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ABSTRACT 

Robotic systems in the real world will work in dynamic 

environments and have to choose between multiple, and 

occasionally conflicting goals.  In order to facilitate these two 

requirements an Auction Behavior-Based Robotic 

Architecture (ABBRA) was developed that allowed different 

behaviors to compete by bidding for control of a robot.  Each 

behavior would bid with an activation level calculated from 

metrics based on the environment.  This paper introduces two 

new features to the Auction Behavior-Based Robotic 

Architecture, which are the dynamic addition of a goal at run 

time and the ability to set time constraints on more than one 

behavior.  Dynamic situations may require these new features 

in order to ensure a strict critical timing and adaptability to 

the environment.  Coupling these two features together with 

the existing ABBRA system increased the goal selection 

performance across six test scenarios. 

1. Introduction 
 

Robots in a real-world environment can face several difficult 

problems.  The real world is a dynamic environment that may 

impose time constraints, allow asynchronous input from 

humans and have situations where a robot may encounter 

multiple conflicting goals.  Because of these issues, we 

developed an auction behavior-based robotic architecture 

(ABBRA)[1], which currently can adapt to most of these 

situations.  Not only will ABBRA adapt to dynamic situations 

but it also attempts to choose the best goal in order to 

minimize execution time.  To accomplish this, each behavior 

(module) must compete, or auction, with one another for 

control of the robot.  Thus, this system uses a competitive 

winner-take-all action selection mechanism. 

 In addition to arbitrating between goals ABBRA can 

handle multiple conflicting goals requesting control 

simultaneously.  Only a small number of robotic architectures 

can handle multiple conflicting goals without a static priority 

configuration  such as the use of inhibition signals between 

behaviors where one behavior will deactivate another [2, 3].    

Despite the above capabilities of ABBRA certain 

dynamic situations required the addition of two new dynamic 

features to the previously proposed auction behavior based 

robotic architecture [1].  The original architecture allows 

individual behaviors to challenge each other for control by 

bidding with an activation level.  The activation level 

represents the importance of a certain goal.  Metrics from the 

outside world derive the activation level, thus, the 

architecture can make the most opportunistic decision based 

on the most recent known values from the environment [1]. 

The two new features are as follows: i) the ability to 

allow temporal components into more than one behavior and 

ii) the ability to request multiple goals during runtime.  

Allowing the architecture to consider temporal constraints for 

more than just one behavior incorporates scheduling into the 

robotics decision making. The robot can now judge behaviors 

based on how much time they have left and determine 

whether they are critical or not.  This also gives the robot the 

ability to postpone a lesser time-critical task in lieu of more 

opportunistic tasks.  The second component, dynamic 

addition of a task during runtime, makes the architecture 

more robust against unknown changes and allows for a non-

static architecture.  Most behavior-based architectures require 

a recompilation or at least reset after adding a new module 

due to the usually static interconnectivity of the behaviors.  

However, the ABBRA system will simply add the new 
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module into the system, and start running it on the next 

program cycle.      

The paper is structured as follows:  Section II 

provides related work.  Section III gives a more in depth look 

at the robotic architecture and the new capabilities added to it.  

Section IV presents the results taken from six different tests.  

Section V evaluates the findings.  Section VI provides a brief 

look into the future work of this project followed by the 

conclusion.   

2. Related Work 
There are several major action selection mechanisms for 

robotic decision-making.  Deliberative architectures plan and 

create a ideal solution for the known world [4, 5].  Problems 

arise when these systems encounter dynamic environments, 

because the robot must re-plan whenever it detects the 

situation has changed.  As an alternative, voting allows each 

behavior choose the best action for itself.  This works well 

when behavior outputs are similar enough to estimate which 

action is closest to each behavior’s desired goal.  To this end, 

the architecture must also select which actions will be voted 

on in the first place [6].  Arbitration is another option in 

which a robot has multiple behaviors, but must choose only 

one to execute.  However, when multiple goals that conflict 

[2] arise, the architecture must prioritize [7] or select which 

behavior is most applicable [8].   

The ABBRA project uses a winner-take-all method.  

In this approach, the robot must choose between a set of 

possible behaviors and choose the one it wishes to perform.  

The problem arise when handling conflicting goals and 

allowing the architecture to change goals when it is 

opportunistic for the robot.  Activation Networks [2] solve 

conflicting goal by allowing behaviors to promote other 

behaviors by injecting “activation energy”.  The behavior that 

has the most activation energy will win control.  Although 

similar, ABBRA does not use inter-behavior communication 

to promote activation for a certain behavior.  Instead, 

ABBRA uses the environment to determine which behavior is 

most efficient to run.  This follows the standard behavior 

based paradigm where data from the environment provides 

state information [9].  Generally, behavior based paradigms 

will use this information to prioritize goals [7] or use 

inhibition signals to prohibit conflicting goals [3].  ABBRA 

extends this concept, instead of simply prioritizing goals, it 

will allow them to compete and dynamically change their 

priority. 

