
Comparing Heuristic Search Methods for Finding
Effective Group Behaviors in RTS Game

Siming Liu, Sushil J. Louis and Monica Nicolescu
Dept. of Computer Science and Engineering

University of Nevada, Reno
1664 N. Virginia Street, Reno NV 89557
{simingl, sushil, monica}@cse.unr.edu

Abstract—We compare genetic algorithms against hill-
climbers for generating competitive unit micro-management for
winning real-time strategy game skirmishes. Good group position-
ing and movement, which are part of unit micro-management
can help win skirmishes against equal numbers and types of
opponent units or even when outnumbered. In this paper, we use
influence maps to generate group positioning and potential fields
to guide unit movement. We tested the behaviors obtained from
genetic algorithm and two types of hill-climbing search against
the default Starcraft AI using the brood war API. Preliminary
results show that while our hill-climbers quickly find influence
maps and potential fields that generate quality positioning and
movement in our simulations, they only find quality solutions
fifty to seventy percent of the time. On the other hand, genetic
algorithms evolve high quality solutions a hundred percent of the
time, but take significantly longer.

I. INTRODUCTION

Real-Time Strategy (RTS) games are a sub-genre of strat-
egy computer and video games. They take place in real-time
and involve resource gathering, micro-management and macro-
management, tactics and strategies. Understanding each of
these factors is critical for winning an RTS game. This paper
focuses on building an RTS game player that can perform ef-
fective unit micro-management in a skirmish and compares ge-
netic algorithms against two hill-climbers (HCs) for generating
competitive solutions. A typical RTS game may include several
skirmishes and losing one skirmish may eventually result in
losing the entire game. Spatial positioning, group composition,
and unit upgrades are some of the factors affecting skirmish
outcomes. Spatial positioning decisions involve the spatial
shape of the battleground: locating the weakness of enemy’s
defense, selecting attacking targets, and prepositioning your
units for the upcoming fight. These difficult decisions make
RTS games interesting and unpredictable. Micro-management
of units in combat aims to maximize damage given to enemy
units and minimizes damage to friendly units. Common micro
techniques in combat include grouping units into formations,
concentrating fire on one target, withdrawing seriously dam-
aged units from combat, and using cheap units to draw the
enemy’s fire away from more expensive units.

Influence Maps (IMs) have been used for handling spa-
tial problems in the Game Artificial Intelligence (Game AI)
community [1]. They have been widely used in video games,
robotics and other areas. For example, an IM model was built
for playing Ms. Pac-Man [2]. Age of Empires uses IMs to find
building locations based on nearby related resources [3]. An
IM is a grid defining a specific piece of spatial information

in a game world, with values assigned to each grid-cell by
an IM function. Figure 1 shows an influence map which
represents a force of enemy Marines in Starcraft: Brood War,
our simulation environment. The grid-cell values are calculated
by an IMFunction, parameterized for each type of game entity -
in this case enemy Marines. IMFunction have two parameters,
a weight, the value at the location of the entity and a
range of influence. The grid-cell value for each entity linearly
declines to zero as range increases. A grid-cell value can
also be determined by more than one unit when IM ranges
from different entities overlap. In this case, we sum the grid-
cell values from all units influencing a particular cell. In our
simulation environment, we set the weight of enemy units to
be negative, therefore, lower cell values indicates more enemy
Marines in the area and more danger to our units. We can
use this enemy Marines position information to guide our
AI player’s spatial positioning. IMs have traditionally been
hand-coded to solve particular problems. In this research, we
use genetic algorithms and hill climbers to find near-optimal
weights and ranges to help us find high quality group
positioning of our units for skirmishes on a battlefield.

Fig. 1: Snapshot of an influence map represents enemy
Marines.

While good unit positioning can put a player in a favorable
situation in combat, good navigation can help the group
move and attack more smoothly like a well-organized army.
Potential Field (PF) is a technique from robotics research for
coordinating multiple units’ movement behaviors. A PF is a
field defined in space that attracts or repulses entities in a game.



It specifies a vector force for every location in game space. A
well-known example of potential field is gravitational potential.
PFs have also been applied to RTS games mostly for spatial
navigation and collision avoidance. We apply PFs to coordinate
units’ group movement in our work and use two parameters
to specify each potential field for each unit type.

