
Towards Integrating Role Playing Game Constructs in Real-Time Strategy Games

Brad Towle Monica Nicolescu Sergiu Dascalu

University of Nevada, Reno, USA
{towle, monica, dascalus}@cse.unr.edu

Abstract

The computer game industry has grown to a million
dollar industry with new titles coming out every month.
However, with all these great achievements, the video
game industry does have one significant problem:
games are played in similar ways. One particular genre
for which this is true is the group of real time strategy
games. Almost all of these games have the same
structure, in which players first build and upgrade a
base, with the property that the more upgraded the base
the more powerful the units that can be built, and the
more powerful the units the better chance of winning.
With prospects for making a successful game
rewarding a company with perhaps millions of dollars
more games are now flooding the shelves and quantity
has become more important than quality [2][6]. This
paper reviews our work on improving real time strategy
(RTSs) games by incorporating aspects from role
playing games (RPGs)[1]. In this case, the four major
components from the role playing game are: character
equipment, character advancement, character
customization, and character classification. In addition,
this paper describes a successful application of the
unified modeling language (UML) to game design. By
demonstrating game design through UML,
programmers could see potential problems with game
play before the entire code was written. This paper
presents a pilot game which was developed in order to
prove that real time strategy games could in fact be
enhanced with role playing constructs.

1. Introduction

With the recent interest in video games, the cost of
creating a best selling title is high and increasing [2,11].
Many video and computer games have a production
price surprisingly close to the cost of producing a
Hollywood movie. Even more surprising, the reward
for creating a best seller game can rival a blockbuster
movie (e.g. the week Halo 2 was released Microsoft
made an estimated 125 Million dollars a day,
surpassing the opening movies that week) [6]. Because
of this, many computer games companies adopt the
“stick with what works strategy” and simply add
different stories and graphics to games that otherwise
have very similar game play strategies. For example,
Dawn of War and Company of Heroes have different
themes, but similar mechanics on which the games are
built. It would be unfair to say that Real Time Strategy

(RTS) games have not evolved, modern RTS games are
much more advanced than the first real time strategy
game called Herzog Zwei [4]. For simple definition an
RTS game allows a player to command a vast army, set
up a base, and upgrade units (in a general sense).
Although they have some story this is not the main
focus of their purpose [7]. This genre evolved from the
turn based tactics game which players would take turns
moving units to try to gain a strategic balance. A good
example would be the board game RISK [11]. This
being said there are several reasons that RTS games
remain similar:

1. The re-use of code: game engines are usually

difficult to write from scratch and therefore, if a
company can use the same game engine for
multiple games it will save money.

2. Fans of RTS games have become accustomed to
massive numbers of characters with limited
control. Game skills required are similar among
various RTS games, allowing the player to easily
become proficient in new games as they are
produced.

3. During the 1990's, some extremely complex RTS
games were produced. Much of the complexity
detracted from their entertainment value. A good
example of this is Star Wars Rebellion [12] in
which there were over 100 different subsystems
the player needed to control. Therefore, game
developers, worried about over-complex game
play, continued producing the games based on
standard “massive horde” RTS mechanics.

4. The standard RTS game maintained a delicate
balance between characters, in order to allow equal
chance for victory. Incorporating aspects from the
RPG games complicates this balance due to the
fact the characters must be balanced for all levels
they could potentially reach. This requires greater
game development time.

Regardless of these complications, the survival of the
RTS game industry is dependent on fresh ideas. This
paper proposes to combine five rules of designing RTS
games with four concepts taken from the RPGs in order
to create a novel and more enjoyable game than the
standard games currently being developed. Role
playing game generally focus on a small group of
people, or a single person, who must progress through a
story gaining strength as it progresses. The following
section outlines the four components that are necessary

for a role playing game. This genre is derived from the
table top versions such as Dungeons and Dragons
[9][10]. These were among the first games to be ported
over to the earliest computer mainframes [1].

2. Method

The purpose of our project was to combine four
components of an RPG into the RTS game play to
allow character customization. The four RPG
constructs are the following:

1. Each character can be equipped with specific

weapons and armor.
2. Each character can have the ability to become

more powerful, based on experience and success
which is called leveling up.

