
An Evolutionary Approach to Maximum

Likelihood Estimation for Generative

Stochastic Models

Richard C Kelley ∗ Monica Nicolescu ∗∗ Mircea Nicolescu ∗∗∗

Sushil Louis ∗∗∗∗

∗ University of Nevada, Reno, Reno, NV 89557 USA. (email:
rkelley@cse.unr.edu)

∗∗ e-mail: monica@cse.unr.edu
∗∗∗ e-mail: mircea@cse.unr.edu
∗∗∗∗ email: sushil@cse.unr.edu

Abstract: Robotics problems essential for human-robot interaction and for the cognitive skills
of robots often require or make use of maximum-likelihood estimation for hidden Markov models.
Standard approaches to this problem rely on assumptions about the dependence structure of the
variables in the model, and don’t naturally generalize to parallel or distributed architectures. In
this paper, we propose an evolutionary approach to address these issues. We show how a genetic
algorithm can be used to perform maximum-likelihood estimation on a collection of jointly
distributed random vectors, and illustrate our approach on the decoding problem for hidden
Markov models. We provide experimental results showing the effectiveness of our method for
specific problems in natural language processing and human-robot interaction. We also consider
some of the limitations and possible extensions of this approach.

1. INTRODUCTION

Models of cognitive abilities in robots and other artifi-
cial systems often use probabilistic representations and
inference algorithms to simulate human-like reasoning and
behavior. The probabilistic approach has been highly suc-
cessful (Thrun [2005]), as researchers have developed ef-
ficient algorithms for working with probabilistic systems.
These algorithms often gain efficiency by exploiting as-
sumptions about the probabilistic structure of problems,
for example by analyzing conditional independence rela-
tions that are either assumed to exist for or are imposed
on the variables in a model. The class of generative models,
including the widely used hidden Markov model (HMMs),
has proved to be an effective means for attacking problems
related to cognitive processes and behaviors. For example,
to model the way in which an agent’s thoughts X are
related to its actions Y, we might use a model defined
by a joint probability distribution such as p(X,Y), where
X and Y are sequences satisfying the conditions that X
is a Markov chain (which we assume cannot be directly
observed) and Yk is conditionally independent of all vari-
ables other than Xk. This particular definition gives us
the traditional hidden Markov model, though one could
generalize this by altering the conditional independence
assumptions of the model or by including additional ran-
dom sequences in the joint distribution to model additional
information available to the system, for example using a
distribution such as p(X,Y,Z), along with some (possibly
empty) set of conditions specifying the dependence rela-
tions among the three sequences.

Looking specifically at hidden Markov models, one sees
that a large part of the reason for their effectiveness is

the existence of an efficient dynamic-programming algo-
rithm for solving the decoding problem: given a sequence
of observations, determine a sequence of hidden states that
“best explains” the observations. In this paper we dis-
cuss some of the limitations of the dynamic programming
approach, and propose a genetic algorithm for solving
the decoding problem. More generally, we describe how
to use the evolutionary approach to perform maximum-
likelihood estimation for a collection of jointly distributed
random vectors, given known values for the members of an
arbitrary subset of that collection. We also provide exper-
imental results showing the effectiveness of our method
for specific problems in natural language processing and
human-robot interaction.

2. RELATED WORK

Hidden Markov models were initially developed by Baum
and his colleagues in the late 1960s and early 1970s (Baum
and Petrie [1966]). A standard reference on HMMs is
the paper by Rabiner, which outlines the basic theory of
HMMs as well as some results in one major application
area, speech recognition (Rabiner [1989]). That paper also
describes the decoding problem, as well as a dynamic pro-
gramming algorithm to solve the decoding problem. That
algorithm was first proposed by Viterbi (Viterbi [1967]).
Although this algorithm gives the optimal sequence and is
efficient, it does not naturally generalize to more compli-
cated joint distributions, and even in the hidden Markov
case is not suitable for all applications in which decoding
may be necessary. Additionally, although parallel versions
of the Viterbi algorithm have been developed for particular
parallel architectures such as systolic arrays (Reeve and
Amarasinghe [2006]), comparatively little research has

been done on decoding algorithms that work for more
general distributed architectures.