Our ultimate goal is to create human-level RTS game
players and this paper compares GAs with two HCs for
searching the space of IM and PF parameters to find good
group positioning and movement to win a skirmish scenario.
Several challenges have to be handled in such comparisons.
First, how do we tune IM parameters for each type of unit to
get good spatial information? Having more IM parameters or a
smaller grid size could help us to get more information but will
need more computational resources. Furthermore, potential
field parameters and IM parameters are inter-dependent. To
deal with these issues, we compactly represent group behaviors
as a combination of three IMs and three PFs parameters and
use a search algorithm to look for good combinations of
these parameters that lead to winning group positioning and
movement. Specifically, we compare the quality and robustness
of solutions produced by genetic algorithms and two kinds of
hill-climbers.

Another issue for the research community in RTS games is
that most popular games like the Starcraft series or the Age of
Empires series are not open source, therefore researchers can-
not directly program their AI in the game. Things changed after
the Starcraft: Brood War API (BWAPI) framework developed
by a group of Starcraft community members was released [4].
We created three scenarios with BWAPI in Starcraft for this
research.

The remainder of this paper is organized as follows.
Section II describes related work in AI research and common
techniques used in RTS games. The next section describes our
simulation environment and representation of our two HCs and
GA implementation. Section IV presents preliminary results
and compares the solutions produced by our methods. Finally,
the last section draws conclusions and discusses future work.

II. RELATED WORK

We first consider research in non-evolutionary computing
approaches to design a competitive RTS game player. Aha
et al. worked on a case-based plan selection method that
learns to retrieve and adapt a suitable strategy for each spe-
cific situation during the game [5]. They built a case-base
of previously encoded strategies, and the system learns to
select the best matching strategy for different game states.
They also performed an interesting analysis on the complexity
of RTS games. Ontañón also worked on a real-time case
based planning and execution techniques in RTS games and
applied his technique in the WARGUS domain [6]. The system
extracts behavioral knowledge from expert demonstrations in
the form of individual cases and reuses the cases via a behavior
generator. However, this system needs to record the actions
of the expert player which is hard to do in closed source
games. Furthermore, it requires that the expert explicitly tell
the purpose of each action which made this method hard to
expand. Miles and Louis used a case-injected GA to evolve a
RTS player to take advantage of both case based reasoning and

genetic algorithm [7]. An existing case base is not necessary
in case-injected GA because the GA will search the space
to find a near-optimal solution and save the optimal solutions
into the case-base and case-injection can increased the learning
rate of the GA. Avery and Louis worked on co-evolving
team tactics using a combination of influence maps, guiding
a group of units to move and attack based on opponent’s
position [8]. Their method used one influence map for each
entity in the game which means that if we have two hundred
entities, the population cap for Starcraft, we will need two
hundred influence maps to be computed every frame. This
could be a heavy load for a system. Preuss and Beume used a
flocking based and influence map-based path finding algorithm
to enhance team movement in the RTS game “Glest” [9], [10].

In contrast to research on development of complete RTS
game players which considers every aspect of the game, we
are only interested in spatial reasoning and movement related
work. Previous work has been done in our lab to apply
spatial reasoning techniques with influence maps to evolve
a LagoonCraft RTS game player [11]. Sweetser and Wiles
present a game agent designed with IMs, where the IM was
used to model the environment and help the agent in making
decisions [12]. They built a flexible game agent that is able to
respond to natural phenomena while pursuing a goal. Bergsma
and Spronck used influence maps to generate adaptive AI for a
turn based strategy game [13]. Su-Hyung proposed a strategy
generation method using influence maps in a strategy game,
Conqueror. He used evolutionary neural networks to evolve
non-player characters’ strategies based on the information
provided by layered influence maps [14].

Fig. 2: Typical PF Function.

Potential fields have also been applied to AI agents in RTS
games. Most of this work is related to spatial navigation and
collision avoidance [15]. Figure 2 shows a typical potential
function including both attraction and repulsion. The X-axis
is distance between the destination and the entity, the Y-axis
is the potential force. The negative part of the curve acts
over a relatively short distance and represents repulsion. The
positive part further away from the vertical axis represents
the force of attraction. This approach was first introduced
by Ossama Khatib in 1986 while he was looking for a real-
time obstacle avoidance method for manipulators and mobile
robots [16]. It was then widely used in avoiding obstacles and
collisions especially for multiple units flocking [17], [18], [19].
Hagelback brought this technique into AI research within the



RTS game genre [20]. He presented a Multi-Agent Potential
Field based bot architecture in ORTS [21]. It applied potential
field at the tactical and unit operation level of the player
AI [22].