3. Each character can be customized by defining its
attributes and, if graphics allow, its appearance.

4. Each character can have the ability to upgrade its
class status when certain levels have been attained.

In order to accomplish combining the four components
of a role playing game into an RTS game five rules
were developed:

1. Every unit should have some degree of

customization.
2. Every unit should have the ability to increase in

level or rank.
3. Unit capability should be limited by skills and

rank.
4. Every unit should have an equipment and statistics

panel.
5. Increasing the strength of a character should be

more valuable then building a more expensive unit.
However, losing their most powerful character
should not end the player’s chances of winning.

Rule 1 - Every unit should have some degree of
customization. Every unit needs customization
capabilities. At a minimum, skills and equipment
should be customizable. The prototype (pilot game) for
this work allows the player to name the unit, change the
unit’s equipment, and select the unit’s capability when
leveling up. With more advanced graphics, the player
could also have the ability to change the outward
character appearance. The potential for innovation in
this area is quite large and could enhance the game play
substantially.

Rule 2 - Every unit should have the ability to
increase in level or rank. Each player’s unit should
develop as the game progresses, based on success and
experience. Without this capability, the game would
merely be a basic real time strategy game (RTS). Not
only should each unit have an XP (experience point)
counter variable that allows the characters to increase

in level, the game play should facilitate this aspect of
strengthening the unit. For example, due to the high
death rate experienced by lower level characters in an
RTS game, the units should be allowed to rest after
battle to regain strength. Without this capability most
units would not survive to grow and would perish after
a few battles.

Rule 3 - Unit capability should be limited by its skill
or level. Unit performance should be limited by level
because the higher the level is, the greater the unit’s
potential performance is. For example, a basic space
marine private should not be allowed to command a
battle cruiser. Characters must evolve to higher levels
in order to use more advanced equipment, and further,
certain skill levels must be reached to complete the
mission. As previously mentioned, this places the
game focus on individual unit development and not on
massive armies collectively.

Rule 4 - Every unit should have an equipment and
statistics panel. For the sake of utility, every unit
should have a status window. When this window is
opened, it should display important statistics, current
equipment, acquired attributes, and optional upgrades.

Rule 5 - Increasing the strength of a character
should be more valuable then building a more
expensive unit. However, losing their most powerful
character should not end the player’s chances of
winning. Increasing a unit's level adds a new
dimension to the game. The longer surviving units
become more powerful and exert more influence on the
game outcome. Preserving units and proper utilization
of specific units becomes a major game strategy.
Players can still build an army, but they will be an army
of individuals and not "cookie cutter" units. This rule
captures the essence of the major thrust of this project;
to incorporate unit development into an RTS game.
However a player loosing all his/her advanced units
should not limit their chances to victory if they still
have an army to command.

3. UML for Game Specification

This section documents an abridged form of the
Unified Modeling Language (UML) [3] artifacts that
were used to help creating the pilot game. The
dynamic nature of computer game design forced us to
change the typical UML-based modeling process into a
simpler form containing only requirements, use cases,
and primary scenarios. These elements were used to
define what the game needed and what components
were in it. After this was established only a high level
diagram and basic flow charts of the modules were
necessary in order to organize the design while
allowing for the dynamic nature of the game industry.

Requirements

There are several important reasons for creating game
requirements for integrating RPG components into the
RTS game structure. Little success has currently been
demonstrated in incorporating software engineering
into game design. By designing a simple prototype, the
freedom to make modifications and analyze the results
was now possible without rewriting the entire design. It
was then possible to document the game design with
UML. The UML documentation was paramount to
ensure that the five final rules were incorporated in the
final iteration of the game code.

Table 1 depicts an example of the functional
requirements of the game we created, "Fuzz's
Revenge". Requirements are broken down into three
different categories which are:

 R#[1] Required components that must be in the

game.
 R#[2] Components that should be incorporated into

an RTS game but are not vital to this project.
 R#[3] Components that would enhance the game,

but require a more advanced platform and time to
develop. If this were a commercial project these
components would be necessary.

Table 1: Example of Requirements for the “Fuzz’s

Revenge” Pilot Game

3.1 Use Case Modeling

Use case modeling is a technique for capturing
functional requirements of a system or systems via use
cases (Google Dictionary). Use cases describe the
interactions between the users and the system as seen
from the outside of the system. The following use cases
(Table 2) are a sample of what was necessary for the
pilot game and walk through various modules or
smaller units of the program. Each use case has a title
and a brief description that explains what each use case
performs.

