
Applying Dynamic Conditions to an Auction

Behavior-Based Robotic Architecture

Bradford A. Towle Jr., and Monica Nicolescu

University of Nevada, Reno, Nevada, United States of America

towle@cse.unr.edu, monica@cse.unr.edu

Keywords: Behavior-Based, AI, Distributed, Auction,

HRI

ABSTRACT

Robotic systems in the real world will work in dynamic

environments and have to choose between multiple, and

occasionally conflicting goals. In order to facilitate these two

requirements an Auction Behavior-Based Robotic

Architecture (ABBRA) was developed that allowed different

behaviors to compete by bidding for control of a robot. Each

behavior would bid with an activation level calculated from

metrics based on the environment. This paper introduces two

new features to the Auction Behavior-Based Robotic

Architecture, which are the dynamic addition of a goal at run

time and the ability to set time constraints on more than one

behavior. Dynamic situations may require these new features

in order to ensure a strict critical timing and adaptability to

the environment. Coupling these two features together with

the existing ABBRA system increased the goal selection

performance across six test scenarios.

1. Introduction

Robots in a real-world environment can face several difficult

problems. The real world is a dynamic environment that may

impose time constraints, allow asynchronous input from

humans and have situations where a robot may encounter

multiple conflicting goals. Because of these issues, we

developed an auction behavior-based robotic architecture

(ABBRA)[1], which currently can adapt to most of these

situations. Not only will ABBRA adapt to dynamic situations

but it also attempts to choose the best goal in order to

minimize execution time. To accomplish this, each behavior

(module) must compete, or auction, with one another for

control of the robot. Thus, this system uses a competitive

winner-take-all action selection mechanism.

 In addition to arbitrating between goals ABBRA can

handle multiple conflicting goals requesting control

simultaneously. Only a small number of robotic architectures

can handle multiple conflicting goals without a static priority

configuration such as the use of inhibition signals between

behaviors where one behavior will deactivate another [2, 3].

Despite the above capabilities of ABBRA certain

dynamic situations required the addition of two new dynamic

features to the previously proposed auction behavior based

robotic architecture [1]. The original architecture allows

individual behaviors to challenge each other for control by

bidding with an activation level. The activation level

represents the importance of a certain goal. Metrics from the

outside world derive the activation level, thus, the

architecture can make the most opportunistic decision based

on the most recent known values from the environment [1].

The two new features are as follows: i) the ability to

allow temporal components into more than one behavior and

ii) the ability to request multiple goals during runtime.

Allowing the architecture to consider temporal constraints for

more than just one behavior incorporates scheduling into the

robotics decision making. The robot can now judge behaviors

based on how much time they have left and determine

whether they are critical or not. This also gives the robot the

ability to postpone a lesser time-critical task in lieu of more

opportunistic tasks. The second component, dynamic

addition of a task during runtime, makes the architecture

more robust against unknown changes and allows for a non-

static architecture. Most behavior-based architectures require

a recompilation or at least reset after adding a new module

due to the usually static interconnectivity of the behaviors.

However, the ABBRA system will simply add the new

mailto:towle@cse.unr.edu
mailto:monica@cse.unr.edu

module into the system, and start running it on the next

program cycle.

The paper is structured as follows: Section II

provides related work. Section III gives a more in depth look

at the robotic architecture and the new capabilities added to it.

Section IV presents the results taken from six different tests.

Section V evaluates the findings. Section VI provides a brief

look into the future work of this project followed by the

conclusion.

2. Related Work
There are several major action selection mechanisms for

robotic decision-making. Deliberative architectures plan and

create a ideal solution for the known world [4, 5]. Problems

arise when these systems encounter dynamic environments,

because the robot must re-plan whenever it detects the

situation has changed. As an alternative, voting allows each

behavior choose the best action for itself. This works well

when behavior outputs are similar enough to estimate which

action is closest to each behavior’s desired goal. To this end,

the architecture must also select which actions will be voted

on in the first place [6]. Arbitration is another option in

which a robot has multiple behaviors, but must choose only

one to execute. However, when multiple goals that conflict

[2] arise, the architecture must prioritize [7] or select which

behavior is most applicable [8].

The ABBRA project uses a winner-take-all method.

In this approach, the robot must choose between a set of

possible behaviors and choose the one it wishes to perform.