In this paper, we focus on coordinated group behavior in
a skirmish scenario and compare GAs with two HC search
algorithms to find quality solutions. Coordinated group be-
havior includes spatial reasoning of group positions and good
movement to those positions. Influence maps and potential
fields are used in our AI player to analyze the battlefield
situation, generate group positioning, and move units to win
the battle against an equal opposing force controlled by the
default Starcraft AI.

III. METHODOLOGY

The first step of this research was building an infrastructure
in which to run our AI agent in an RTS game. We designed
a simple two-player customized map with StarEdit which is a
free tool provided by Blizzard Entertainment to build our own
Starcraft map [23]. In our scenario, each player controls the
same number of units starting at two different places on the
map. We list the rules of our custom map below.

• The map does not have any obstacles and neutral
creatures.

• The units are default Starcraft units.

• All the units use default Starcraft settings without
upgrades.

• Units select targets based on Starcraft’s built-in AI.

• There is no fog of war.

The goal is to eliminate opponent units while minimizing
the loss of friendly units as well as minimizing the game
duration. In case both sides have the same number and types
of units left at the end of a game, we will get a higher score
for a shorter game. Our scenario contains eight Marines and
one Tank on each side. A Marine has low hit-points and a
short attack range but can be built fast and cheaply. A Tank
is stronger than a Marine, with high hit-points and attack
range but it costs more to produce. Table I shows the detailed
parameters for Marines and Tanks in Starcraft.

A. Influence Maps and Potential Fields

We compactly represent group behavior as a combination
of three IMs and three PFs. Since each unit type has differing
properties, we use one IM per unit type. Enemy unit generated
IMs tell our units where to go and our units navigate to the
indicated positions using PFs for movement. For the three
preliminary scenarios considered in this paper, we only used
three IMs for enemy units. Specifically, an enemy Marine IM,
an enemy Tank IM, and an IM that sums the enemy Marine and
Tank IMs. The enemy Marine and Tank IMs were specified by
the weights and ranges of enemy Marine and Tank. Since
computation time depends on the number of IM cells, we used
a cell size of 64× 64 pixels on the Starcraft map.

A typical PF function is similar to equation 1, where F
is the potential force to the entity, d is the distance from the

TABLE I: Parameters defined in Starcraft

Parameter Marine Tank Purpose

Hit-points 40 150 Entity’s unit of health. Hitpoints
decrease when hit by opponent’s
weapon or when entity collides with
another. Entity is destroyed when
Hitpoints ≤ 0.

Size 12×20 32×32 Entity’s size in pixel.

MaxSpeed 4.0 4.0 Maximum move speed of Entity.

MaxDamage 6 30 Maximum number of hitpoints that
are removed from the target.

Range 128 224 The maximum distance at which an
entity can fire upon another.

Cooldown 15 37 Time between weapons firing.

Destroy
Score

100 700 Score gained by opponent when this
unit been destroyed.

source of the force to the entity. c is the coefficient and e is
the exponent effector.

F = cde (1)

We use three PFs of the form described by equation 1 to
control the movement of entities in game. Each of these PFs
describes one type of force acting on a unit. The three potential
forces in the game world are:

• Attractor: The attraction force is inversely propor-
tional to distance squared. A typical attractor looks
like F = 2000

d2 . Here 2000 and 2 are the PF’s
parameters c and e.

• Friend Repulsor: This keeps friendly units from
colliding with each other. It is typically stronger than
the attractor at short distances and weaker at long
distances. A typical repulser looks like F = 30000

d3 .

• Enemy Repulsor: This repels friendly units from
enemy units. It is similar to the friend replusor.

Since each PF is determined by two parameters, a coef-
ficient and exponent of d, six parameters determine a unit’s
potential field:

PF = {CAtt, CRepF , CRepE ,MAtt,MRepF ,MRepE} (2)

where CAtt and MAtt are parameters of the attractor potential
function, CRepF and MRepF for the friend replulsor, and
CRepE and MRepE for enemy replusor. These parameters are
then encoded into a binary string which worked with both GAs
and HCs, and is the chromosome of our GAs. We encoded
the chromosome in a 48-bit string. The detailed representation
of IMs and PFs parameters are shown in table II. When
BWAPI receives a chromosome, it decodes the binary string
to corresponding parameters and directs friendly units to move
and attack enemies. The fitness of this chromosome at the end
of each match was then sent back to our search algorithm.

