
World Automation Congress © 2010 TSI Press.

RECURSIVE, HYPERSPHERICAL BEHAVIORAL LEARNING FOR ROBOTIC
CONTROL

SALYER B. REED, TYSON R. C. REED, MONICA NICOLESCU, SERGIU M. DASCALU
Department of Computer Science and Engineering

University of Nevada, Reno
Reno, Nevada 89557, USA

http://www. cse. unr. edu

ABSTRACT- Robots, undoubtedly, are governed by a set of behavioral policies. However,
embedding these policies becomes problematic and complex due to the nondeterministic properties
of the task and environment. Learning from demonstration, or LFD, alleviates this vexatious
conundrum and expedites the mapping process, for the robot implicitly learns the desired objective.
This paper presents a novel method for facilitating behavior learning in robots. The algorithm
employed, called Recursive, Hyperspherical Behavioral Learning, or RHBL, actively translates the
teacher's reactions to various stimuli into a behavioral tree, which defines the robot's current domain
knowledge. Once the tree is formulated, the anthropomorphic robot demonstrates proficiency in the
observed, complex task, for the tree elicits responses from various stimuli, defining the robot's
autonomous behavior. Details of the algorithm and the results of its application are presented in the
paper.

Key Words:RHBL; Recursive, Hyperspherical Behavioral Learning; Learning From Demonstration;
Robot

1. INTRODUCTION

Robot behaviors are increasingly complex and sophisticated, resulting in new, comprehensive
strategies and algorithms, endeavoring to increase utility, realism, or functionality. Initially, the architect,
or designer, formulates a list of objectives; this involves identifying and characterizing the indicated
responses. Ultimately, this behavior schema is imprinted onto the robot. However, transferring this
schema, or control policy, from the architect to the robot traditionally yields suboptimal solutions due to an
inadequate understanding of the situation, the difficulty of the problem, or time constraints. As such, to
accelerate learning, architects leverage cooperative learning techniques and strategies, including learning
from demonstration (LFD).

Presently, a multitude of learning techniques exists such as reinforcement learning [5, 8], unsupervised
learning [6, 14], and supervised learning [4, 7]. These learning techniques - when coupled with strong, fast
algorithms - have produced a plethora of behaviors utilized by many robots. On the other hand, learning
from demonstration is, transparently, unique.

Learning from demonstration is a natural, intrinsic behavior for any entity, or being. The persistent
exposure to various stimuli yields observable, and often measurable, responses from the entity. By
observing the reactions, other entities can infer proper responses to the stimuli, constructing a set of
governing, behavioral policies. As such, assimilation of the behavior is assumed to be implicit rather than
explicitly defined by the architect [10].

Ideally, learning from demonstration involves two, distinct parties: the teacher and the pupil. The
teacher, which is customarily a human being, possesses distinct domain knowledge pertaining to an
individual task. It is the objective of the teacher to demonstrate a task to the pupil, articulating proper
behavior to various stimuli, and it is the intention of the pupil is to observe and learn. During this process,
the teacher must establish a rapport with the pupil, for the pupil fully entrusts the teacher. Eventually, by
observing the behavior and the intent, the pupil is able to expand its repertoire by constructing an internal
schema, or representation.

During training, the teacher executes a meaningful task, which is observed by the pupil. It is the
objective of the pupil to map the intentions of the teacher to meaningful behaviors and actions.

Recursive, Hyperspherical Behavioral Learning (RHBL) is a LFD technique derived from the
Recursive Hyperspheric Classification (RHC) Algorithm [12]. Fundamentally, RHC is a classification
algorithm used in identifying and assigning classes to unknown feature vectors by strategically constructing
a hierarchical taxonomy of hyper spheres from labeled data. RHBL, like its predecessor, generates a similar

hierarchy of hyperspheres. In this structure, each hypersphere maps to a primitive action, which has
previously been branded onto the robot.

When a demonstration is performed, it can be considered a collection of labeled feature vectors. As
such, because each feature vector is labeled, the robot can construct a behavior policy utilizing various
classification techniques, including RHBL. When learning a demonstrated task using the RHBL algorithm,
the robot constructs a set of overlapping hyperspheres in a n-dimensional space from labeled feature
vectors, which are gathered through observation. After mapping, or partitioning, the dimensional space, the
robot is said to be "learned;" that is, the control policy is embedded in the robot.

