of N frames

Temporal buffer

Clustering analysis Clustering analysis

List of clusters

Nearest neighbor matching to establish tracks

List of clusters

Match(f1, PrevFeatureList(PF))
-matchScore1=99999
-matchScore2=99999
-For each SIFT feature f2 in the PF (Feature
list of the previous frame)
 matchScore= match(f1, f2)
 If matchScore<matchScore1 then
 matchScore2=matchScore1
 matchScore1=matchScore
 Else If matchScore<matchScore2 then
 matchScore2=matchScore
-If matchScore1<0.6*matchScore2 then
 SIFT features f1 and f2 match
 -Return the displacement vector between f2
 and f1
-Else
 Return displacement vector=0

Fig. 4. Algorithm for the piecewise feature clustering.

In improved k-means algorithm, we start with a large
number of uniformly distributed seeds in the bounded 5-
dimensional feature space, but we reduce them
considerably by eliminating those that are too close to one
another. The test threshold is the average distance
between seed vectors, which may be computed from a
sample of seeds. Thus, we obtain a smaller number K of
initial seeds that are uniformly distributed. Next, we
assign each of the feature vectors to a seed with minimum
distance and then eliminate the empty clusters and any
clusters of a size less than p. Iteration now converges
quickly to a large number of relatively small clusters. The
closest ones are merged until stopping criteria are met or
until there is only one cluster remaining. The XB (Xie-
Beni) measure [17] is one of the metrics used in previous
approaches as a stopping criterion. However, the Xie-
Beni clustering validity measure used with the improved
k-means algorithm does not always estimate the correct
number of clusters. We introduce a new CI metric
(Confidence Interval metric) that improves the clustering
validity and gives optimal clusters in most cases.

The CI metric uses the covariance of the clusters and tries
to find the variance in the direction of the line joining the
two cluster centers:
if ܥ כ ሺ12ܫܥ 21ሻܫܥ ൌ |ܦ|
then merging of the clusters continues.

Here ܥ is the constant which controls the overlap, 12ܫܥ is
the confidence interval of cluster 1 in the direction of
cluster 2, 21ܫܥ is the confidence interval of cluster 2 in
the direction of cluster 1, and ܦ is the Euclidean distance
between the cluster centers.

After eliminating small clusters, the improved K-means
algorithm proceeds with merging. The conventional
technique is a simple and effective one, merging the two
clusters with the minimum distance between their cluster
centers. But this strategy might fail in the case where two

clusters are very close but still very compact and there is
almost no overlap between them. In this case merging
such clusters leads to erroneous results, because the
minimum distance merging technique does not take into
consideration the spread of individual clusters. To
overcome this issue, we propose to use a confidence
interval overlap measure (ܫܥைெ) in order to choose the
best neighboring clusters which naturally belong to one
cluster. The confidence interval overlap measure is
calculated by the following formula for clusters 1 and 2:
ைெܫܥ ൌ ሺ12ܫܥ .|ܦ| / 21ሻܫܥ

This ratio is calculated for all combinations of clusters
and the two clusters for which the ratio is maximal are
chosen to be merged. Using this merging technique along
with the minimum distance merging approach has been
shown to produce very good results in most of our
experiments.

3. Experimental Results

We used the proposed approach for tracking vehicles in a
vision-based traffic surveillance application. Fig. 5 shows
an example of a tracked vehicle, where the green square
represents the bounding box for the detected foreground
region and the red arrow represents the displacement
vector calculated using SIFT feature matching. Fig. 6
shows an example of successful object tracking using
piecewise feature clustering, where the red circles denote
the clustered interest points. Their common color implies
that they are in the same cluster (track) in this case. The
vehicle shown in Fig. 6 was tracked successfully for more
than 40 frames. Fig. 7 illustrates an example where object
acceleration is present – a vehicle is turning and
consequently the image velocity incorporated in the
feature vector changes significantly. The successful
tracking of the vehicle shows that our proposed algorithm
is able to work even with such changes in the image
velocity (which may be quite significant when the vehicle
is close to the camera). Fig. 8 shows an example of
successful tracking of three vehicles at the same time. The
tracks for these vehicles are shown in three different
colors, representing the separate tracks correctly
identified. A potentially difficult situation should be noted
in this example: the red circles overlap the green circles as
the vehicle corresponding to red circles has arrived at the
same place in the image where the vehicle corresponding
to the green circles was a few frames ago. Despite this
overlapping in the x and y coordinates, the algorithm
successfully distinguished the tracks due to the inherent
separation in the higher, five-dimensional feature space
used, and that includes the normalized time component.
Fig. 9 illustrates an example of object tracking in the
presence of partial occlusion, where the green circles
show that the car was successfully tracked although it
passes behind parked cars and trees. The red circles
represent another car that is currently out of this frame.

PiecewiseClustering(PrevFeatureList(PF), Frame
Number(FN), Temporal Buffer Length(N),
PrevClusterList)
-Calculate the SIFT features for the current
frame and add them to the CurFeatureList
-For each SIFT feature f1 in the PrevFeatureList
(Feature list of the previous frame)
 DisplacemntVector(DV)=Match(f1,PF)
 If |DV|>0 then
 FeatureVector=(DVx, DVy, x, y, MOD(FN, N))
 -Insert the FeatureVector into the
 Temporal Buffer
-If MOD(FN, N)=0
 -Do Clustering anlysis of the feature
 vectors in Temporal Buffer using
 Improved K-Means
 -Add the clusters to the CurClusterList
 -Do nearest neighbor matching for the
 clusters in CurClusterList and
 the clusters in PrevClusterList
 -Clear the temporal buffer
PrevClusterList=CurClusterList
PrevFeatureList=CurFeatureList

Fig. 5. An example foreground object detection (the green
bounding box) and displacement vector calculated using

SIFT feature matching (the red arrow).