B. Fitness Evaluation

All the evaluation scores used in our fitness evaluation
function are the default built-in score from Starcraft. The score



TABLE II: Chromosome

Parameter Bits Description

WMarine 5 Weight of Marine in IMs

RMarine 4 Range of Marine in IMs

WTank 5 Weight of Tank in IMs

RTank 4 Range of Tank in IMs

CAtt 6 Coefficient of attractor field

CRepF 6 Coefficient of friendly repulser field

CRepE 6 Coefficient of enemy repulser field

MAtt 4 Exponential of attractor field

MRepF 4 Exponential of friendly repulser
field

MRepE 4 Exponential of enemy repulser field

Total 48

for destroying a unit is based on how many resources are used.
For example, one Marine needs 50 minerals to be produced.
Destroying an enemy marine contributes 100 to the fitness
function. One Tank needs 150 minerals and 100 gas. Gas
counts double compared to minerals, therefore the score for
destroying a Tank is 150 × 2 + 100 × 4 = 700. The detailed
evaluation function to compute fitness (F ) is:

F = (NFM −NEM )× SM + (NFT −NET )× ST

+(1− T
MaxFrame )× Stime

(3)
where fitness is calculated at the end of the each skirmish
(game). NFM represents how many enemy Marines were
killed by the friendly side, NEM is the number of friendly
Marine killed by the enemy. SM is the score for destroying a
Marine as defined above. NFT , NET and ST have the same
meaning for Tanks. The third part of the evaluation function
computes the impact of game time on score. T is the time
spent on the whole game, the longer a game lasts, the lower
is 1− T

MaxFrame . Stime in the function is the weight of time
score which was set to 100 in the experiments. Maximum game
time is 2500 frames, approximately one and a half minutes at
a normal game speed. Therefore, time score being 0 means
the game used up T = 2500 frames, 100 represents game
ended within one frame. The reason to take game time into
evaluation is because “timing” is an important factor in RTS
game. Suppose a battle lasts as long as one minute, there is
enough time for the opponent to build more units or relocate
troops from other places to support this battle thus increasing
the chances of the player losing the battle. Therefore, battle
duration becomes a crucial effect that we want to take it into
consideration in our evaluation function.

However, if the hill climber’s starting point falls into a
position where friendly units never engage the enemy units,
F will be 0 and the hill climber will never find a close
solution that it can use to climb out of this local minimum.
Therefore, we need the fitness evaluation to also account for
scenarios without engagement. Distance turned out to be a
good indicator for evaluating F in such cases. The smaller the
average distance between our units to enemy units the better,
since this indicates that the group moves in the right direction

and should therefore get relatively higher score. We used
equation 4 to evaluate matches when there is no engagement
during the game.

F = (1− D

Dmax
)× Sdist (4)

where D is average distance from friendly units to enemy
units. 1− D

Dmax
converts maximize average distance to distance

minimization. Dmax is a constant value given the maximum
distance in the map. Sdist is the weight of distance score which
was set to 100 in the experiments.

C. Bit Setting Hill-climber

We use the Bit-Setting Optimization (BSO) hill climber to
search a locally optimal solution by sequentially flipping each
bit and keeping the better fitness solution [24]. Algorithm 1
shows the pseudo code of our BSO hill climber.

Algorithm 1 Bit Setting Optimization Hill-climber

chromosome = init()
select first bit
eval(chromosome)
while evaluation time ≤ Max do

while not end of chromosome do
flip current bit
eval(chromosome)
if fitness decreased then

flip current bit back
end if
select next bit

end while
end while

BSO is defined over a Hamming space where points in
the space are represented by binary strings. The performance
of BSO depends on the initial random seed, and it searches
a subset of the search space based on this initial point. We
initialize our BSO with ten different random seeds to randomly
generate initial points. Using these ten different seeds enables
us to obtain and report on statistically significant results. To
make results from HCs and GAs comparable, we set the
maximum number of evaluations of all these algorithms to
4000 and restart BSO from the first bit until we reach 4000
evaluations.

Algorithm 2 Random Flip Optimization Hill-climber

chromosome = init()
eval(chromosome)
while evaluation time ≤ Max do

select random position
flip the selected position
eval(chromosome)
fitnessnew = eval(chromosomenew)
if fitness decreased then

flip the selected bit back
end if

end while



D. Random Flip Hill-climber

The bit setting hill-climber searches only a relatively small
subset of the whole search space to find local optima, and it
heavily depends on the initial starting point. However, Random
Flip Optimization (RFO), a different hill-climber could search
a different and larger space from the same initial points.