Market-based approaches are widely used in multi-agent 

robotic systems.  Since the seminal paper [10] the number of 

market based  robotic papers has increased dramatically 

increased [11-20].  However, these papers focus on multi-

agent (multi-robots) and solve a different  problem than 

ABBRA.  Here are some key differences:  1) The first 

difference is that multi-agents systems involve robots 

competing for task where as ABBRA deals with behaviors 

competing for control over actuators or other robotic 

resources; 2) Multiple agents bid for tasks whenever they 

becomes available where as in ABBRA the bidding occurs 

continually; 3) Multiple agent systems must monitor the robot 

who won the tasks to ensure that it is performing well [13] - 

in ABBRA if a task does not perform well another task will 

out-bid it on the next cycle; 4) Multi-agent systems must 

worry about external conflicts between robots, where 

ABBRA resolves conflicting goals by allowing 

environmental and temporal metrics to influence which 

behavior has won [21]; 5) Conversely, a lot of research has 

been done to allow individual agents to cooperate with each 

other – in ABBRA behaviors that are simultaneously running 

will automatically be capable of helping other behaviors [14].  

Because of these differences, the problem ABBRA solves and 

the domain of multi-agent systems are substantially different. 

3. The Architecture 
 

ABBRA allows multiple behaviors to challenge each other 

for control of an actuator in order to accomplish their specific 

objectives.  Each behavior calculates an activation level that 

describes its priority to run.  The activation level is calculated 

by multiple metrics form the environment.  These metrics 

represent the “closeness” of the desired goal state to the 

current state of the robot.  This ensures that the activation 

level describes the most up-to-date environment as possible 

[9].  Each metric is divided by the maximum value of that 

particular metric’s type.  All active metrics in a behavior are 

then summed and averaged resulting in a normalized 

activation level that can be compared to all other behaviors.  

Equation 1 (next page) details this calculation.  

Subtracting from one inside the summation allows 

the user to specify that a lower metric value is more desirable.   

Without it a higher metric value would yield a higher 

activation level.  After calculating the activation level, each 

behavior will bid for control of a mutex, which grants access 

to various robot actuators or any other limited resources.  The 

highest bid wins control for that round.  This causes an 

emergent behavior where the robot will try to handle the 



easiest/most important tasks first [1] yet it is still capable of 

changing behaviors if necessary. 

                

 
   

                    
                                          

                      
 

Equation 1:  Normal calculation for activation levels. 

BehaviorsMetricValue - Value of a particular metric for a 

particular behavior wishing to  bid for an actuator. 

MaxValueforMetricType - The maximum value of the 

particular metric for all behaviors challenging.   

NumberofUsedMetrics - The number of metrics used in the 

particular challenging behaviors. 

 

It is desirable that the robot using ABBRA could 

handle multiple goals with varying degrees of time 

constraints.  For example, behavior “A” must end in five 

minutes, but behavior “B” must end within 35 seconds, the 

robot should choose behavior “B” with all other metrics being 

equal.  However, if two goals have large time constraints 

while only requiring a small amount of time, there should be 

very little contribution from the time constraints to the 

activation level.  Thus, equation 1 does not work.  Consider a 

scenario where two goals both take five minutes to complete: 

one has a time constraint of 30 minutes and the other has a 

time constraint of an hour.   The time constraint is almost 

pointless in this scenario.  However, if the time constraint is 

closer to zero then the it should be important even if the 

difference between another goal is only a couple of minutes.  

In order to handle this situation the architecture uses a 

different fitness function for the temporal metric.  The 

percentage of time remaining applied to Equation 2 (next 

column) gives the appropriate non-linear response to the 

activation level.  Originally, the time-to-finish was to be used.  

However, many behaviors’ completion time are difficult to 

estimate.  Therefore, we used the time-to-start metric where 

the time before a behavior must execute can be estimated and 

used in the activation level calculation.  

                           

Equation 2: Calculating the contribution for time 

remaining 

PRS - The percentage of time that remains before the task 

MUST start. 

ContributionFT = This the value that will be added to the 

summation in equation 1 for time instead of equation 1. 

Another newly added component of the ABBRA is the 

capability for the architecture to add a new goal into the 

system after the system started running.  This allows the 

architecture to add new goals for situations it did not know 

existed.  This process was straightforward for the ABBRA 

system.  The user, or another program, adds a new goal, 

which in turn adds its own behaviors into the architecture.  