Following the training process, the robot "goes online" and is placed in the environment. During this
period, the hierarchical spheres, when recursively traversed, dictate the robot's responses to unlabeled
vectors, which are extracted from the environment, as they are presented to the robot. In classifying the
unlabeled vector, a label, or response, is inferred from the current domain knowledge, which is
encapsulated by the collection of hyper spheres. Ultimately, the RHBL algorithm will ensure fast responses
to stimuli as well as believable reactions from environmental forces.

RHBL has been used to create an autonomous robot capable of performing a straightforward collection
of tasks described by the architect. The robot, once it has learned the proper behavior through observation,
is able to perform a desired task without intervention by the overseer. In this paper, a Pioneer 3DX robot is
endowed with the ability to classify unlabeled vectors by means of the RHBL algorithm. In training the
robot, the robot's sensors will be utilized, which will tell the robot of its current state. In the following
arrangement, the robot is first demonstrated a specific task; afterwards, the robot's understanding is
affirmed when the robot performs the desired task. Should additional examples, or vectors, be needed to
correct a behavioral deficiency, the robot, again, observes a demonstration and appends and augments its
current hierarchy of hyper spheres; as such, the RHBL algorithm is extensible.

The remaining sections describe the RHBL algorithm and its applications. Section 2 discusses related
work in the realm of LFD. In Sections 3, 4, and 5 the RHBL algorithm is discussed in detail, including the
characteristics, production of hyperspheres, and the classification process. Section 6 describes the training
processes and results obtained from the robot that utilizes the RHBL algorithm. Finally, a brief discussion
about the RRHL algorithm is included in Section 7, followed by conclusions and future work in Section 8.

2. RELATED WORK

A problem plaguing the robotic community is the excessive number of behaviors, or responses, a robot
must possess. Many of these behaviors - learned or imparted - are utilized when the robot goes online;
however, many unforeseen scenarios exist and creating behaviors for every minute scenario is fruitless. As
such, learning from demonstration can expedite the learning process and assist in substantiating and
formulating solutions for problematic scenarios.

In many learning techniques, the robot is endowed with a set of primitive actions. These actions, when
combined, will form complex behaviors, or a policy. This policy - once compiled - dictates the robot's
responses to stimuli in the environment. In [2], the authors create such an action policy by actively
controlling the robot; the robot is a passive observer. Ultimately, the policy is the set of Gaussian mixture
models for each primitive behavior where each Gaussian probability distribution function is weighted. The
mixture model actively governs the behavior of the robot by deterministically selecting the primitive action.

On the other hand, state space boundaries are not always linearly separable; labeled data often overlap.
As such, utilizing support vector machines and optimizing a Lagrangian function, one is able to classify
unlabeled data [9, l3]. However, learning from demonstration can also assist by removing ambiguity and
defining the appropriate action. In [3], a robot performs a specific action with respect to its current state
and domain knowledge. However, because the space is not linearly separable, actions - or labels - overlap;
as such, the authors create option classes, which are more likely to select actions that have been previously
demonstrated.

Also, a strong proponent supporting LFD is the ability to generalize. In [11], the authors utilize
behavior networks and create a generalized topology, endeavoring to accomplish a desired task.
Demonstrating the task to the robot, the teacher provides audio cues to the robot, and the robot creates a
behavior network, or graph. From the graph, a generalized topology is produced. In performing the
desired task, should the teacher deem the action inappropriate or incomplete, the teacher will intervene,
correcting the robot, indicating the correct response. As such, the topology is extensible, for it can be
appended.

Finally, in [10], behaviors are defined to be a linear combination of behaviors and weights.
Demonstrating an action to a robot, the robot, by utilizing a particle filter, ascertains the weights. Once
estimated, a resultant vector is molded from the combination of weights and predictive vectors. Ultimately,
the advantage is that the robot assumes that behaviors run concurrently and the observed action is a
composite of these synchronous behaviors, for the robot is striving to estimate the behavior by moditying
the composite weights.

3. THE ALGORITHM

In demonstrating these behaviors, direct teleoperation of the robot is employed. In this mode the
teacher controls the robot, and the robot maintains a passive role in the interaction. However, during this
process, the robot observes the task, creating a behavioral tree of the observed actions.