Algorithm 2 shows the pseudo code for our random flip
hill-climber which starts from the same set of ten initial points
as our BSO.

E. Genetic Algorithm

We used a CHC based GA in our experiments instead of
canonical GA [25], [26]. The difference between CHC and
canonical GA is CHC stands for cross generational elitist
selection, heterogeneous recombination and cataclysmic mu-
tation. CHC selects the N best individuals from the combined
parent and offspring populations to create the next generation
after recombination. Early experiments indicated that our CHC
GA worked significantly better that the canonical GA on our
problem.

Algorithm 3 CHC Genetic Algorithm

initial population
eval(population)
while (current ≤ maxGeneration) do

if generate offspring then
selection(population)
crossover(population)
mutation(population)

end if
eval(offspring)
tmpPopulation = rank (population, offspring)
offspring = top half of tmpPopulation

end while

According to previous experiments in our lab, we set the
population size to 80 and ran the GA for 60 generations. The
probability of crossover was 88% and we used CHC selection.
We also used bit-mutation with 1% chance of each individual
bit flipping in value. Standard roulette wheel selection was
used to select chromosomes for crossover. CHC being strongly
elitist keeps valuable information from being lost if our GA
produces low fitness children. These operator choices and GA
parameter values were empirically determined to work well.

IV. RESULTS AND DISCUSSION

We used Starcraft’s built-in AI to test our evolving solu-
tions. However, the behavior of the default AI was set to non-
deterministic for increasing interest and unpredictability. The
Starcraft game engine added minor randomness in choosing
the target, in the probability of hitting the target, and in the
amount of damage done. For example, two Marines fighting
each other might end up with different results in two games.
But the randomness is restricted to a small range so that results
are not heavily affected. This however means that in our case,
evolved parameters will not guarantee the same high score
every time we run. In other words, a high fitness solution has
a high probability to get a high score in the game.

Fig. 3: Average score of BSO, RLO hill climbers and GA
over time. X-axis represents the evaluation times and Y-axis
represents the average fitness evaluated by fitness function.

According to the evaluation function and customized game
map, the theoretic maximum score for destroying enemy forces
(detroy score) is 1500 and maximum time score (corresponding
to minimal time) is 100, therefore, the maximum of evaluation
score or fitness is 1600. Note that the first two digits in a
evaluation score represent the destroy score, and the last two
digits represent time score. For example, if the final score ends
up at 1451 we can infer the following

• The score being positive means our AI player defeated
the built-in AI.

• 1400 represents destroy score and compared to max-
imum 1500, our AI player lost 100 which indicates
that one Marine was killed by the enemy during the
game.

• The last two digits being 51 represents (1 − 51
100 ) ×

2500 = 1225 frames spent during the entire game
and approximately 43.75 seconds converted to normal
game speed.

In our experiments, we test each algorithm for ten different
random seeds. Each such test lasted six hours to run the 4000
evaluations. We can see from the bar-graph in Figure 4 that
the BSO HC could find good solutions 5 out of 10 times. This
probably means that there are many local hills of not very high
quality. The average score of BSO shown in figure 3 climbed
fast in the first 250 evaluations, and slowed down in the rest of
evaluations. This tells us that the BSO could find local optima
quickly, but had difficulty finding high quality more globally
optimal solutions. The final average score for BSO being only
887.0 means either we lost a Tank or seven Marines during the
game. This is the lowest average score among the three tested
algorithms. However, the best score obtained by the BSO is
1562 which shows that the quality of the best solution that
BSO could find is relatively high. It destroyed all enemy units
without losing a single unit. BSO’s time score of 62 indicates
the game last 38 seconds.

The RFO HC works slightly better than the BSO. Similar
to BSO, it climbed fast in the first 250 evaluations and then
slows down for the rest. However, the RFO found high quality
solutions 7 out of 10 times with the same starting points as



Fig. 4: Best scores of BSO, RFO, and GA with 10 different
random seeds. X-axis represents random seed and Y-axis
shows the highest fitness found by each algorithms initialized
with each random seed.

BSO. It is more reliable than BSO based on average score
as shown in Figure 3. Final average score is 1106.6 which is
better than BSO. The best score found by RFO is 1567 which
ended up with no unit lost and 5 seconds faster than the best
score found by BSO.