Fig. 6. An example of a successful object tracking using

piecewise feature clustering.

Fig. 7. An example of object tracking while the object

(vehicle) was turning.

Fig. 8. An example showing three objects being tracked

simultaneously. The circles of three different colors
represent three different tracks.

Fig. 9. An example of object tracking in the presence of

partial occlusion.

4. Conclusions and Future Work

In this paper we have described a novel approach for
object tracking using unsupervised clustering, through an
improved k-means algorithm with a confidence interval
metric. Our experimental results demonstrate the
contribution of this work, as a robust, real-time SIFT-
based approach that enforces the inherent temporal
coherence across image frames, therefore handling
difficult situations caused by significant object
acceleration and partial occlusion.

Although the proposed algorithm works well in general,
its performance degrades when the scene contains a large
number of moving objects. In the presence of many blobs
that are close to each other, the method tends to group
these clusters together. This situation sometimes leads to
an increased variance for the newly grouped cluster which
attracts more distinct clusters to group with it, ultimately

grouping all the feature vectors into a single cluster. The
reason is that the current approach uses the piecewise
clustering technique where clustering is done separately
for each piece and the cluster matching is done on the
nearest neighbor basis. The problem of over-merging can
be addressed if the information from the previous piece
can be used while clustering a new piece of video. A
Kalman filter can be used to estimate the position of
cluster centers and these cluster centers can be used as
seeds for clustering during the next set of frames. GMM
can also be used as a viable option to the improved k-
means algorithm employed in this paper. The accuracy of
the clustering can also be increased if the SIFT features
are augmented to the feature vector used for clustering.

Acknowledgements

This work was supported by the Office of Naval Research
award N00014-06-1-0611.

References

[1] E. Belogay, C. Cabrelli, U. Molter, R. Shonkwiler,

“Calculating the Hausdorff distance between curves,”
Information Processing Letters, v. 64, pp. 17-22, 1997.

[2] A. Thayananthan, B. Stenger, P.H.S. Torr, R. Cipolla,
“Shape context and chamfer matching in cluttered scenes,”
CVPR, v. 1, pp. 127-133, June 2003.

[3] V. Ferrari, T. Tuytelaars, and L. Van Gool, “Simultaneous
Object Recognition and Segmentation by Image
Exploration,” Proc. Eighth European Conf. Computer
Vision, pp. 40-54, 2004.

[4] S. Lazebnik, C. Schmid, and J. Ponce, “Sparse Texture
Representation Using Affine-Invariant Neighborhoods,”
Proc. Conf. Computer Vision and Pattern Recognition, pp.
319-324, 2003.

[5] K. Mikolajczyk and C. Schmid, “Indexing Based on Scale
Invariant Interest Points,” Proc. Eighth Int’l Conf.
Computer Vision, pp. 525-531, 2001.

[6] K. Mikolajczyk and C. Schmid, "A Performance
Evaluation of Local Descriptors," IEEE Transactions on
Pattern Analysis and Machine Intelligence, v. 27(10), pp.
1615-1630, 2005.

[7] D. Magee, "Tracking multiple vehicles using foreground,
background and motion models," Proceedings of ECCV
Workshop on Statistical Methods in Video Processing,
2002.

[8] D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B.
Rao, and S. Russell, “Toward robust automatic traffic scene
analysis in real-time,” Proceedings of International
Conference on Pattern Recognition, 126–131, 1994.

[9] R. Polana and R. Nelson, “Low level recognition of human
motion,” Proceedings of IEEE Workshop Motion of Non-
Rigid and Articulated Objects, pp. 77–82, 1994.

[10] B. Coifman, D. Beymer, P.McLauchlan, and J. Malik,
“Areal-time computer vision system for vehicle tracking
and traffic surveillance,” Transportation Res.: Part C, v. 6(
4), pp. 271–288, 1998.

[11] T. J. Fan, G. Medioni, and G. Nevatia, “Recognizing 3-D
objects using surface descriptions,” IEEE Trans. Pattern
Recognit. Machine Intell., v. 11, pp. 1140–1157, 1989.

[12] C. Bregler, “Learning and recognizing human dynamics in
video sequences,” IEEE Computer Vision and Pattern
Recognition (CVPR), June 1997.

[13] H. Greenspan, J. Goldberger, A. Mayer, “Probabilistic
space-time video modeling via piecewise GMM,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, v. 26(3), pp. 384 – 396, March 2004.

[14] A. Tavakkoli, M. Nicolescu, G. Bebis, “Robust Recursive
Learning for Foreground Region Detection in Videos with
Quasi-Stationary Backgrounds,” Proceedings of
International Conference on Pattern Recognition, pp. 315-
318, 2006.

[15] J. MacQueen, “Some methods for classification and
analysis of multivariate observations,” Proceedings of 5th
Berkeley Symposium, v. 1, pp. 281–297, 1967.

[16] Carl G. Looney, “Interactive clustering and merging with a
new fuzzy expected value,” Pattern Recognition, v. 35, pp.
2413-2423, 2002.

[17] X. L. Xie and G. Beni, “A Validity Measure for fuzzy
Clustering,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, v. 13(8), pp. 841-847, 1991.