The problem arise when handling conflicting goals and

allowing the architecture to change goals when it is

opportunistic for the robot. Activation Networks [2] solve

conflicting goal by allowing behaviors to promote other

behaviors by injecting “activation energy”. The behavior that

has the most activation energy will win control. Although

similar, ABBRA does not use inter-behavior communication

to promote activation for a certain behavior. Instead,

ABBRA uses the environment to determine which behavior is

most efficient to run. This follows the standard behavior

based paradigm where data from the environment provides

state information [9]. Generally, behavior based paradigms

will use this information to prioritize goals [7] or use

inhibition signals to prohibit conflicting goals [3]. ABBRA

extends this concept, instead of simply prioritizing goals, it

will allow them to compete and dynamically change their

priority.

Market-based approaches are widely used in multi-agent

robotic systems. Since the seminal paper [10] the number of

market based robotic papers has increased dramatically

increased [11-20]. However, these papers focus on multi-

agent (multi-robots) and solve a different problem than

ABBRA. Here are some key differences: 1) The first

difference is that multi-agents systems involve robots

competing for task where as ABBRA deals with behaviors

competing for control over actuators or other robotic

resources; 2) Multiple agents bid for tasks whenever they

becomes available where as in ABBRA the bidding occurs

continually; 3) Multiple agent systems must monitor the robot

who won the tasks to ensure that it is performing well [13] -

in ABBRA if a task does not perform well another task will

out-bid it on the next cycle; 4) Multi-agent systems must

worry about external conflicts between robots, where

ABBRA resolves conflicting goals by allowing

environmental and temporal metrics to influence which

behavior has won [21]; 5) Conversely, a lot of research has

been done to allow individual agents to cooperate with each

other – in ABBRA behaviors that are simultaneously running

will automatically be capable of helping other behaviors [14].

Because of these differences, the problem ABBRA solves and

the domain of multi-agent systems are substantially different.

3. The Architecture

ABBRA allows multiple behaviors to challenge each other

for control of an actuator in order to accomplish their specific

objectives. Each behavior calculates an activation level that

describes its priority to run. The activation level is calculated

by multiple metrics form the environment. These metrics

represent the “closeness” of the desired goal state to the

current state of the robot. This ensures that the activation

level describes the most up-to-date environment as possible

[9]. Each metric is divided by the maximum value of that

particular metric’s type. All active metrics in a behavior are

then summed and averaged resulting in a normalized

activation level that can be compared to all other behaviors.

Equation 1 (next page) details this calculation.

Subtracting from one inside the summation allows

the user to specify that a lower metric value is more desirable.

Without it a higher metric value would yield a higher

activation level. After calculating the activation level, each

behavior will bid for control of a mutex, which grants access

to various robot actuators or any other limited resources. The

highest bid wins control for that round. This causes an

emergent behavior where the robot will try to handle the

easiest/most important tasks first [1] yet it is still capable of

changing behaviors if necessary.

Equation 1: Normal calculation for activation levels.

BehaviorsMetricValue - Value of a particular metric for a

particular behavior wishing to bid for an actuator.

MaxValueforMetricType - The maximum value of the

particular metric for all behaviors challenging.

NumberofUsedMetrics - The number of metrics used in the

particular challenging behaviors.

It is desirable that the robot using ABBRA could

handle multiple goals with varying degrees of time

constraints. For example, behavior “A” must end in five

minutes, but behavior “B” must end within 35 seconds, the

robot should choose behavior “B” with all other metrics being

equal. However, if two goals have large time constraints

while only requiring a small amount of time, there should be

very little contribution from the time constraints to the

activation level. Thus, equation 1 does not work. Consider a

scenario where two goals both take five minutes to complete:

one has a time constraint of 30 minutes and the other has a

time constraint of an hour. The time constraint is almost

pointless in this scenario. However, if the time constraint is

closer to zero then the it should be important even if the

difference between another goal is only a couple of minutes.

In order to handle this situation the architecture uses a

different fitness function for the temporal metric. The

percentage of time remaining applied to Equation 2 (next

column) gives the appropriate non-linear response to the

activation level. Originally, the time-to-finish was to be used.

However, many behaviors’ completion time are difficult to

estimate. Therefore, we used the time-to-start metric where

the time before a behavior must execute can be estimated and

used in the activation level calculation.

Equation 2: Calculating the contribution for time

remaining

PRS - The percentage of time that remains before the task

MUST start.

ContributionFT = This the value that will be added to the

summation in equation 1 for time instead of equation 1.

Another newly added component of the ABBRA is the

capability for the architecture to add a new goal into the

system after the system started running. This allows the

architecture to add new goals for situations it did not know

existed. This process was straightforward for the ABBRA

system. The user, or another program, adds a new goal,

which in turn adds its own behaviors into the architecture.