3.1 Algorithm Terminology
The hypersphere is the quintessential geometric entity utilized in RHBL. Every hypersphere innately

possesses two geometric properties: a center of gravity, or COG, and a radius. The radius and COG define
the locus for all points in the space that compose the hypersphere. Moreover, every hypersphere carries
two additional properties. First, every hypersphere possess a label; the label corresponds to an element in
the primitive behavior in the set. Second, the hypersphere maintains a set of spawned hyperspheres.
During training the hypersphere will - possibly - spawn additional hyperspheres; as such, it maintains a list
of the spawned children. This spawning process generates a hierarchical structure of hyperspheres, or a
tree.

3.2 Initialization
Creating complex behaviors from local primitives involves spawning hyperspheres from an initial

hypersphere and monitoring the teacher's responses to stimuli with the aid of sensors. In many instances,
ranges for sensors are crisp; specifically, they have definitive operating values. As the limits are known,
one may scale the values, defining the boundary of the action space. In creating hyperspheres, during the
demonstration, sensor values are sampled and merged, creating an input vector, which is then presented to
the system. When introduced to the system, the vector - potentially - can spawn many new hyperspheres.

3.3 Creating the First Hypersphere
If the space can be scaled in the range [0, 1], the first hypersphere, intrinsically, is positioned in the

center of the space. As such, the center of gravity for the hypersphere in IR\.n is determined to be:

COG = [0.51' 0.52, 0.53, • • • 0.5n_p 0.5J
where COG is the center of gravity, and n is the dimensionality of the space. Also, the radius of this first

hypersphere, too, should be large enough to encompass all vectors that are introduced to the system.
Therefore, if all vectors are scaled, the radius is distance from the COG to the furthest possible vector, for
no vector can exceed the boundaries of the hypersphere [Figure 1].

yJ4

Figure 1. Creating a radius about the first COG in a two-dimensional space. The gray depicts the
dimensional boundaries. Some parts of the hypersphere, which are black, are void and cannot
contain a valid vector. The white cross is the COG. The axes are shown.

Finally, a class designation, or default behavior, must be assigned to the hypersphere. The default

behavior of the hypersphere is, in fact, a primitive action from the set a E A, where A is the set of all
primitive actions.

3.4 Creating Additional Hyperspheres
As was mentioned, spawning hyperspheres creates a taxonomic hierarchy of behaviors. This tree,

when traversed, is capable of producing complex behaviors. To spawn additional hyperspheres the robot
surveys the current environment by monitoring sensor inputs that produce quantitative readings. The
amassed sensor data produces a solitary input vector, which is scaled. The label for the vector is the
observed reaction from the teacher to environment stimuli.

Starting with the root hypersphere, or node, the algorithm parses the tree using standard tree traversal
algorithms. For every hypersphere that can encapsulate the input vector, RHBL continues to parse its
children. If, in the graph search, a hypersphere has no children that can encapsulate the vector, and a
confliction between classes, or observed behaviors, is sensed, a new hypersphere is spawned.

Unlike the first hypersphere, the center of gravity for a spawned child is, in fact, the input vector.
However, the radius of the new hypersphere is defined to be:

rchild = r parent - IICOG child - COG parent r '
where rchild is the radius of the spawned child, rparent is the radius of the parent, and IICOGchild - COGparentl1

2 is

the Squared Euclidean Distance between the center of gravities of the two hyperspheres. Finally, the
spawned hypersphere also assumes the behavior, or class, of the input vector, which mimics the action of
the teacher. It is this spawning process that truly extends the behavior of the robot, creating complex
behaviors.

4. COMPLEX BEHAVIORS

The structure of the hyperspheric tree, a collection of primitive actions, creates complex behaviors
from a rather mundane set of actions. When the robot is unleashed in an environment, it utilizes standard
tree traversal algorithms to select a primitive behavior from the tree nodes.

4.1 Behavioral Selection
The current schema assumes the robot receives quasi-, or near-, perfect information from the sensors;

that is, the sensors contain very little noise. From the sensors, a scaled vector is created and is introduced
to the system for identification.

Tree traversal algorithms are employed that examine the hierarchical structure of the tree and selects
the appropriate behavior given the current state of the sensors. Starting with the first hypersphere, or root,
the system compiles a list of hyperspheres, or nodes, that can encircle, or describe, the unlabeled vector. If
a hypersphere can encompass the vector, the system inspects that hypersphere's descendants, determining if
they, too, can encapsulate the vector. As such, if a child encapsulates the vector, continue performing a
graph search on the node and its descendants. When probing a sphere's children and no child can enclose
the vector, that sphere is marked as a descriptive candidate. On the other hand, for each hypersphere that
cannot enclose the vector, prune that child and its direct descendants.

