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ABSTRACT 
In this report, we describe an algorithm for a k-deep annotated 

prefix tree. The algorithm provides an alignment-free method for 

comparing nucleotide sequences in a computationally efficient 

manner. Differences in genomic sequences are measured by 

recording and comparing counts of words of length k or less in 

each sequence using the algorithm. Tree nodes are annotated with 

lists to store the number of times each word occurs in each of a 

group of sequences. Count differences among multiple sequences 

may be computed in a single tree traversal. Such a tree is built in 

linear time and spatially bounded by tree depth rather than 

sequence length(s).  We then compare sequence groups of  both E. 

coli and Influenza A virus H1N1 to demonstrate the power of a k-

deep prefix tree when used as sequence comparison tool. 

Categories and Subject Descriptors 

E.1 [Data Structures]: Trees 

General Terms 

Algorithms, Measurement, Experimentation, Languages. 

Keywords 

K-mer, prefix-tree, d square distance. 

1. INTRODUCTION 
A prefix-tree is a string compression algorithm which reduces 

prefix redundancy in a given set of strings.  Prefix-trees are tree 

graphs similar to tries and dictionaries in natural language 

processing and data compression.  A prefix-tree is built on a set of 

strings  X ∈ ∑* where ∑ is a finite alphabet. Each path from the 

root to any existing node is labeled by the spelling of a non-empty 

prefix of any strings in X. In natural language processing, tries 

enable linear time string matching [9] while dictionaries are used 

in the GNU zip (gzip) compression algorithm [18]. Tries built on 

the English alphabet, ∑ = {a,...,z} grow quickly with a branching 

factor of 26, and minimization algorithms are common [1].When 

comparing nucleotide sequences, prefix-trees may be built on a 

smaller alphabet, ∑ = {A, C, G, T} and can provide fast indexing 

of nucleotide words of multiple lengths.  A comparable structure 

was used in [3] to compare the 12-mer "languages" of human 

chromosomes 21 and 22.  Prefix-trees are also used in the 

assembly program SSAKE [18] to locate overlapping 25-mers 

between short nucleotide fragments.  

 

The k-deep prefix tree we present in this report is limited in depth 

to include only k levels. It is constructed from the k first 

characters of all non-empty prefixes of a single or set of genomic 

sequences. The number of nodes required is exponentially 

proportional to tree height (k) rather than the total length of 

sequences, as is the case with suffix trees [14]. This provides a 

compressed and partially or fully dynamically allocated index into 

all substrings up to a given length (k) found in a single or groups 

of sequences. While index based hash tables are generally used 

for this same purpose [2,4,11,12,15], prefix-trees can be more 

comprehensive because they may include information regarding 

nucleotide words of multiple lengths. Hash tables generally 

represent nucleotide word of a single length, and require large, 

contiguous blocks of memory for fast look up times.  A prefix-tree 

may be implemented with dynamic memory and is equivalent to 

multiple hash tables for each word length (1,..,k), with direct links 

between each word and its prefix and suffix(es). 

 

Our algorithm also includes node annotation. Tree nodes are 

annotated with substring occurrence counts, which record the 

number of times that a substring terminating at each node occurs 

in each of a set of sequences. Lists at each node allow the storage 

of information pertaining to multiple sequences in a single tree. 

This facilitates all-against-all sub word count differencing among 

a set of sequences in a single tree traversal. The use of tree node 

annotation is also seen in Generalized Suffix Trees to enables 

suffix comparisons among multiple sequences [6], and is 

discussed in detail in [5]. 

 

A k-mer denotes a substring (word) of a genomic nucleotide 

sequence of length k; a (1-k)-mer is a word of length k or less. 

Nucleotide word counts can form the basis of alignment-free 

sequence comparisons. Sequence comparisons derived from k-mer 

compositions have been used to construct phylogenies which 

encompass the tree of life [13], as well as enabled sub-species 

clustering of viral isolates [7]. The word length k best suited in k-

mer based comparative measures is often arbitrarily chosen, and 

must be addressed as a research question in its own right [16].  A 

fully annotated k-deep prefix tree allows data exploration and the 

inclusion of multiple word lengths in a single analysis. 

 

In the following, we describe annotated k-deep tree construction 

and its algorithmic complexity. We then describe how (1-k)-mer 

composition comparisons among multiple genomic sequences 

may be conducted in a single tree traversal. Finally, we illustrate 

these methods on two sample data sets. 