The next bidding cycle calls these behaviors as if they have

been there since the robot had started running, and then the

new behaviors begins to compete for control. Currently no

inter-connecting inhibition signals are required because

ABBRA does not use inhibition signals.

4. Experimental Results

Six scenarios were designed to test the new features. There

are six goals in each test, each containing five locations that

the robot must navigate using a “Go-To-Point” behavior. The

sixth goal uses “Center-on-Green object”, which centers the

robot at a green object when one is found. The first tests

provided a simple control run containing no time constraints,

and no goals were added at run time. The second scenario

tested the possibility of having two known goals (locations

five and six) with a strict time constraint. Scenario three

provided the same analysis as scenario two except that this

time the location of the goal was unknown because it gave

“center on green object” a stricter time constraint. Tests four

and five dynamically added a new goal during runtime. This

demonstrated what would happen if the architecture added a

goal with an urgent time constraint. Test four added “Center-

On-Green-Object” midway through the scenario execution,

likewise scenario five added “Go-To-Point” on goal five

during the execution. The sixth scenario added the same goal

as scenario five however, no time constraints were placed on

the new goal. These tests were run on the player/stage

package simulating a Pioneer 3 robot.

4.1 Experiment 1: No Constraints

The first test demonstrates a typical run where the robot must

travel to five goal locations and center itself and its camera on

a green object, whose location is unknown. Figure 1 details

the path the robot took to reach the goal.

This first run contained no time constraints, thus no goal had

a smaller scheduled time for completion than any other goal.

Therefore, the robot takes a “shortest distance first” approach

and centers itself on the first green object it can find. Figure

1 (bottom) details the order in which the processes ran.

Without any interruptions or time constraints, the robot

simply executed the closest goal first interrupting Goal 1 only

to center on the green object that it detected.

Figure 1: Path taken by on the first run (Top), Order of goals

taken (Bottom)

4.2 Experiment 2A : Time Critical

Constraint for Center on Green Object

The second set of tests focused on goals with time

constraints. The first time-critical test configures Goal 1 and

Goal 5 with a very urgent time constraint. The time

constraints are set so it reaches zero immediately. In real life,

this situation would be unlikely but it would be equivalent to

having two emergencies occurring at once.

The following images show the order in which the processes

of Test 2A executed. The robot immediately moves to finish

Goal 5 and then goes toward Goal 1. The robot did not visit

Goal 3 although it came in close proximity to this goal. This

demonstrates the importance the robot put on Goal 1.

Figure 2: Path for Test 2A (Prev. Page), Order for Test 2A (Top)

4.3 Experiment 2B: Time Critical

Constraint for Goal 5

Part B of the second test was setting an unknown goal, such

as “Center-On-Green-Object”, to have a time critical

requirement. In the following figure the “Center-On-Green-

Object” is running instead of “Go-to-Point”, therefore, it uses

a slightly different obstacle-avoid procedure designed to

wander a maze. The robot did encounter Goal 3 - However,

this was purely coincidental. Notice the robot avoids Goal 5

until finally discovering the green object in the right hand

corner. Figure 3 (next page top) details the path of the robot

and Figure 3(next page bottom) shows the order of goal

fulfillment.

Figure 3: Path for Test 2B (Top), Process order for Test 2B

(Bottom)

4.4 Experiment 3A: Dynamically Adding

Center on Green Goal with Time Constraint

The third test introduces a new goal with an urgent time

constraint during run-time. A common problem in robotics is

that once an architecture has started to run it cannot

dynamically add modules to it. The ABBRA system handles

it as a new competitive module. The following figure details

the path taken by the robot: As it is rounding the corner for

Goal 1 the “center on green object” behavior is added, thus

the behavior is spawned. The process order of the third test

shows where the “Center-On-Green-Object” started and when

it interrupted the first goal. Note on Figure 4 (Bottom) the

blue “X” marks the step in which “Center-On-Green-Object”

dynamically added itself to the architecture.

4.5 Experiment 3B: Dynamically Adding

Goal 5 with Time Constraint

The second portion the third test repeated the same test, but

this time it would dynamically add Goal 5. The results for

this are more dramatic. As the robot goes around the corner

to reach goal one, Goal 5 with a short time constraint is

created. This forces the robot to abandon the current goal and

travel across the map to Goal 5 (Figure 5).