Genetic algorithms were pioneered by Holland (Holland
[1992]) and have seen their use expand tremendously as
computational power has increased. In the context of sta-
tistical inference, genetic algorithms have been successfully
used to perform parameter estimation (Sharman and Mc-
Clurkin [1989]), and specifically for HMMs, have been
used to aid in the estimation of model parameters from
sample data (Slimane et al. [1996]). The current work
applies the idea of using genetic algorithms for inference
problems to the general class of problems that can be
expressed in terms of maximizing a joint distribution, and
looks particularly at how this approach can be used in the
case of hidden Markov models.

3. THE METHOD

3.1 Problem Statement

We consider two closely related problems, both solvable by
our method. In the first problem, we consider a collection
of random vectors, all of whose components are discrete
random variables; in the second we consider just a col-
lection of discrete-valued random variables. The second
problem is clearly expressible in terms of the first, so that
our solution to the vector version of the problem gives
us a solution to the random variable version. However,
depending on the particulars of the model being developed,
one approach may be more natural to work with than the
other. However, since the second problem is a special case
of the first, the basic problem to solve can be described as
maximum likelihood inference for a collection of random
vectors where only some of those vectors have known
values or can be observed.

Random Vector Version This version of the problem
assumes that we have n random vectors Xi, i = 1, . . . , n,
each of whose components are discrete random variables.
The component variables may range over different sets,
and we make no assumptions about the conditional inde-
pendence relationships among the component variables or
the vectors (though we show below how this information
can be used if it is available). Given an assignment to some
collection of the vectors, the problem is to find assignments
to the other vectors that maximize the joint probability,
p(X1, . . . ,Xn).

When we have the conditions

(1) n = 2,
(2) X1 is not directly observable (so we are never explic-

itly given values for the components of X1),
(3) the dependence structure of X1 satisfies the Markov

property, and
(4) X2’s components are independent of everything ex-

cept the corresponding components of X1,

we obtain the common case of a hidden Markov model.
In this case, the problem is equivalent to the decoding
problem: given a vector of observations X2, determine
the vector X1 that maximizes p(X1 | X2). It turns out,
as shown below, that this is equivalent to maximizing
p(X1,X2), so that decoding is an instance of the vector
version of our maximum likelihood problem.

One final assumption we make is that we have, or can
estimate, the joint distribution p(X1, . . . ,Xn) for any
assignment of values to all n variables. We have found
that in most practical applications this assumption can be
met with little difficulty.

Random Variable Version For this version of the prob-
lem, let X1, . . . ,Xn be n discrete random variables, and
consider the joint distribution of these random variables,
p(X1, . . . ,Xn). In this case, we may formally state our
problem as follows: given an assignment of values to some
subset of the Xi’s, say Xi1 = xi1 , . . . ,Xik

= xik
, find val-

ues of the remaining unassigned variables that maximize
the joint probability p(X1, . . . ,Xn).

That this is a special case of the vector version of the
problem may be easily seen by letting each vector have
a single component corresponding to one of the random
variables Xi in the second formulation of the problem.
Because of this, we address only the vector version of the
problem in the following discussion.

3.2 Solution

To solve the above problems, we propose the use of
a genetic algorithm. A genetic algorithm consists of a
“population” of possible solutions, a way of evaluating the
quality of each of these candidates, and a set of operators
to transform the population in ways that are intended
to increase the average quality of the candidates in the
population over time.

To specify a genetic algorithm, one must provide a repre-
sentation for possible solutions to the problem being mod-
eled, a fitness function whose value we wish to maximize,
and the operators for generating a new population from
the current population at each time step. We consider each
of these in turn.

Solution Representation and Population Size When us-
ing a genetic algorithm, one begins by specifying a collec-
tion of candidate solutions. In our case, we assume that we
have n random vectors X1, . . . ,Xn, and that some of these
vectors have values assigned to them. We then seek the
most likely assignment of values to the remaining vectors.
Since a potential solution is given once we have values for
all n vectors, we represent each candidate solution as a list
of the components of each of the n vectors, in a fixed order.
If each vector has k components, then a single member of
the population will be a list of the kn values from the
vectors, concatenated together in a list. The number of
individuals in the population is a parameter that can vary
depending on the problem, but in the experiments below
we found that a population size consisting of as few as one
to two hundred individuals sufficed to obtain acceptable
results.