2. K-DEEP PREFIX TREE 

2.1 Tree Construction 

A single sequence k-deep prefix tree is built from all substrings of 

length k or less in a genomic sequence  𝑆𝑗 =  𝑠𝑗1
…𝑠𝑗 𝑙𝑗

 , where 

𝑠𝑗  ∈  𝐴,𝐶,𝐺,𝑇 , and 𝑙𝑗   denotes the length of  𝑆𝑗 .  Let 𝑤 be a 

substring of  𝑆𝑗 , and let  𝑤  denote its length. In the resulting tree, 

each path from the root to any internal or leaf node at level ℓ, 1≤ ℓ 

≤ k, spells a substring 𝑤 of 𝑆𝑗  such that  𝑤0 …𝑤ℓ−1  = 

 𝑠𝑗 𝑚
…𝑠𝑗𝑚+ ℓ

 , 0 < 𝑚 ≤   𝑆𝑗  − ℓ − 1. 𝑠𝑗𝑚  denotes the character 

at position in 𝑆𝑗  where substring 𝑤 begins. The tree is built in 

linear time proportional to  𝑆𝑗   by parsing 𝑆𝑗  once with a sliding 

window. 

 

Figure 1(a-e). Building a 3-deep annotated prefix-tree from 

the sequence "CATGAT". 

 

In Figures 1(a-f), building a 3-deep prefix-tree from the sequence 

"CATGAT" is illustrated.  Because each node is regarded as a 

prefix string termination, sentinel nodes marking end of strings 

are not required.  A sequence is parsed by a single spaced sliding 

window of length k, where in the given example k = 3. Each 

overlapping nucleotide string determined by the window is 

inserted into the tree. Each tree node may point to up to four 

children {'a'_child, 'c'_child, 'g'_child, 't'_child}.  The default 

value for all of a node’s children is set to NULL.  If a word path 

in the tree does not yet exist, it is built upon insertion.  This 

removes the potential for wasting memory on nodes which 

represent non-existent words in the set of sequences being 

examined.  

 

As a word is inserted into the tree, existing nodes may be 

traversed, or new nodes may be created. At each node involved, 

either in a traversal or creation, a count at that node is 

incremented. This process of editing each node that is passed 

through yields the inclusion of information regarding all 

substrings of length 1,… ,k. Nodes at any level of the tree, ℓ , 

1 ≤  ℓ ≤ k contain counts of all unique strings of length ℓ found 

in the sequence used to build the tree.  The length of a unique 

substring terminated at a node is implicitly represented by the 

nodes level in the tree. 

Count lists at each node allow the inclusion of multiple sequences 

in a single tree. If 𝑁 sequences are examined, each node contains 

an integer count list of length 𝑁. When parsing sequences 

𝑆𝑗 , j ∈  N, passing through a node causes an increment only at 

position j in the count list located at that node.  Figure 2 illustrates 

a 3-deep tree built from the sequences "CATGA" and "ATCAT". 

 

Figure 2. Node annotation for 2 sequences . 

 

In Figure 2, (1-k)-mer counts for “CATGA” are stored in the first 

index of the count list at each node. Counts for “ATCAT” are 

stored in the second index. By maintaining node based count lists, 

a single tree can contain the complete (1-k)-mer composition of 

multiple sequences. This can then lead to all-against-all k-mer 

based sequence comparisons in a single tree traversal.  

 

2.2 Algorithmic Complexity 

Assuming that N sequences are used to build a depth limited 

prefix tree, the asymptotic time required to build the tree is linear, 

⊖   S𝑗  
j=N

j=1   as each sequence 𝑆𝑗  need be parsed only once. If k 

is the maximum word length of interest, the maximum number of 

nodes in the tree is given by K, where K= 4xx=k
x=0  .  Each non-root 

node contains a list of counts containing the number of times that 

the prefix terminated at that node occurs in each sequence. Thus, 

the space required is asymptotically bounded by 𝛰 1 + (𝐾 − 1) ∗
𝑁 ≈  𝛰(𝐾 ∗ 𝑁). 