Table 2: Sample Use Cases for the Pilot Game

Now that the requirements of the game have been
defined and the use cases have been derived to meet the
requirements the game designer can see what needs to
be done or problem areas in the game. At this point it
is necessary to figure out which systems are controlled
by which actors. Figure 1 presents the relationship
between the actors involved in this system and the
system’s functionality as described in use cases. The
Fuzz Unit handles various functions on its own
therefore the user really only needs to move and
upgrade the unit. Resources are managed as a function
of Time and will accrue automatically. Finally, the
System, or the Background Process, manages the game
and judges which units are victorious in combat. The
System also manages enemy units.

Figure 1: Breakdown of Actors and Use Cases in

"Fuzz's Revenge"

3.2 Primary Scenarios

In computing, a scenario is a narrative describing
foreseeable interactions between the users (actors) and
the software system, or between two software
components [13]. This allows the game designer to
determine what the game play is going to be like. This
was a great help in determining problems such as
multiple functions requiring the same key or mouse
press, situations that would be boring for the user, and
situations that may have been overlooked. This allows
the programmer to perceive the entire game as if it was
completed thus reducing time because expensive
functional prototypes did not have to be developed.
Due to the large amount of possible scenarios only a
few of the prominent scenarios are detailed in the
following scenario tables. For a more exhaustive list of
scenarios please refer to [14].

Select Unit - A unit or building is highlighted by a
white box when the player clicks on it with the mouse's
left button. The object's identification number (ID) is
stored in the global variable named "selected" (Table
3).

Table 3: Selecting a Unit

Move Unit - Once the movable unit is selected and the
user right clicks on the location to which the user
desires to move, the unit will begin moving. Should the
unit encounter any obstacles or other fuzz units, it will
stop (Table 4).

Table 4: Moving a Unit

Unit Attack - The fuzz unit will automatically attack
when an enemy enters the range designated to that
particular unit. The range to the enemy is calculated by
a distance formula between the two entities. The more
powerful the monster, the greater their attack ranges.
Once initiated, the unit will launch its weapons (each
unit may be equipped with different weapons) toward
the spot where the monster is. If the attack fails to
strike the monster or it strikes a blocking terrain, the
attack will be terminated. Some weapons can penetrate

interfering objects and still collide with the monster
(Table 5).

Table 5: Attacking an Enemy with a Unit

Unit Victory - Once the enemy's health drops to zero as
a result of an attack, it is destroyed. Every unit that had
the enemy within range receives a certain number of
experience points depending on the monster. This
allows for the advancement of multiple units (Table 6).

Table 6: Defeating the Enemy: Unit Victory

After listing out the requirements and the use cases the
program could then be designed. Using high level flow
charts to describe the systems that went into the game it
became apparent that this game was a much larger
undertaking than first thought. However with careful
planning from the UML requirements when the game
was finished there were no unexpected problems and
the game played exactly as anticipated. This proves the
need to make sure you spend time listing out the
requirements and basic scenarios for any game design.

4 High Level Design of Fuzz’s Revenge

Typically, most UML designs will start at a high level
of abstraction and then continue to get more and more
detailed and precise. The problem here is that game
design requires more freedom. If a game designer had
to re-write every flow chart, every class diagram, every
sub-system graph every time a change was made it
would decrease the efficiency of the game design.
Once again only the high-level design diagram and
basic flow charts were used. Several problems arose
when we tried to generalize game design at lower levels
of abstraction. First, different games have different
engines and not all game engines fit nicely into a
certain generic sense. Second, the development
platform for Fuzz’s Revenge did not fit exactly into
regular UML class structures, thus trying to write out

class diagrams was difficult. Figure 2 details the high
level design diagram for Fuzz’s Revenge.

Once this was established the game designer could use
simple flow charts to design each module. After this
coding could then take place. After following this
procedure the game turned out exactly as was expected.
Through this project, we were able to prove that it is
possible to use UML to aid game design especially
when a new style game, such as the one we were
attempting to make, is being designed. This could
prove very useful to game companies so to minimize
the risk of designing new games.