Figure 4: Path for Test 3A (Top), Order of goals for 3A (Bottom)

Figure 5: The path taken by the robot for Test 3B (Top), Order

of goals for Test 3B (Bottom)

The blue “x” close to the 100 mark on Figure 5 (Bottom),

mark indicates the step in which Goal 5 was added to the

system. Since the behavior associated with goal five has an

urgent time constant, it immediately takes over and begins

running.

4.6 Experiment 4: Dynamically Adding a

Goal without Time Constraint

In this test, Goal 5’s addition occurs at the same time as in the

previous test; however, Goal 5 has no time critical

component. This test demonstrated that the addition of a goal

with relative equal temporal priority would have very little

effect on the system. As the results show, Goal 5 has no

impact when added with no time constraints (Figure 6).

Figure 6 (top) details Goal 5 being added and no real change

occurring to ABBRA’s order of goal fulfillment.

Figure 6: Path taken for Test 4 (Top), process order for Test 4

(Bottom)

5. Discussion

The data shown above supports the following two claims:

first, allowing the robot to consider temporal constraints gives

the robot a much more adaptive ability. For example, the

robot may change the time priority of a goal in case an

emergency arises. The time constraint could also allow the

robot to have safety thresholds. For instance, if a robotic arm

dealing with chemicals required the addition of extra

chemicals with accurate timing, the architecture could

consider this. Allowing multiple time constraints gives the

user the ability to specify that a goal can execute whenever

there is no other time critical goals challenging. The user

could also ask the robot to do something when it was

convenient - if the robot had pre-existing goals that contained

a time critical component, it would finish those goals first.

 Second, the ABBRA also allows the robot to handle

additional goals given to it after startup. This is necessary in

order to ensure that the robot can adapt to new challenges,

requests and obstacles. One of the most common use cases

for adding a goal dynamically is allowing the user the ability

to add a new task requirement for a robot. This could be

through any medium as long as the goal is registered and

introduced into the system. The robot may also detect an

obstacle that was unexpected, and overcoming this obstacle

may require dynamically adding a new task.

6. Future Work

This paper demonstrates the importance of the ABBRA’s

adaptability. The next step of this work incorporates this

system into the real world by testing it on a physical robot.

Future work is also needed regarding human robot interaction

(HRI). If humans interact with the robot, the architecture

must choose between performing a task and interacting with

the human. A way of dealing with this consists of using

teamwork between the robot and human [25-30]. However,

the user must still interact with the robot in terms of

behaviors and goals; this requires the architecture to fuse low

level behaviors into a level of abstraction users want to

interact in [31]. Incorporating SLAM (Simultaneous

Localization and Mapping) increases the accuracy of the

architecture substantially. If the robot can identify real

distance to goals versus straight-line distance, the architecture

will have a more accurate understanding of its current state in

the environment.

7. Conclusion

In conclusion, the ABBRA gives the robot the ability to adapt

to dynamic environments. By allowing temporal constraints

in the behavior’s activation level calculation, the robot can

prioritize a task based on temporal requirements. This paper

demonstrates the ability for the robot to introduce a new goal

into the architecture that was not initially running at the

beginning of runtime. The robot can use these new features

coupled with the older features provided by the ABBRA to

adapt to a wide variety of dynamic environments as

demonstrated by the scenarios presented.

8. References

[1] B. A. Towle, and M. Nicolescu, “Fusing Multiple Sensors

through Behaviors with the Distributed Architecture,” in

2010 IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems, Salt Lake,

Utah, 2010, pp. 115-120.

[2] P. Maes, “How to do the right thing,” Connection Science,

vol. 1, no. 3, pp. 291-323, 1989.

[3] M. Proetzsch, T. Luksch, and K. Berns, “Development of

complex robotic systems using the behavior-based control

architecture iB2C,” Robotics and Autonomous Systems,

vol. 58, no. 1, pp. 46-67, Jan, 2010.

[4] R. Volpe, I. Nesnas, T. Estlin et al., “The CLARAty

architecture for robotic autonomy,” in Aerospace

Conference, 2002, pp. 1.

[5] T. Estlin, R. Volpe, I. Nesnas et al., "Decision-making in a

robotic architecture for autonomy."

[6] J. Rosenblatt, and C. Thorpe, "Combining multiple goals

in a behavior-based architecture." pp. 136-141.

[7] R. A. Brooks, “A ROBUST LAYERED CONTROL-

SYSTEM FOR A MOBILE ROBOT,” Ieee Journal of

Robotics and Automation, vol. 2, no. 1, pp. 14-23, 1986.