Fitness Function Given an assignment of values x1, . . . , xn

to the random vectors X1, . . . ,Xn, we use the fitness
function p(x1, . . . , xn). Thus, more likely assignments to
the vectors will have higher fitness, and one can expect
that the genetic algorithm will, given sufficient resources,
converge to an assignment of the vectors that has a high
probability relative to the members of the initial popula-
tion.

Operators We use standard genetic operators for our
problem. In particular, we use operators for crossover, mu-
tation, and selection. In our experiments, we consider sev-
eral different approaches to generating a new population
from the current population. These approaches include:

(1) a simple genetic algorithm with elitism,
(2) a steady-state genetic algorithm in which only a frac-

tion of the population is replaced in each generation,
and

(3) a multi-population “deme GA” that is naturally
suited to implementation on a parallel computing
architecture.

We discuss these variants further in our results section.

Recovering the Joint Distribution; Inference in More Gen-
eral Models In the course of modeling a process us-
ing random vectors X1, . . . ,Xn, it may be necessary or
convenient to specify some kind of dependence structure
on the random vectors or their components. In the most
general case, we may not have direct access to the joint
distribution p(X1, . . . ,Xn), but only to some collection
of conditional distributions of some of the Xi’s in terms
of the others. Perhaps the simplest example of this phe-
nomenon is the discrete hidden Markov model, where
instead of a joint distribution p(X,Y) to use for decoding,
we are usually presented with tables describing the two
conditional distributions over the components of X and
Y (here indexed by k): p(Xk+1 | Xk) and p(Yk | Xk),
with the Xk’s taking values in a hidden state space and
the Yk’s taking values among a set of visible symbols.
In certain cases, it may be possible to use the given
conditional distributions for a general model to recover
the joint distribution p(X1, . . . ,Xn) for any particular
assignment of values to the Xi’s. Where this is possible,
the evolutionary approach outlined above can be used to
perform maximum-likelihood inference for a subset of the
Xi’s given an assignment of values to the others.

The approach to a problem then becomes to recover the
joint distribution from the conditional distributions: we
first compute the joint distribution in terms of the condi-
tional distributions that are available, and then using the
computed joint distribution, proceed as outlined above, us-
ing a genetic algorithm to find the most likely assignment
of values to all the vectors in the model. Here the applica-
bility of the method hinges entirely on the ease with which
the designer can compute or approximate p(X1, . . . ,Xn)
for an arbitrary assignment of values to the Xi’s.

4. EXPERIMENTAL RESULTS

4.1 The Hidden Markov Model Case

As mentioned above, for models with very general de-
pendence structures, it may be difficult to calculate the
required joint probabilities in a reasonable amount of time.
However, in some cases it is quite easy; one case where
such a calculation can be performed is with HMMs. The
basic idea (as outlined above) is to use the conditional
distributions that determine an HMM to recover the joint
distribution for use as the fitness function of the genetic
algorithm. We now outline the derivation showing that this
is possible for hidden Markov models.

Following Rabiner [1989], we denote our vector of T
observations by O = O1O2 . . . OT . If Q is a vector of
hidden states, we write Q = q1 . . . qT for the individual
hidden states of Q. We also let πqi

denote the probability
that the first hidden state is qi, we let aqiqj

denote the
probability of transitioning from state qi to state qj , and
we let bqi

(Oi) denote the probability of observing visible
symbol Oi while in state qi.

The decoding problem asks us to find

arg max
Q

P (Q | O).

By Bayes’s rule, we have

P (Q | O) =
P (O | Q)P (Q)

P (O)
.