4. The Game

In order for this research to be considered successful a
pilot game had to be created. We created Fuzz’s
Revenge, a game in which the player commands a
group of blue fur balls that can learn different skills.
Each fuzz can gain levels after reaching a predefined
threshold for each level. Each level gives the fuzz one
skill point in which the player can upgrade speed, rate

of fire, attack, defense, range and regeneration. Along
with this if the fuzz reaches a certain level, the user can
change the class (job) of the fuzz unit. At level 5 the
fuzz unit can become a soldier. At level 10 the fuzz
can become a wizard and at level 15 the fuzz can
become a priest. The wizard also has two subclasses,
fire sorcerer and frost mage, which can be upgraded at
levels 15 and 20 respectively.

The goal of the game is to capture 4 keys, which
involves facing progressively more difficult enemies.
Along the way the user can change their own unit’s:
abilities, classes, and even equipment. Along with this,
the game follows the five basic rules outlined in the
previous section. This game was implemented on
Game Maker [5] development platform. It provided
enough functionality to allow for proof of concept.

This section provides screen shots from the pilot game
with accompanying explanations that describe the
results of our work. These screen shots demonstrate
both real time and role playing strategies that have been
incorporated into the game.

Figure 2: High Level Diagram for Fuzz's Revenge

4.1 Units

Figure 3 (top) shows the standard display of an enemy
unit including name, health bar, and sprite (image).
Figure 3 (bottom) shows the friendly unit surrounded
by the white selection box and includes its name, health
bar, and appropriate class sprite.

Figure 3: Enemy Unit (top); Friendly Unit (bottom)

4.2 Statistics Window

Figure 4 shows the status box that is associated with
each unit. Once a unit is selected and the space bar is
pressed, the status box appears showing the attributes
of the selected unit. In this example, 40,000 experience
points were given to the unit, placing it at level 89.
Because the fuzz unit's class is a “NEWB”, essentially
a novice unit, it can become a solder, wizard, or priest
because its level is higher than 5, 10, and 15,
respectively. Also note that the player can individually
customize all six attributes for each unit depending on
the unit's skill level. However, certain upgrades have
limitations. For example, speed can only be upgraded
once, to a rating of 2, and rate of fire can only be
upgraded three times, which lowers the delay that is
required to attack again to 20 game cycles.

4.3 Weapon Building

Figure 5 gives one example of building a weapon.
Note the selected building (white square) and the
option tool bar to build weapons. In this example, the
magic shop can build three powerful weapons: a magic
hat that is used by wizards, fire sorcerers, and ice

mages, a fire wand that is used by fire sorcerers, and a
frost stave that can only be used by ice mages.

Figure 4: The Unit's Statistics Window

Figure 5: Available Weapons in the Magic Shop

4.4 Weapon Equipping

Figure 6 shows a selected fuzz unit (wizard class) and
the equipment menu for this unit that appears when the
middle mouse button is clicked. Only wizards, fire
sorcerers and ice mages can use the magic hat weapon.
Although all weapons are visible in the menu, only fire
sorcerers can use a fire wand and only ice mages can
use an ice stave. The system will not allow a wrong
weapon to be selected for a unit.
Once the fuzz unit reaches the appropriate class the
player can trade the current weapon used by the unit to
a more powerful one. Figure 7 shows a fuzz unit that
has been elevated to a wizard class with the magic hat.
Figure 8 shows the two secondary classes available to
the wizard: the fire sorcerer and the ice mage. On the
condition that the fuzz unit is a wizard class, it can be
upgraded to fire sorcerer or ice mage, providing it has
reached level 15 or 20, respectively.

Figure 6: Weapon Selection Menu

Figure 7: Equipping the Magic Hat

4.5 Base Construction

Figure 8: The Opening Screen

The opening screen provides users with money and
food counters. The "E-quip" button allows players
without a middle mouse button to equip units with
weapons (Figure 8). All but one of the buildings in the
tool bar are scaffolds. Therefore, the home base must
be built first. Once the home base is constructed, other
buildings will become available (Figure 9). Once the
fuzz unit comes in contact with the dungeon (Figure

10), it will be transported into another area of the map
and a secondary window will open (Figure 11).

4.6 Dungeon Exploration

The final, novel component in this RTS game is the
dungeon screen which opens and closes when a fuzz
unit comes in contact with a dungeon (Figure 10).