 

This can allow a space reduction of very long sequences. For 

example, a 10-deep tree constructed from 5 human sequences of 

chromosome 11 (approximate length ≈ 1.3 𝑥 108 base pairs) 

could maximally contain approximately  1.4 𝑥 106  nodes with 5 

integer counts, four pointer addresses (parent, 'a'_child, 'c'_child, 

'g'_child, 't'_child) and one character stored per node. The 

sequences alone would contain a sum of approximately 1.3 𝑥 109 

characters. A fully expanded 10-deep tree would reduce the total 

sequence space by at least 2 orders of magnitude.  

 

Space requirements may further be reduced by omitting word 

counts of nodes in upper levels of the tree. These nodes represent 

shorter k-mers and may sometimes be nonspecific enough for 



analysis. Assuming k-mers where k≤u are deemed non interesting, 

the space required would be bounded by 𝛰 𝑐 + 𝐾 ∗ 𝑁 , 𝑐 =

  4𝑥𝑥=𝑢
𝑥=0 ,𝐾 =   4𝑥𝑥=𝑘

𝑥=𝑢+1 . While this does not offer drastic 

improvement, it can prove useful when space becomes a limiting 

factor for large values of k. 

 

3. NODE BASED DISTANCE SCORING 

 

 
Figure 3. The specific word terminated and its occurrence 

counts may be determined at each node. 

 

The k-deep prefix-tree is a succinct method that enables sequence 

exploration and comparison.  Each non-root tree node includes the 

representation of a sequence substring, and the number of times 

the substring appears in a set of sequences (Figure 3). For 

example, at the node indicated in Figure 3, we may determine that 

the substring “TCA” appears only four times in the first of a set of 

sequences.  Note that if “TCA” did not occur in any sequence, the 

node in Figure 3 would not have been created. Determining the 

nucleotide word terminated by any node requires a trace back 

through parent pointers from that node to the root. This is 

accomplished in time linear to the tree level of the node, which is 

the length of the word. 

 

From a k-deep prefix-tree built upon 𝑁 sequences, an 𝑁𝑥𝑁 

distance matrix 𝑀 tabulating pair-wise distances may be 

completed by visiting each tree node only once while 

incrementally modifying matrix positions.  Each distance matrix 

entry 𝑀𝑖𝑗 , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 will be computed as the sum of the 

distance for each word 𝑤 between sequences 𝑆𝑖  and 𝑆𝑗 , for all 

words 𝑤  in the set 𝑊 of all (1-k)-mers found in the sequence set.  

Distance may be defined by the researcher as any count based 

measure. Distance matrices in this form provide a simple platform 

for sequence clustering and phylogenetic tree construction.  

 

Figure 4 provides the pseudocode for a recursive all against all 

comparison of non-root nodes. In this pseudocode, a pre-order 

tree traversal is conducted. Pair-wise distance scores among all 

sequence pairs  𝑖, 𝑗  are computed at each node. Resulting values 

are added to each corresponding matrix position. Thus after a tree 

traversal is complete, at each resulting matrix position: 

 

𝑀𝑖𝑗 =  𝑀𝑗𝑖 =   𝑇𝑟𝑒𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑤)

𝑊

𝑤

 

 

3.1 Example Comparisons 
As an example, we build k-deep prefix trees and compute distance 

matrices for two genomic data sets. The data sets are composed of 

microbial subspecies strains and contain sequences which are all 

similar in length. These data sets include; 1.) 12 HA segments of 

human H1N1 Influenza A virus and 2.) five complete Escherichia 

coli chromosomal sequences. Pair- wise sequence distances within 

data sets are computed using weighted 𝑑2 distance [17] 

calculations, a count based differencing measure. In the following 

section, the 𝑑2 distance, as presented by [17] is described.  

 

Tree depths are dependent on the data set. We follow the 

approximation in [16] suggesting that setting  𝑘 ≈ 𝑙𝑜𝑔4( 𝑆𝑛  ), 

where  𝑆𝑛   is sequence length allows for a sufficiently descriptive 

k value of prokaryotic sequences. As our data sets contain 

multiple sequences or varying length, we use average sequence 

length per data set so that 𝑘 ≈ 𝑙𝑜𝑔4( 𝑆𝑛  ). The best integer fit to 

our data yield k=5 for the H1N1 sequences and k=13 for the  

E.coli sequences.  