Since P (O) is independent of our choice of Q, we can ignore
it without affecting the solution to our problem. Thus the
decoding problem is equivalent to

arg max
Q

P (O | Q)P (Q),

which by the definition of conditional probability is iden-
tical to

arg max
Q

P (O,Q),

showing that decoding is a special case of the vector
maximum likelihood problem above. Moreover, since the
logarithm is a strictly increasing function, we can solve the
equivalent problem

arg max
Q

log P (O,Q),

often simplifying the computation. This shows that decod-
ing is an instance of the maximum likelihood problem; we
next show how we can efficiently compute this probability
in terms of the parameters that define an HMM.

Although we are maximizing log P (O,Q), we need to
express it in terms of the distributions that are used to
define the HMM, namely the aqiqj

’s and the bqi
(Oi)’s. In

particular, fitness function that we use is

log P (Q,O) = log (P (O | Q)P (Q))

= log P (O | Q) + log P (Q)

= log

(

T
∏

t=1

bqt
(Ot)

)

+ log

(

πq1

T−1
∏

t=1

aqtqt+1

)

= log πq1
+ log bqT

(OT)

+

T−1
∑

t=1

[

log bqt
(Ot) + log aqtqt+1

]

.

This is an instance of recovering the joint distribution
from a set of conditional distributions; if we store the
logarithms of the probabilities of the HMM, then the
fitness function can be computed using only addition,
with only an asymptotically linear number of arithmetic
operations. By scaling the log-probabilities appropriately,
this objective function allows us to work with very long
sequences of observations that could otherwise present
numerical difficulties for the algorithm.

4.2 Experimental Setup and Results

To verify our approach in the HMM case, we test it on
three different models. First, we consider an artificial two-

state chain that comes from no particular application area,
and then we examine the effectiveness of the evolutionary
decoding method for part-of-speech tagging in natural
language processing and intent recognition in robotics.
But first we introduce the particular genetic algorithms
we tested and the metric we use to evaluate our approach.

Genetic Algorithms To test the method, we use three
different versions of the genetic algorithm. The first is a
simple genetic algorithm, as described in Goldberg [1989].
This algorithm replaces the entire population for each
generation. The second algorithm we consider is a steady-
state genetic algorithm, in which only a fraction of the
population is replaced. The replacement fraction p is a
parameter that we must set, and for these experiments we
use p = 0.1, p = 0.25, and p = 0.5. Lastly, we use a deme-
based genetic algorithm. This GA consists of multiple pop-
ulations with migration between the populations. At the
end of each generation, a fraction of the best individuals
from one population replace the worst individuals in a
neighboring population. Both the migration percentage
m and the number of populations k are parameters that
we control. For these experiments, we consider m = 0.2,
m = 0.4, k = 2, k = 4, k = 8, and k = 16.

Measuring Against Viterbi To measure the quality of
the output of our algorithm, for each string we decode
in the models below, we compare the results of decoding
with our method to the results of decoding using the
Viterbi algorithm. In particular, if we have n sequences of
observations to decode, then since the Viterbi algorithm
is optimal (Rabiner [1989]), it will produce the optimal
state sequence for each of the n observation sequences. Let
nev be the number of sequences for which evolutionary de-
coding produces a maximally likely hidden state sequence.
Then we use

γ =
nev

n
,

the fraction of correctly decoded sequences, as a measure
of the quality of the evolutionary method. We then hope
that in our applications γ is close to 1; we’ll see below for
our artificial model and two application models that this
indeed is the case.

Decoding A Simple Model We start with a simple ar-
tificial model. The model consists of two hidden states,
labeled 0 and 1, and six observable symbols, a, b, c, d,
e, and f . The transition and emission probabilities were
chosen by picking random numbers for each transition and
normalizing to produce probabilities. The probabilities
themselves are listed below in Table 1 and in Table 2.
Given these probabilities, we generated one thousand

0 1

0 0.154 0.846
1 0.271 .729

Table 1. State transition probabilities for the
simple model.

random sequences of observations of varying lengths, and
then decoded each sequence. Table 3 shows the γ values
for these n = 1000 sequences, for each of the three types
of genetic algorithm we tested.

a b c d e f

0 0.355 0.291 0.022 0.332 0.0 0.0
1 0.169 0.272 0.0 0.0 0.283 0.276

Table 2. Emission probabilities for the simple
model.