The GA was also applied in the experiments to compare
the performance and quality with HCs. We used a population
of 80 for maximum of 60 generations. The total number of
evaluations was 80× 60 = 4800. Figure 3 shows the average
of maximum scores and average of average scores in each
generation. The GA converged fast to 1500 during the first 20
generations which is 80 × 20 = 1600 evaluations, and then
increased fitness slowly during the remaining 40 generations.
The big difference between GA and HCs is that GA always (a
hundred percent of the time) found good solutions. Also the
average of the best scores converged to 1566, and the best score
from the GA is 1567. This indicates that every run of the GA
found high quality, near-optimal solutions, and those solutions
are close to the best score possible (1600). Furthermore, the
best solution from the GA is 5 seconds faster than RFO and 10
seconds than BSO. This indicates that the skirmish finishes in
a short time and reduces uncertainties from opponent reactions
and increases the safety of our own units.

From the point of view of IMs and PFs we can use IMs for
guiding our units’ positioning and move smoothly to attack the
opponents units using PFs to guide our movement. Figure 5
shows an example of generated IMs positioning. The units
could take advantage of this positioning to concentrate their
fire and maximize their damage to the opponent. The group
positioning and movement that evolves first learns to ensure
that single units stay away from enemy unit controlled territory
or to move outside of the map. If the enemy repulsor force
is too small, units might move into enemy territory and be
destroyed. On the other hand, if the force is too large, it will
push the units to the border of the map and lead to avoiding
the enemy altogether. Second, the parameters for the IMs were
learned to guide our unit’s positioning. The IM calculated the
enemy’s weak spots from the current position of enemy units
and generates attraction points to guide our units in preparing

Fig. 5: Snapshot of one group positioning in Starcraft minimap.
The dots on the map represent friendly units, and other part
of the map was covered by fog of war. Single dot at the left
of the map is Tank, and other dots are Marines.

for the skirmish. Different IM parameters lead to different
locations, if the RMarine and RTank are small, the locations
might be inside the enemy units’ attack range. If they are
too large, the units may spend more time on the way and
result in longer games, and low Stime. The enemy replusor
and friend attractor were learned last. This affects detailed
unit movement. Good combinations of attractors and replusors
allow the group to move and attack smoothly and effectively.
Units move to the right locations quickly and destroy enemy
units faster. At the same time our units have more opportunity
to survive. Therefore, our evaluation function is biased towards
short movement, more enemy units eliminated, more own units
survival, and shorter game duration.

We were also interested in the robustness of the solutions
found by GAs and the two HCs from the point of view of
the enemy’s initial positioning. We wanted to know how our
optimal solutions applied in different environments and were
also curious how enemy initial position impacted our fitness
scores. We designed three types of different custom maps in
Starcraft in which the enemy were initially well dispersed, well
concentrated, or in an intermediate position. The intermediate
map was used for all prior results above. Table III specifies
these initial enemy dispositions. These three types of scenarios
can usually be found in human player matches. Dispersed units
have less concentrating fire power but more map control and
information gain. However, concentrated units have less map
control but are harder to destroy.

We applied the solutions obtained from our initial inter-
mediate scattered map to the two other maps. Each map was
tested 500 times to get the average scores and their standard
deviations. Table III shows these test results. The optimum
was obtained from GA running in intermediate initial position
and had the highest fitness of 1567. We tested this solution
500 times and on average obtained a fitness 1380.728 on the
intermediate map. The standard deviation over all 500 tests on
this map was 198.9 indicating the average error is within 2
Marines. We tested the same solution in a map with dispersed
enemy units initial positions. The average fitness of 500 tests
on this map was 1423.364. This is a higher score on a map
never seen by the GA. The reason for the higher average score
is that enemy units are dispersed and can be eliminated one



TABLE III: Average fitnesses and standard deviations of 500
matches on three maps with different initialized enemy units’
position. Dots on the left side of the map represent the friendly
units, and dots on the middle of the map represent the enemy
units.

Enemy Initial Position Description Fitness

Intermediate enemy
position initialized,
maximum distance
from 2 units is 6 IM
cells, which is also
the default map for
all the HCs and GAs
experiments.

1380.7

σ = 198.9

Dispersed enemy po-
sition initialized, max-
imum distance from 2
units is 11 IM cells.
New scenario added
to test robustness of
the solution of previ-
ous map.