When the search is complete, the system selects from the potential candidates the sphere with the
smallest radius, for this sphere is most descriptive. The robot then performs the primitive action associated
with this hypersphere. Ultimately, as the input vector varies due to the dynamic nature of the robot and its
environment, new primitive actions are selected from the behavioral tree; the complex behavior of the robot
is, in fact, the aggregate of all the primitive behaviors in the behavioral tree.

5. SQUARED E UCLIDEAN DISTANCE

It was mentioned that RHBL utilizes the Squared Euclidean distance when spawning the set of
hyperspheres. In fact, many distances could be utilized in spawning additional hyperspheres; however,
using the squared Euclidean distance has a distinct advantage.

As opposed to the Euclidean distance, the squared Euclidean distance has a smaller contraction rate
when spawning. For example, consider the points (0, 0) and (5, 0). The Euclidean distance is 5 units, and
the squared Euclidean distance is 25 units. Now, if these distances are the radii, and another vector is
found at (2.5, 0), then the contraction rate for the Euclidean distance is 50% while the squared Euclidean
distance contracts by just 25%. The smaller contraction rate leads to better classification results, for the
volume that is truncated in the space is decreased, reducing overshoot.

5.2 Convexity
To use the squared Euclidean distance in classification, however, one must first prove that this set is, in

fact, convex. Assume that x and yare vectors in IR{" and a E [0, 1], then . . .

g(a) = t.[ax, + (1-a)y,]' ,; max{ t.x,', t.y,' }
In other words, the following set must be convex.

Br = {x ERn: L
.

n
X/ � r} 1=1

Proof: It is noted that . . .

;=1 ;=1

i=1 i=1 ;=1
for the sum of nonnegative numbers is, indeed, nonnegative, and any number squared is nonnegative.
Next,

n
g(a) = L[axi +(1-a)y} i=1
g(a) = I[a2x/ +(1-a)2y/ +2a(1-a)XiYi] i=1
g(a)=a2I[x/ + Y/ -2XiYi]+2aI[XiYi -Y/]+ Iy/ i=1 ;=1 i=1

From this, it is true that g is a second degree polynomial with respect to a, and g is, certainly, concave up,
for the coefficient preceding a

2
is positive. Simple Calculus dictates that the minima and maxima occur at

points where derivatives are equal to zero or the endpoints of the interval. By definition, if the minimum
occurs at one endpoint, the maximum must fall on the other endpoint. On the other hand, if the minimum
falls within the interval, the maximum occurs at either endpoint. As such, either . . .

n
g(1) = LX/ ;=1

n
or g(O) = LY/ ;=1

will be the maximum of g, and the proof is complete, showing that the Squared Euclidean distance is,
actually, convex.

6. ROBOT

The robot was developed in Player, which is an open source program used in creating robots with
robust behaviors and dynamic environments. The robot possesses a solitary laser rangefinder. The laser
rangefinder has 360 laser "pings" in a 1800 arc. Of the 360 laser pings, five were used in the creating the
complex hierarchy of hyper spheres [Figure 2].

LP3

LP5 L--------1If---------' LPI
Rohot

Figure 2. A depiction of the robot with the five laser pings used in training and simulation.

The robot was also endowed with a position sensor. This sensor enables the robot to determine its
position and orientation with respect to the environment. In developing the behaviors, only the rotational
measurement of the position sensor was used.

6.1 Primitive Behaviors
In developing behaviors, the robot possesses a small, discrete set of behaviors, including forward,

forward-left, rotate-left, forward-right, and rotate-right.

A = {Fwd, Fwd-Left, Rot-Left, Fwd-Right, Rot-Right}

It is the objective of RHBL to create complex behaviors from this set of primitive behaviors. One
should note that at no time can the robot remain stationary, for the robot would never leave this state in a
static environment.

7. E XPERIMENTAL RE SULTS

The robot learned a plethora of behaviors, including wall following and maze navigation. During
wall following, the robot maintains a desired distance from the wall, following the contours and jagged
geometry of the environment yet avoiding obstacles. In maze navigating, the robot maneuvers in a
simplified maze, endeavoring to be free of the confining walls, or screens.