Genetic Algorithm Used γ

Simple GA 0.98

Steady-State GA (p = 0.10) 0.98

Steady-State GA (p = 0.25) 0.985

Steady-State GA (p = 0.5) 0.986

Deme GA (m = 0.2 and k = 2) 0.971

Deme GA (m = 0.2 and k = 4) 0.976

Deme GA (m = 0.2 and k = 8) 0.977

Deme GA (m = 0.2 and k = 16) 0.978

Deme GA (m = 0.4 and k = 2) 0.969

Deme GA (m = 0.4 and k = 4) 0.978

Deme GA (m = 0.4 and k = 8) 0.98

Deme GA (m = 0.4 and k = 16) 0.982

Table 3. γ values for the simple HMM.

The results above allow us to make a few interesting
comparisons. First, the simple algorithm works fairly well
in comparison to the optimal Viterbi algorithm. In many
applications, getting the optimal answer 98% of the time
may be perfectly acceptable. We can also say a bit about
how varying the parameters for the steady-state and deme
algorithms affects performance. The steady-state version
seems to perform better on this problem when more of the
population is replaced in each generation; however, the
steady-state GA with p = 0.10 tends to be more efficient
than the other steady-state alternatives, and the difference
in quality between strategies that use little replacement
and those that use more replacement is small enough that
the extra speed that comes from using a small replacement
percentage may more than offset the loss of accuracy in
some applications.

We can perform a similar analysis varying the parameters
of the deme GA. Generally speaking, the performance of
the deme algorithm improves (as one would expect) as
we increase the number of populations and the fraction of
each population that migrates to a new population in each
generation.

Comparing the three different algorithms to each other,
we see that the steady-state algorithm outperforms the
simple algorithm, and that when few populations are used
in the deme GA, its performance is poor compared to the
other algorithms. However, as we increase the number of
populations used for the deme GA from 2 to 16, we see
γ increase to the point that it is comparable to the other
algorithms in quality.

Part-of-Speech Tagging Our first non-trivial HMM
comes from the field of computational linguistics, and
is based on one approach to the part-of-speech tagging
problem. A solution to this problem is an algorithm that
takes as input a phrase or sentence in a natural language
such as English, and produces a sequence of “tags,” such
that the ith tag represents the part of speech of the ith
word in the input sentence. For instance, the sentence

Snow is cold.

Should receive the tag sequence

NN VBZ JJ

Where the symbol “NN” denotes a singular or mass noun,
the symbol “VBZ” represents a 3rd person singular present
verb, “JJ” represents an adjective. Hidden Markov models
and their variants play a large role in part-of-speech
tagging, which in turn is often used in applications such as
partial parsing, lexical acquisition, information extraction,
and question answering (Manning and Schütze [1999]).

The hidden Markov model we use was developed by
Michael Collins for his PhD dissertation (Collins [1999]).
Its hidden states are the possible parts of speech for
English, and the visible symbols are words in the English
language. The model consists of 44 hidden states, the
hidden-state transition table consists of 1,981 transition
probabilities, and the emission probability table consists
of 119,287 emission probabilities.

To test our method on this model, we used a collection of
phrases based on English phrases that appear in the 1990
Part-of-Speech Tagging Guidelines for the Penn Treebank
Project (Santorini [1990]). Examples of such phrases in-
clude:

Either child could sing.
Either a boy or a girl could sing.
One of the best reasons
The girls all left.
There was a party in progress there.

Again we use the γ-value as our metric for evaluating the
evolutionary approach. The results for the three different
algorithms are shown in Table 4. The results show again

Genetic Algorithm Used γ

Simple GA 0.92

Steady-State GA (p = 0.10) 0.98

Steady-State GA (p = 0.25) 0.94

Steady-State GA (p = 0.5) 0.96

Deme GA (m = 0.2 and k = 2) 0.86

Deme GA (m = 0.2 and k = 4) 0.96

Deme GA (m = 0.2 and k = 8) 0.96

Deme GA (m = 0.2 and k = 16) 0.98

Deme GA (m = 0.4 and k = 2) 0.90

Deme GA (m = 0.4 and k = 4) 0.96

Deme GA (m = 0.4 and k = 8) 0.98

Deme GA (m = 0.4 and k = 16) 0.96

Table 4. γ values for the part-of-speech HMM.

that the method works fairly well. The lessons here are
similar to those from the simple artificial model. The
simple GA’s performance is slightly worse in this case,
but the steady-state GA continues to perform very well,
especially with a small replacement percentage. The deme
GA performs poorly for a small number of populations,
and then becomes competitive with the other algorithms
as we increase the number of populations used.