[8] J. Koseck , and R. Bajcsy, “Discrete event systems for

autonomous mobile agents,” Robotics and Autonomous

Systems, vol. 12, no. 3-4, pp. 187-198, 1994.

[9] R. Brooks, “Elephants don't play chess,” Robotics and

autonomous systems, vol. 6, no. 1-2, pp. 3-15, 1990.

[10] R. Davis, and R. G. Smith, “Negotiation as a metaphor for

distributed problem solving,” Artificial intelligence, vol.

20, no. 1, pp. 63-109, 1983.

[11] F. Brandt, W. Brauer, and G. Weiss, “Task assignment in

multiagent systems based on vickrey-type auctioning and

leveled commitment contracting,” Cooperative

Information Agents IV-The Future of Information Agents

in Cyberspace, pp. 11-44, 2004.

[12] P. Faratin, C. Sierra, and N. R. Jennings, “Negotiation

decision functions for autonomous agents,” Robotics and

Autonomous Systems, vol. 24, no. 3-4, pp. 159-182, 1998.

[13] B. P. Gerkey, and M. J. Mataric, “Sold!: Auction methods

for multirobot coordination,” Robotics and Automation,

IEEE Transactions on, vol. 18, no. 5, pp. 758-768, 2002.

[14] B. Jennings, and Å. Arvidsson, “Co-operating market/ant

based multi-agent systems for Intelligent Network load

Control,” Intelligent Agents for Telecommunication

Applications, pp. 71-71, 1999.

[15] H. Jung, M. Tambe, and S. Kulkarni, "Argumentation as

distributed constraint satisfaction: Applications and

results." pp. 324-331.

[16] R. Krovi, A. C. Graesser, and W. E. Pracht, “Agent

behaviors in virtual negotiation environments,” Systems,

Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, vol. 29, no. 1, pp. 15-25, 1999.

[17] M. J. Matari , G. S. Sukhatme, and E. H. Østergaard,

“Multi-robot task allocation in uncertain environments,”

Autonomous Robots, vol. 14, no. 2, pp. 255-263, 2003.

[18] R. G. Smith, “The contract net protocol: High-level

communication and control in a distributed problem

solver,” Computers, IEEE Transactions on, vol. 100, no.

12, pp. 1104-1113, 1980.

[19] K. Sycara, and D. Zeng, “Coordination of multiple

intelligent software agents,” International Journal of

Cooperative Information Systems, vol. 5, no. 2, pp. 181-

212, 1996.

[20] M. P. Wellman, and P. R. Wurman, “Market-aware agents

for a multiagent world,” Robotics and Autonomous

Systems, vol. 24, no. 3-4, pp. 115-125, 1998.

[21] M. B. Dias, and A. Stentz, Traderbots: A market-based

approach for resource, role, and task allocation in

multirobot coordination: Citeseer, 2003.

[22] D. Ferguson, Y. Yemini, and C. Nikolaou,

"Microeconomic algorithms for load balancing in

distributed computer systems." pp. 491-499.

[23] L. M. Ni, C. W. Xu, and T. B. Gendreau, “A distributed

drafting algorithm for load balancing,” Software

Engineering, IEEE Transactions on, no. 10, pp. 1153-

1161, 1985.

[24] I. Ahmad, and A. Ghafoor, “Semi-distributed load

balancing for massively parallel multicomputer systems,”

IEEE Transactions on Software Engineering, pp. 987-

1004, 1991.

[25] T. Fong, N. Cabrol, C. Thorpe et al., "A personal user

interface for collaborative human-robot exploration."

[26] T. Fong, C. Thorpe, and C. Baur, Collaborative control: a

robot-centric model for vehicle teleoperation: Carnegie

Mellon University, The Robotics Institute, 2001.

[27] T. Fong, C. Thorpe, and C. Baur, “Multi-robot remote

driving with collaborative control,” Ieee Transactions on

Industrial Electronics, vol. 50, no. 4, pp. 699-704, 2003.

[28] T. Fong, C. Thorpe, and C. Baur, “Robot, asker of

questions,” Robotics and Autonomous Systems, vol. 42,

no. 3-4, pp. 235-243, 2003.

[29] G. Dorais, R. Bonasso, D. Kortenkamp et al., "Adjustable

autonomy for human-centered autonomous systems."

[30] A. Fereidunian, M. Lehtonen, H. Lesani et al., "Adaptive

autonomy: smart cooperative cybernetic systems for more

humane automation solutions." pp. 202-207.

[31] M. Nicolescu, O. Jenkins, and A. Stanhope, "Fusing robot

behaviors for human-level tasks." pp. 76-81.