 

3.2 d
2
 Distance 

The 𝑑2 distance is a method for scoring k-mer count differences 

between genomic sequences. The 𝑑2 comparison is an example of 

a comparison metric which can be implemented on a node by 

node basis. Comparing k-mer counts between genomic sequences 

is referred to as the 𝑑𝑘
2   distance. This measure has been used to 

cluster expressed sequence tabs (EST's) [8]. The 𝑑𝑘
2  distance 

between two sequences 𝑆𝑖 and 𝑆𝑗   is described in [17] as: 

𝑑𝑘
2 𝑖, 𝑗 =   𝑝𝑥

4𝑘

𝑥=1

(𝑐𝑥 𝑖 − 𝑐𝑥 𝑗  )2                              (1) 

where k is a fixed integer word length, cx i  and cx j  indicate 

counts of word  wx  in sequences 𝑆𝑖  and 𝑆𝑗  respectively.  

 

𝑓𝑜𝑟 𝑖 = 1:𝑁 − 1 

            𝑓𝑜𝑟 𝑗 = 𝑖 + 1:𝑁 

𝑀𝑗𝑖 =  𝑀𝑖𝑗  += 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) 

Tree_distance (node * curnode){ 

 

 if(curnode →a_child != NULL) 

      Tree_distance (curnode →a_child) 

 if(curnode →c_child != NULL) 

     Tree_distance (curnode →c_child) 

 if(curnode →g_child != NULL) 

      Tree_distance (curnode →g_child) 

 if(curnode →t_child != NULL) 

      Tree_distance (curnode →t_child) 

    }end Tree_distance 

Figure 4.  Pseudocode for distance scoring pre-order tree 

traversal. 



The information required for the calculation of 𝑑𝑘
2  distances 

between sequence pairs is contained within the described k-deep 

nucleotide tree. Confining k to a single value equates to 

examining nodes at a single tree depth. Current usage of this 

measure is often limited to nucleotide words of length six, i.e. k = 

6 [10].  However, in [17] it is suggested that it may be 

advantageous to allow a range of values for k, with: 

𝑑2 𝑖, 𝑗 =   𝑑𝑘
2 𝑖, 𝑗                                                    (2)

𝑢

𝑘= 𝑚

 

where 𝑚 is the user defined minimum word length  and 𝑢 is the 

user defined maximum.  If 𝑚 = 1 and 𝑢 = 𝑘, computing this 

distance score is  achieved by visiting each node in a k-deep prefix 

tree in a single traversal. It is this measure that we use to compute 

distance matrices for our example datasets.  The asymptotic time 

required for a node based d2 traversal is: 

𝑂(𝐾 𝑥  𝑁 + 
𝑁𝑥 𝑁 − 1 

2
 = 𝑂 𝐾𝑁2                         (3)  

where K= 4xx=k
x=1  and 𝑁 is the number of sequences examined. 

 

The k-deep tree allows the repeated iterative trial of any number 

of comparison subsets and or weights for computing pair-wise d2 

distances among multiple sequences.  All k-mer counts are 

maintained and can be returned to as a starting point. The weight 

associated with a unique (1-k)-mer may be derived from 

descriptive measures regarding it in the data set.  Using this 

approach, weights can be derived independently on a node by 

node basis requiring no additional tree traversals. In this report, 

two different node based weighting schemes are applied to 𝑑2 

distances computed for each data set. This allows that the effect of 

changing weighting schemes can be examined in resulting 

Neighbor Joining (NJ) cladograms. 

 

As a reference to other weighting schemes, we also compute 

unweighted 𝑑2 distances within data sets.  Thus 𝑝𝑥  = 1 (eq.1) at 

all nodes to compute unweighted distance matrices. 

 

3.3 GC-content Weighting 
Because each non root node in a k-deep prefix tree represents a 

unique (1-k)-mer, it is possible to weight difference values 

computed at that node based on the k-mer sequence it represents.  

For example, repetitive sequences may be ignored or k-mers 

containing specific sub words may be selected. In this example, 

we perform weighting based on GC content.  GC content is the 

percentage of G or C nucleotides in a word divided by the total 

number of nucleotides it contains. This yields a value between 

zero and one.  We combine both GC content weighting and cutoff 

values in this first weighting scheme.  The weight for any (1-k)-

mer with at least 80% GC content is equivalent to its GC content. 