Figure 9: After Construction of Home Base Occurs
New Buildings Are Available

Figure 10: Fuzz Unit Entering Dungeon

Note the white, door-shaped image: this is the exit.
When a fuzz unit collides with the door, the fuzz unit
leaves the dungeon. The pilot game required the user to
get three keys. Figure 11 shows the location of the key
in the first dungeon. Two more keys are located in two
other dungeons found in the world. This paper has
covered the major aspects of designing the pilot game
“Fuzz’s Revenge”. The screenshots display an RTS
setting where the player controls units, constructs
buildings, builds weapons to equip to fuzz units and

can move units in groups. Along with these RTS
factors this chapter also demonstrated various RPG
concepts such as: leveling, customization, weapon
equipping, and “dungeon crawling”.

5. Future Work

Preliminary programming was done to allow two
players to compete against each other on the same
computer (using the same keyboard) in Fuzz's
Revenge. Those who played the game found it
entertaining and developed an interest in individual
characters. Therefore, the players were much more
careful in attempting to keep their characters alive.
Upgrading unit attributes provided a sense of
accomplishment and induced players to set goals for
leveling up, which is what drives RPG game
participation. Therefore, incorporating LAN
capabilities and allowing for multiple players to
compete on individual computers would make it much
more marketable. This feature was not in the scope of
the original problem. However this would be a logical
next step for research and development.

Figure 11: Fuzz Unit Inside a Dungeon

Connected with one of this projects main goals, that of
applying software engineering to game development,
new research could be performed to define enhanced
processes and specific modeling notations customized
for the realm of game construction. For example, a
specialized UML-based notation could be developed
for game specifications, design and deployment.

6. Conclusion

Computer games have become compartmentalized into
their specific types (genres) and a good degree of
repetition can be found from one game to another. A
good example of this was the similarity between Dawn
of War and Company of Heroes: the setting was
different, the graphics were improved. However the
resource management and game play were similar.

This paper focused on a new method for computer
game design in general and illustrated it on a particular
prototype game developed, “The Fuzz’s Revenge”.
The research performed an analysis of game patterns
(genres) and explored the combination of RPG and
RTS game mechanics as a means to enhance the
entertainment value of video games. In addition to just
improving graphics, this approach could assist game
manufacturers to create novel game play mechanics
that would hold consumer interest for longer periods of
time through the method of combining aspects of
different game genres [8].

References

[1] King, Brad., John Borland. Dungeon and

Dreamers The Rise of Computer Game Culture
from Geek to Chic. Emmeryville: McGraw-Hill,
2003.

[2] Crawford, Chris. Compiled by Prof. Sue Peabody.
The Art of Computer Game Design. Vancouver:
Washington State University, 1997.

[3] Arlow, Jim. Ila Neustadt. UML and the Unified
Process. London, Addison-Wesley.

[4] Imagine Publishing, “Why You Must Play
Herzog Zwei.” The Essential Guide to Classic
Games, Retro Gamer, Volume 28, Pages 34-37.

[5] Habgood, Jacob. Mark Overmars. The Game
Maker’s Apprentice, China, Apress (2006).

[6] GameSpot. “Microsoft Raises Estimated First-
Day Halo 2 Sales to $125 Million-Plus”.
http://www.gamespot.com/news/2004/11/10/news
_6112915.html

[7] Salen, Katie. Eric Zimmerman. Rules of Play,
Game Design Fundamentals. Cambridge, MS:
MIT Press 2004.

[8] Khazan, Olga. “Lost in an Online Fantasy
World”, Washington Post, 8-18-2006.
http://www.washingtonpost.com/wpdyn/content/a
rticle/2006/08/17/AR20060817 00625_pf.html,

[9] Tweet, Jonathan. Monte Cook. Skip Williams.
Dungeons and Dragons Players Handbook,
Wizards of the Coast (2003).

[10] D&D Home “What is D&D”
http://www.wizards.com/default.asp?x=dnd/whati
sdnd

[11] Board Game Central. “The Game of Risk”.
http://boardgamecentral.com/games/risk.html,

[12] E. Ryan, Michael. “Star Wars Rebellion”.
http://www.gamespot.com/features/rebellion/

13] Fowler, Martin. UML Distilled Third Edition.
Boston. Addison-Wesley. 2006.

[14] Towle, Bradford. Thesis: Combining Role
Playing Game Constructs Toward Real Time
Strategy Games. Reno. University of Nevada,
Reno. 2007. Available at:
http://www.cse.unr.edu/~towle/thesis.pdf