1423.4

σ = 62.6

Concentrated enemy
position initialized,
maximum distance
from 2 units is
3 IM cells. New
scenario added to test
robustness.

181.8

σ = 346.1

by one with very little damage. This tells us the optima we
get from intermediate scattered position could work well or
even better with more scattered enemy units. This also showed
how group positioning is important in combat. The standard
deviation of the tests on this map was low at 62.6. This
matches our intuition that dispersed units are easily destroyed
one by one quickly without much damage to the opponent, and
our group with concentrated units has more concentrated fire
power to damage the enemy. On the other hand, the average
fitness of the tests on a map with concentrated units is low at
181.838. This means the matches were even on this map and
only one or two units survived on average in 500 tests. The
Marines and Tank were not able to synchronize their movement
to confront enemy units at the same time, while concentrated
enemy units could maximize their damage by firing at the same
time. The standard deviation is 346.1, and is the highest on
the three types of tests.

For comparison, Figure 6 shows the performance of the
same CHC GA running on the intermediate scattered map and
concentrated map. The graphs show that the enemy group with
more scattered units is easier eliminated and faster for the GA
to find quality solutions. It converged in the 20th generation.
However, the enemy group with more concentrated units got
lower fitness because the enemy could damage opponent units
more. The convergence rate is also slower than scattered units
because the quality solution is harder to find.

Fig. 6: Average maximum and average fitness of GA running
on two types of map. X-axis represents generation, and Y-axis
represents fitness.

V. CONCLUSION AND FUTURE WORK

This paper compared GAs with two HCs to generate group
positioning and unit movement based on influence maps and
potential fields for beating opponents in a typical skirmish
scenario in RTS games. We used Starcraft’s built-in AI as our
opponent baseline against which to make our comparisons.
We compactly represented group behaviors in a combat as
a combination of IMs and PFs parameters and restricted our
search space to 248. We were able to compare GA performance
versus much faster Bit-Setting Optimization and Random
Flipping hill climbers. Results show that both BSO and RFO
HCs can find local optima quickly against the baseline, but
they are not guaranteed to find good solutions every time. They
find good solutions between 50% to 70% of the time starting
with ten different random seeds. Compared to HCs, the GA
always find good combinations of IMs and PFs parameters
and produce higher quality solutions compared to the hill-
climbers. However, GAs take much longer to converge. Good
solutions find good units attack positions, produce smooth unit
movement, avoid unit collisions, synchronize attacking, and
complete the skirmishes quickly.

We also compared the performance of GA running in
different scenarios for testing robustness of the solutions found
by GAs and HCs. The result shows that we could apply the
solutions found in one scenario to more dispersed enemy units’
position with high fitness. However, these solutions do not do
well against more concentrated enemy positions.

These results apply to different aspect of designing a RTS
game player. For example, with easy difficulty levels we can
apply fast HCs to find not so good solutions. For harder
difficulty levels, we would need to apply GA to find a better
solution which need more computational time but provide
much more challenge to players. Or we can mix two of
the algorithms to increase the unpredictability and fun when
playing against the AI. On the other hand, we can also allocate
unbalanced computational and memory resource for different
algorithms.

We are also interested in techniques which speed up finding
high quality solution for skirmish. Some methods like case-



injection or expert system may be added to our system in the
future to increase solution finding performance. In addition,
instead of evolving solutions based on a static baseline such
as the built-in Starcraft AI, we could apply co-evolutionary
techniques to produce both sides of the game AI.

ACKNOWLEDGMENT

This research is supported by ONR grant N00014-12-1-
0860.

REFERENCES

[1] D. Thomas, “New paradigms in artificial intelligence,” AI Game Pro-
gramming Wisdom, vol. 2, pp. 29–39, 2004.

[2] N. Wirth and M. Gallagher, “An influence map model for playing ms.
pac-man,” in Computational Intelligence and Games, 2008. CIG ’08.
IEEE Symposium On, dec. 2008, pp. 228 –233.

[3] (2005) Age of empires 3. [Online]. Available: www.ageofempires3.com
[4] M. Buro, “Real-time strategy games: A new AI research challenge,”

Proceedings of the 18th International Joint Conference on Artificial
Intelligence. International Joint Conferences on Artificial Intelligence,
pp. 1534–1535, 2003.