Any (1-k)-mer with less than 80% is given a zero weight. Thus px 

in equation 1 is defined as: 

 

𝑝𝑥 =

 
 
 

 
 𝑛𝑥(𝐺,𝐶)

𝑛𝑥(𝐴,𝐶,𝑇,𝐺)
     𝑖𝑓

𝑛𝑥(𝐺,𝐶)

𝑛𝑥(𝐴,𝐶,𝑇,𝐺)
≥ 0.8 

                               

0                                                               𝑒𝑙𝑠𝑒

  

where 𝑛𝑥(𝐺,𝐶) denotes the number of occurrences nucleotide 

bases G and C in subword wx. This weighting scheme requires a 

trace back from each node to the tree root to compute GC content 

of the (1-k)-mer indexed by that node. The time required for this 

is linearly proportional to node level, or (1-k)-mer length. An all-

against-all comparison of count list values may be conducted 

based on the determined GC score and resulting weight.  All-

against-all comparisons may be omitted by determining a zero 

weight. While the asymptotic computation time does not change, 

in our analysis this weighting scheme greatly reduced the total 

number of nodes examined in an all-against-all fashion in both 

datasets.  

 

3.4 Presence vs. Absence Weighting 
We define a weighting scheme based on word presence and 

absence across sequence sets. We define nucleotide words which 

are present in at least one sequence and absent in at least one other 

sequence to exhibit presence/absence variation. Weights are given 

a value of zero or one based on this observation. Thus if px 

represents the weight for wx and 𝐶𝑥  (𝑗) the count of wx in 

sequence 𝑆𝑗 , then: 

 

𝒑𝒙 =

 
 
 

 
 𝟏               𝒊𝒇  𝑪𝒙(𝒋) 

𝑵

𝒋

> 0  and  𝑪𝒙(𝒋) = 𝟎

𝑵

𝒋                               

𝟎                                                                     𝒆𝒍𝒔𝒆

  

 

For example, assume a given word only occurs in three out of five 

sequences. This word would be given a weight equal to one and 

would contribute to final pair-wise distance scores. If however, it 

was found at least once in all five sequences, it would be assigned 

a zero weight and yield no contribution.  This weighting scheme 

also allows a potential reduction in the number of nodes which 

must be examined fully. At each node, the entire count list of N 

sequences must be examined to determine if at least one count is 

zero and at least one is greater than zero. As in the GC content 

weighting scheme, all-against-all comparisons may be avoided if 

a zero weight is determined. 

 

4. RESULTS  

4.1 Neighbor Joining Cladograms 
Figures 5 and 6(a-c) display Neighbor Joining (NJ) [16] 

cladograms computed with no weight, GC-content weighting, and 

presence/absence weighting. The H1N1 dataset contains three 

sequences representing each of four locations; Alaska, Texas, 

Mexico, and California.  Differences exist among all three 

cladograms with regards to branched cluster formations among 

geographic groups.  For example, GC-content weights resulted in 

MX_2 and MX_3 being closest neighbors, while 

presence/absence weighting resulted in MX_1 and MX_3 being 

closest neighbors. The unweighted d2 distance resulted in 

Texas_05 being included in a branched cluster with samples 

originating from Mexico.   

 



 
Figure 5. Cladogram of H1N1 sequences using unweighted(a), GC-content weighting(b) and presence/absence weighting(c) 

schemes. 

 
Figure 6. Cladogram of E. coli sequences using unweighted(a), GC-content weighting(b) and presence/absence weighting(c) 

schemes. 

 
Table 1. Actual vs. total possible number of nodes. 

𝑫𝒂𝒕𝒂𝒔𝒆𝒕 k 𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆  
𝒏𝒐𝒅𝒆𝒔  𝑲  
 𝟒𝒊𝒌
𝒊=𝟎   

𝒂𝒄𝒕𝒖𝒂𝒍  
𝒏𝒐𝒅𝒆𝒔 𝑲𝟏  % 

𝑲𝟏

𝑲
  

H1N1 5 1,364 1,181 86.6% 
E.coli 13 89,478,484 22,311,042 2.9% 

 

Table 2. Number of nodes weights (p) found to be greater than 

zero using GC-content weighting scheme. 𝐊𝟏 − 𝟏 is the total 

number of non-root tree nodes. 

𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝒑 %  
𝒑

 𝑲𝟏 − 𝟏
  

H1N1 135 11.4% 
E.coli 462,681 2.1% 

 

Table 3. Number of nodes weights (p) found to be greater than 

zero using presence/absence weighting scheme. 𝐊𝟏 − 𝟏 is the 

total number of non-root tree nodes. 

𝑫𝒂𝒕𝒂𝒔𝒆𝒕  𝒑 %  
𝒑

𝑲𝟏 − 𝟏
  

H1N1 296 25.1% 
E.coli 18,654,648 83.6% 

 

Cladograms of the five E. coli samples were identical between the 

unweighted and GC-content weighted 𝑑2 distance calculations. 

Presence/absence weighting primarily resulted in a difference in 

the placing of the Ecoli_3 sample.  

 

Determining the accuracy of these cladograms is not in the scope  

of this research. Instead, our goal is to present an algorithm for 

experimentation with various weighting schemes and more 

generally, k-mer based differencing measures.  

 

4.2 Space Compression 
For each data set, the number of nodes created in k-deep prefix  

trees were a fraction of the total number of possible nodes. That 

is, the actual number of unique (1-k)-mers encountered in each 

data set verses the total number of possible nucleotide k-mers of 

lengths (1,..,k).  

 

Table 1 shows this ratio for each data set.  In each case, using a 

prefix-tree allowed a reduction in the total required memory space 

which would be necessary if using uncompressed hash tables.  

The ratio of actual vs. total number of possible nodes was 86.6% 

and 2.9% for the H1N1 and E .coli datasets respectively. The 

degree of compression enabled by the k-deep prefix tree is 

particularly reflected in the E. coli data set. 

 

4.3 Weight Based Computation Reduction 
Each weighting scheme described includes zero weights. This 

dictates that certain nodes do not contribute to total distance 

scores and all-against–all comparisons were not required at those 

nodes. Tables 2 and 3 report the actual number of nodes with 

greater than zero weights found in GC-content and 

presence/absence weighting. Tables 2 and 3 also list the 

percentage of tree nodes at which full computations were 

required. 

 

While both weighting schemes enabled a reduction in number of 

nodes fully examined, the GC-content weight scheme provided 



the greatest reduction. Only 11.4% and 2.1 % of all tree nodes 

contributed to distance matrices in the H1N1 and E.coli datasets 

using GC-content weights. The percentage of nodes examined 

fully using the presence/absence weighting scheme were 25.1% 

and 83.6%. 

 

These results suggest that definitive word based features may be 

extracted through experimentations such as these. The E .coli 

cladograms based on the GC-content and the unweighted d2 

distance were identical. However GC-content distances were 

based on only approximately 2% of all nodes used to compute the 

unweighted scores.  

 

5. CONCLUSIONS and FUTURE WORK 
We described an algorithm for the construction of an annotated k-

deep prefix tree. In a k-deep prefix tree, each non-root tree node 

represents a unique (1-k)-mer which exists in the genomic 

sequence(s) from which the tree was constructed.  In this report, 

we annotated each node with occurrence counts, denoting the 

number of times that the (1-k)-mer terminated at that node occurs 

in each sequence.   

We then provided an example usage of the tree by computing 

weighted and unweighted 𝑑2 distances matrices for sample data 

sets. The 𝑑2 distance is a k-mer based distance measure, and the 

information required to compute 𝑑2 distances is contained within 

the described k-deep tree. We presented two weighting schemes: 

1.) the GC nucleotide content of each word terminated at non-root 

nodes and 2.) presence/absence occurrence variation derived from 

count lists at each non-root node. Resulting Neighbor Joining 

cladograms were then compared. 

In the E. coli dataset, two cladograms based on unweighted and 

GC-content weighted distance matrices were identical. This was 

surprising given that the GC-weighted distances were derived 

from only approximately 2% of the nodes used to compute 

unweighted distances. This illustrates the potential for extraction 

of important k-mer based features through experimentation with 

annotated k-deep prefix trees.   

Future work will include research into the potential for reliance on 

more static rather than dynamic memory allocation. This would 

allow faster tree traversal by ensuring that traversing links 

between nodes resulted in fewer page faults.  Future work will 

also use our k-deep tree algorithm to examine differences between  

sets of sequence based on several weighting schemes and k-

values. 
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