Intent Recognition Tavakkoli et al. [2007] develop an ap-
proach to intent recognition using hidden Markov models.
The intent recognition problem is an important problem
in social robotics and computer vision. As defined in
Tavakkoli et al. [2007], given a video sequence of one or
more agents performing various activities, assign to each
agent in each frame a label corresponding to that agent’s
current activity. In addition, determine in each frame the

intentional (goal-directed) mental states of each agent. To
use a hidden Markov model to solve this problem, one
models the mental states of the agent as the hidden states
of the HMM, and models the visible changes in the agent’s
activities using the visible variables of the model.

In Tavakkoli et al. [2007], one of the models considered
is called following. This model represents the intentional
states of an agent that is in the process of following another
agent. The model was trained by having a robot follow
a human, recording its observations as it performed the
task. The collected observation sequences were then used
as input to the Baum-Welch algorithm to train the model
and obtain the parameters in the state-transition table and
visible symbol emission table.

To test the evolutionary decoding algorithm on this model,
we use observations collected by a mobile robot observ-
ing one human following another. Specifically, we use 30
sequences corresponding to disjoint segments of six video
clips captured by the robot. Each video sequence consisted
of one person following another person, with the robot
observing the scene from several different perspectives.

We use the same three genetic algorithms for this problem
that we do for the others. The γ values for each are listed
in Table 5 The results show that for this problem the

Genetic Algorithm Used γ

Simple GA 1.0

Steady-State GA (p = 0.10) 1.0

Steady-State GA (p = 0.25) 1.0

Steady-State GA (p = 0.5) 1.0

Deme GA (m = 0.2 and k = 2) 0.63

Deme GA (m = 0.2 and k = 4) 0.87

Deme GA (m = 0.2 and k = 8) 1.0

Deme GA (m = 0.2 and k = 16) 1.0

Deme GA (m = 0.4 and k = 2) 0.53

Deme GA (m = 0.4 and k = 4) 0.93

Deme GA (m = 0.4 and k = 8) 0.97

Deme GA (m = 0.4 and k = 16) 1.0

Table 5. γ values for the follow HMM.

simple and steady-state GAs perform exceptionally well,
correctly decoding all of the input sequences given. The
deme GA again performs poorly for a small number of
populations, giving much worse results for this problem
than the other two we consider. However, we again see
the quality of the algorithm increase as the number of
populations increases. This seems to be a general feature
of the proposed algorithm.

5. DISCUSSION

While the numerical results of the previous section show
some of the promise of the GA-based approach to the
family of problems we consider, there are several other
points worth making about the method that we propose.

5.1 Limitations

Although the evolutionary algorithm compares well to the
Viterbi algorithm for decoding hidden Markov models,
it does have limitations. The most important of these is
the time necessary for the algorithm to converge on an

optimal solution. For a large population of long vectors
(consisting of hundreds of components), the number of
generations required to find a decent solution to the
problem may be large. This means that in some cases (even
some listed above), the amount of time required for the
genetic algorithm to find a near-optimal solution may be
prohibitive. In the next subsection, though, we outline one
benefit of the evolutionary approach that has the potential
to mitigate this problem substantially.