[5] D. Aha, M. Molineaux, and M. Ponsen, “Learning to win: Case-based
plan selection in a real-time strategy game,” in Case-Based Reasoning
Research and Development, ser. Lecture Notes in Computer Science,
H. Muoz-vila and F. Ricci, Eds. Springer Berlin Heidelberg, 2005,
vol. 3620, pp. 5–20.

[6] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-based planning
and execution for real-time strategy games,” in Proceedings of the
7th international conference on Case-Based Reasoning: Case-Based
Reasoning Research and Development, ser. ICCBR ’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 164–178. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74141-1 12

[7] S. Louis and C. Miles, “Playing to learn: case-injected genetic algo-
rithms for learning to play computer games,” Evolutionary Computa-
tion, IEEE Transactions on, vol. 9, no. 6, pp. 669 – 681, December
2005.

[8] P. Avery and S. Louis, “Coevolving influence maps for spatial team
tactics in a RTS game,” in Proceedings of the 12th annual conference
on Genetic and evolutionary computation, ser. GECCO ’10. New
York, NY, USA: ACM, 2010, pp. 783–790. [Online]. Available:
http://doi.acm.org/10.1145/1830483.1830621

[9] M. Preuss, N. Beume, H. Danielsiek, T. Hein, B. Naujoks, N. Pi-
atkowski, R. Stuer, A. Thom, and S. Wessing, “Towards intelligent team
composition and maneuvering in real-time strategy games,” Computa-
tional Intelligence and AI in Games, IEEE Transactions on, vol. 2,
no. 2, pp. 82–98, 2010.

[10] H. Danielsiek, R. Stuer, A. Thom, N. Beume, B. Naujoks, and
M. Preuss, “Intelligent moving of groups in real-time strategy games,”
in Computational Intelligence and Games, 2008. CIG’08. IEEE Sym-
posium On. IEEE, 2008, pp. 71–78.

[11] C. Miles, J. Quiroz, R. Leigh, and S. Louis, “Co-evolving influence
map tree based strategy game players,” in Computational Intelligence
and Games, 2007. CIG 2007. IEEE Symposium on, april 2007, pp. 88
–95.

[12] P. Sweetser and J. Wiles, “Combining influence maps and cellular
automata for reactive game agents,” Intelligent Data Engineering and
Automated Learning-IDEAL 2005, pp. 209–215, 2005.

[13] M. Bergsma and P. Spronck, “Adaptive spatial reasoning for turn-based
strategy games,” Proceedings of AIIDE, 2008.

[14] S. Jang and S. Cho, “Evolving neural npcs with layered influence map in
the real-time simulation game conqueror,” in Computational Intelligence
and Games, 2008. CIG ’08. IEEE Symposium On, dec. 2008, pp. 385
–388.

[15] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle
avoidance for mobile robots,” Robotics and Automation, IEEE Trans-
actions on, vol. 7, no. 3, pp. 278–288, 1991.

[16] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The international journal of robotics research, vol. 5, no. 1,
pp. 90–98, 1986.

[17] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[18] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,”
Robotics and Automation, IEEE Transactions on, vol. 17, no. 6, pp.
947–951, 2001.

[19] C. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in ACM SIGGRAPH Computer Graphics, vol. 21, no. 4. ACM,
1987, pp. 25–34.

[20] J. Hagelbäck and S. J. Johansson, “Using multi-agent potential fields
in real-time strategy games,” in Proceedings of the 7th international
joint conference on Autonomous agents and multiagent systems -
Volume 2, ser. AAMAS ’08. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems, 2008, pp. 631–638.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1402298.1402312

[21] M. Buro, “Orts a free software rts game engine,” Accessed March,
vol. 20, 2007.

[22] J. Hagelbäck and S. J. Johansson, “The rise of potential fields in real
time strategy bots,” Proceedings of Artificial Intelligence and Interactive
Digital Entertainment (AIIDE), 2008.

[23] B. Farkas and B. Entertainment, StarCraft: Prima’s official strategy
guide. Prima Communications, Inc., 2001.

[24] S. W. Wilson, “Ga-easy doe not imply steepest-ascent optimizable,”
1991.

[25] J. H. Holland, “Adaptation in natural and artificial systems, university
of michigan press,” Ann Arbor, MI, vol. 1, no. 97, p. 5, 1975.

[26] L. J. Eshelman, “The chc adaptive search algorithm : How to have
safe search when engaging in nontraditional genetic recombination,”
Foundations of Genetic Algorithms, pp. 265–283, 1991. [Online].
Available: http://ci.nii.ac.jp/naid/10000024547/en/