7.1 Wall Following
In wall following, it is the intent of the robot to actively pilot a course, maintaining close proximity to

a wall yet avoiding direct collision with the wall or other obtrusive obstacles. Initially, during this task, the
robot only utilized the laser rangefinder. Consequently, as the pings from the rangefinder can reach, or
sense, very far distances, a threshold was applied to each ping. In this scenario, each ping was constrained
to 2.0 units. If the ping exceeded this threshold, it was tapered to 2.0 units. The readings from the pings
were then scaled by a factor of 2.0, for, as stated, inputs are scaled in the range [0, 1].

Because five pings were used to create an input vector, the initial hypersphere is located at [0.5, 0.5,
0.5, 0.5, 0.5, 0.5]. This implies the radius is 1.25 units, for it is large enough to encompass all foreseeable
vectors. Finally, the behavior, or label, of the hypersphere is assigned to be "forward."

Once the first hypersphere is initialized, the experiment is started, and the teacher governs the robot's
movements. While navigating, the robot reads the values of the five laser pings, creates a labeled feature
vector, scales this vector, and sends it to the system for classification. The system will potentially spawn
one or more children from this vector.

Initially, the robot's trajectory was parallel with the wall; however, because of the wall's protrusions,
the robot would inevitably collide with the wall unless a corrective action were performed by the teacher.
As the robot grew closer to the wall, the observer's reaction to the impending wall collision instructed the
algorithm to create a new hypersphere, averting a collision. On the other hand, if the robot retreated, or
ventured, too far from a wall, again, the teacher's reaction spawned a hypersphere, indicating the robot
should tum toward the wall.

Figure 3. (a) The path taken by the teacher during wall training. (b) The path taken by the robot in
the environment after learning the desired behavior.

7.2 Maze Navigating
In maze navigating, the robot traversed a simplified, tiered maze. At each tier there is a single inlet

and a single outlet. The robot is to navigate each tier and reach the goal while avoiding wall collisions and
previously visited tiers.

Like wall following, the robot employs the use of its laser rangefinder, but, during maze navigating, it
also utilizes its position sensor. The position sensor is used to determine the robot's orientation. However,
unlike a laser ping where the value is continuous, the orientation of the robot is considered discrete because
the value can assume only two values: left-directional or right-directional. It is important to determine the

directional orientation of the robot as the robot may inadvertently revisit a tier. Adding this additional
feature to the vector, coupled with proper training, will prevent this scenario. Subsequently, the discrete
values left-directional and right-directional are assigned the numeric values 0.33 and 0.66, respectively, for
the values are spaced equidistance on the interval [0, 1].

Figure 4. (a) The path taken by the teacher during maze training. (b) The path taken by the robot in
the maze after learning the desired behavior.

7.3 Discussion
In both scenarios the robot was able to traverse the environment after implicitly learning the task by

monitoring the reactions of the teacher. In the first scenario, wall following, the robot easily navigated the
course with no additional training. On the other hand, in one instance the robot did stumble and entered an
infinite loop. The robot continually bounced between two hyperspheres, or states, that were labelled rotate
left and rotate-right. In this case, user intervention was needed by demonstrating an action that could put
the robot in a new state, which altered the behavioral tree. Once altered, the scenario was reset, and the
robot could successfully pilot the course. Lastly, the average node count of the spawned tree was 53.4, and
the average tree height was 12.

In the second scenario, maze navigating, the robot - on all attempts - successfully navigated the terrain
after just one training session. The success of the robot can be attributed to the many vectors introduced to
the robot for classification, for the terrain has many tiers. Moreover, the average node count of the
generated tree was 412.5 and had an average tree height of 13.

Table I. Spawned tree properties.

Scenario Average Node Count Average Tree Height
Wall Following 53.4 12

Maze Navigating 412.5 13

8. FUTURE WORK AND CONCLUSIONS

8.1 Future Work
Currently, learning from demonstration is the instrument employed in learning behaviors. Future

modifications are likely to utilize reinforcement learning with the aid of fitness functions. With a fitness
function, the behavior will be learned by inputting the vector into a fitness function. It will then be the
fitness function that determines if the learned behavior is acceptable. As such, the role of the teacher would
diminish; in fact, the role of the teacher would be reduced to correcting erroneous actions.

Also, presently, RHBL has no conception of state; as such, the algorithm is purely reactive; that is, it
cannot solve a temporal set of goals. For example, if the goal is for the robot to first pick up a red ball and
then a green ball, RHBL would fail. In many architectures and algorithms, robots maintain an internal state
[1]; each state dictates and regulates the instantaneous action of the robot. Improved, future alterations to
the RHBL algorithm would allow for the system to emulate a state machine, allowing the robot to achieve a
set of sequential goals.