5.2 Parallelism and Resource Adaptiveness

From the descriptions above, one can see that the deme-
based genetic algorithm maps naturally to a parallel pro-
cessing environment. This advantage will become increas-
ingly decisive as multiprocessors and thread-level par-
allelism become more ubiquitous throughout computing
(Hennessy and Patterson [2007]). It is only reasonable to
expect that these trends will greatly impact computing in
robotics as well. One of the advantages of the evolution-
ary approach to decoding (and maximum-likelihood more
generally) is that it reduces the problem of developing a
parallel decoding or maximum likelihood algorithm (a less
well-studied problem) to the problem of building a parallel
genetic algorithm (a very well-studied problem). Indeed
one of the strongest attractions of genetic algorithms is
that they are almost trivially parallelizable, with parallel
algorithms that tend to perform well (Gordon [1993]),
allowing us to easily exploit increasing parallelism in hard-
ware. One would expect (though this should be verified
experimentally) that as parallel computing resources grow,
the evolutionary maximum-likelihood method should scale
easily to deal with very large estimation problems.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach to maxi-
mum likelihood estimation for problems involving jointly-
distributed random vectors. This approach relies on a ge-
netic algorithm to find an assignment of values that maxi-
mizes the joint probability of the variables. We showed how
the common problem of decoding a hidden Markov model
can be viewed as an instance of our vector maximum like-
lihood problem, and provided experimental results for this
case. We also discussed the possible efficiency problems for
the genetic algorithms, and indicated how this can be dealt
with using parallism, which is a natural and well-studied
technique in the evolutionary computing literature.

We are currently exploring several possible extensions
to this work. First, we are working on developing more
general stochastic models that can use our evolutionary
maximum likelihood approach to solve practical problems
analogous to decoding a hidden Markov model. Secondly,
we are looking at developing an efficient online version
of the algorithm for robotics applications with hard real-
time constraints. Lastly, we are researching methods for
extending the evolutionary approach to other statistical
problems related to robot cognition.

ACKNOWLEDGEMENTS

We would like to thank Catherine Porter for helpful
discussions about our approach and for reviewing an early

draft of this paper. The software for this work used the
GAlib genetic algorithm package, written by Matthew
Wall at the Massachusetts Institute of Technology. This
work has been supported by the Office of Naval Research
under award N00014-06-1-0611.

REFERENCES

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics,
MIT Press, 2005.

L.E. Baum and T. Petrie, “Statistical inference for
probabilistic functions of finite state Markov chains”,
Ann. Math. Stat., vol. 37, pp. 1554-1563, 1966.

A.J. Viterbi, “Error bounds for convolution codes and
an asymptotically optimal decoding algorithm”, IEEE
Trans. Informat. Theory, vol. IT-13, pp. 260-269, Apr.
1967.

L. Rabiner, “A tutorial on hidden Markov models and se-
lected applications in speech recognition”, Proceedings
of the IEEE, 77(2), Feb. 1989.

J.S. Reeve and K. Amarasinghe, “A parallel Viterbi
decoder for block cyclic and convolution codes”, Signal
Process. 86, 2, Feb. 2006.

J. Holland, Adaptation in Natural and Artificial Systems,
MIT Press, 1992.

K.C. Sharman and G.D. McClurkin, “Genetic algorithms
for maximum likelihood parameter estimation”, Inter-
national Conference on Acoustics, Speech, and Signal
Processing, 1989, vol. 4, pp. 2716 - 2719, May 1989.

D. Goldberg Genetic Algorithms in Search, Optimization,
and Machine Learning Addison-Wesley, 1989.

M. Slimane, G. Venturini, J. Beauville, T. Brouard, A.
Brandeau, “Optimizing hidden Markov models with a
genetic algorithm”, AE ’95: Selected Papers from the
European conference on Artificial Evolution, pp. 384-
396, Springer-Verlag, 1996.

C. Manning and H. Schütze, Foundations of Statistical
Natural Language Processing, MIT Press, 1999.

M. Collins, “Head-driven statistical models for natural
language parsing”, PhD Dissertation, University of
Pennsylvania, 1999.

B. Santorini, “Part-of-speech tagging guidelines for the
Penn Treebank Project”, 3rd revision, 2nd printing,
June 1990.

A. Tavakkoli, R. Kelley, C. King, M. Nicolescu, M. Nico-
lescu, G. Bebis, “A vision-based architecture for intent
recognition”, Proceedings of the 3d International Sym-
posium on Visual Computing, November 2007.

J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kauffman, 2007.

V.S. Gordon and D. Whitley, “Serial and parallel algo-
rithms as function optimizers”, ICGA-93, pp. 177-183,
1993.