8.2 Conclusions
Because of the nature of RHBL - like many classification algorithms - a multitude of samples, or

labeled vectors, must be presented to the system; this explains the rationale for RHBL continually

monitoring the reactions of the teacher during training. RHBL is attempting to discover the separable
boundaries between classes, or actions, by methodically partitioning the space into hyperspheres, allowing
it to quickly adapt and learn the desired behavior. Once divided, the algorithm exhibits unparalleled
prowess in classifying unlabeled vectors.

Moreover, RHBL is a strong, yet simplistic, classification algorithm that - when harnessed - invokes
legitimate responses to environmental forces. Initially, when observing the actions of the teacher, the robot
actively parses its current domain knowledge, which is comprised of hyperspheres. If the action of the
teacher disagrees with the action, or class, of the hypersphere, a new hypersphere is spawned, which
augments and enhances the behavior of the robot, creating a hierarchy of hyper spheres.

Following the construction of the behavioral tree, the robot is considered to be "learned," and its
perceived behavior is affirmed by examining its responses to various stimuli. Sampling its sensors, the
robot produces an input vector and proposes it to the system for classification. Standard tree traversal
algorithms are employed, and a list of possible candidates are gathered. From the list, RHBL selects the
hypersphere with the smallest radius because this hypersphere is the most descriptive, and the robot
executes the primitive action. It is the conglomeration and traversal of hyperspheres that defines the
robot's complex behaviors.

Finally, RHBL, too, is extensible. Should the learned behavior of the robot warrant a refinement, the
robot can observe additional demonstrations, broadening and honing its internal schema of the
demonstrated behavior, for the additional examples also solidity state boundaries as a result of spawning
additional hyperspheres.

REFERENCES

1. B. Argall, B. Browning, and M. Veloso, "Automatic Weight Learning for Multiple Data Sources
when Learning from Demonstration," IEEE International Coriference on Robotics and Automation.
Kobe, 2009, pp. 226 - 31.

2. S. Chernova and M. Veloso, "Confidence-Based Policy Learning from Demonstration Using
Gaussian Mixture Models," Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems. 2007, pp. 1 - 8.

3. S. Chernova and M. Veloso, "Learning Equivalent Action Choices from Demonstration," IEEE
International Conference on Intelligence Robots and Systems. Nice, 2008, pp. 1216 - 1221.

4. M. J. Er and C. Deng, "Obstacle Avoidance of a Mobile Robot Using Hybrid Learning Approach,"
IEEE Transactions on Industrial Electronics. 2005, pp. 164-9.

5. C. Gaskett, et aI, "Reinforcement Learning for Visual Servoing of a Mobile Robot," Proceedings of
the Australian Coriference on Robotics and Automation. 2009.

6. P. Giguere and G. Dudek, "Clustering Sensor Data for Autonomous Terrain Identification Using
Time-Dependency," Autonomous Robots. 2009, pp. 171-86.

7. M. Harb, et aI, "Neural Control System of a Mobile Robot," IEEE International Joint Conference
on Neural Networks. 2008, pp. 2825-32.

8. H. Kim, et aI, "A Robotic Model of the Development of Gaze Following," IEEE International
Coriference on Development and Learning. 2008, pp. 238-43.

9. O. L. Mangasarian and D. R. Musicant, "Lagrangian Support Vector Machines," The Journal of
Machine Learning Research. 2001, pp. 161-77.

10. M. Nicolescu, O. C. Jenkins, and A. Olenderski, "Behavior Fusion Estimation for Robot Learning
from Demonstration," IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence
and Its Applications. 2007, pp. 31-6.

11. M. Nicolescu and M. 1. Mataric, "Natural Methods for Robot Task Learning: Instructive
Demonstrations, Generalization and Practice," Proceedings of the 2nd International Joint
Conference on A utonomous Agents and Multiagent Systems. 2003, pp. 241-8.

12. S. B. Reed, C. G. Looney, and S. M. Dascalu, "A Recursive Hyperspheric Classification
Algorithm," Computer and their Applications in Industry and Engineering. 2008, pp. 156 - 60.

13. V. Vapnik, "Statistical Learning Theory," Wiley-Interscience, New York, 1998.
14. S. Yamada and M. Morimichi, "Unsupervised Learning to Recognize Environments from Behavior

Sequences in a Mobile Robot," IEEE International Conference on Robotics and Automation. 1998,
pp. 1871-6.