The next bidding cycle calls these behaviors as if they have 

been there since the robot had started running, and then the 

new behaviors begins to compete for control.  Currently no 

inter-connecting inhibition signals are required because 

ABBRA does not use inhibition signals. 

4. Experimental Results 
 

Six scenarios were designed to test the new features.  There 

are six goals in each test, each containing five locations that 

the robot must navigate using a “Go-To-Point” behavior.  The 

sixth goal uses “Center-on-Green object”, which centers the 

robot at a green object when one is found.  The first tests 

provided a simple control run containing no time constraints, 

and no goals were added at run time.  The second scenario 

tested the possibility of having two known goals (locations 

five and six) with a strict time constraint.   Scenario three 

provided the same analysis as scenario two except that this 

time the location of the goal was unknown because it gave 

“center on green object” a stricter time constraint.  Tests four 

and five dynamically added a new goal during runtime.  This 

demonstrated what would happen if the architecture added a 

goal with an urgent time constraint.  Test four added “Center-

On-Green-Object” midway through the scenario execution, 

likewise scenario five added “Go-To-Point” on goal five 

during the execution.  The sixth scenario added the same goal 

as scenario five however, no time constraints were placed on 

the new goal.  These tests were run on the player/stage 

package simulating a Pioneer 3 robot.       

4.1 Experiment 1:  No Constraints 

 

The first test demonstrates a typical run where the robot must 

travel to five goal locations and center itself and its camera on 

a green object, whose location is unknown.  Figure 1 details 

the path the robot took to reach the goal. 

This first run contained no time constraints, thus no goal had 

a smaller scheduled time for completion than any other goal.  

Therefore, the robot takes a “shortest distance first” approach 

and centers itself on the first green object it can find.  Figure 

1 (bottom) details the order in which the processes ran.  

Without any interruptions or time constraints, the robot 



simply executed the closest goal first interrupting Goal 1 only 

to center on the green object that it detected. 

 

 

Figure 1: Path taken by on the first run (Top), Order of goals 

taken (Bottom) 

 

4.2 Experiment 2A :  Time Critical 

Constraint for Center on Green Object 

  

The second set of tests focused on goals with time 

constraints.  The first time-critical test configures Goal 1 and 

Goal 5 with a very urgent time constraint.  The time 

constraints are set so it reaches zero immediately.  In real life, 

this situation would be unlikely but it would be equivalent to 

having two emergencies occurring at once.   

The following images show the order in which the processes 

of Test 2A executed.  The robot immediately moves to finish 

Goal 5 and then goes toward Goal 1.  The robot did not visit 

Goal 3 although it came in close proximity to this goal.  This 

demonstrates the importance the robot put on Goal 1. 

 

 

Figure 2: Path for Test 2A (Prev. Page), Order for Test 2A (Top) 

 

4.3 Experiment 2B:  Time Critical 

Constraint for Goal 5 
 

Part B of the second test was setting an unknown goal, such 

as “Center-On-Green-Object”, to have a time critical 

requirement.  In the following figure the “Center-On-Green-

Object” is running instead of “Go-to-Point”, therefore, it uses 

a slightly different obstacle-avoid procedure designed to 

wander a maze.  The robot did encounter Goal 3 - However, 

this was purely coincidental.  Notice the robot avoids Goal 5 

until finally discovering the green object in the right hand 

corner.  Figure 3 (next page top) details the path of the robot 

and Figure 3(next page bottom) shows the order of goal 

fulfillment. 



 

Figure 3: Path for Test 2B (Top), Process order for Test 2B 

(Bottom) 

4.4 Experiment 3A:  Dynamically Adding 

Center on Green Goal with Time Constraint 

  

The third test introduces a new goal with an urgent time 

constraint during run-time.  A common problem in robotics is 

that once an architecture has started to run it cannot 

dynamically add modules to it.  The ABBRA system handles 

it as a new competitive module.  The following figure details 

the path taken by the robot: As it is rounding the corner for 

Goal 1 the “center on green object” behavior is added, thus 

the behavior is spawned.  The process order of the third test 

shows where the “Center-On-Green-Object” started and when 

it interrupted the first goal.  Note on Figure 4 (Bottom) the 

blue “X” marks the step in which “Center-On-Green-Object” 

dynamically added itself to the architecture. 

4.5 Experiment 3B: Dynamically Adding 

Goal 5 with Time Constraint 

 

The second portion the third test repeated the same test, but 

this time it would dynamically add Goal 5.  The results for 

this are more dramatic.  As the robot goes around the corner 

to reach goal one, Goal 5 with a short time constraint is 

created.  This forces the robot to abandon the current goal and 

travel across the map to Goal 5 (Figure 5).   

 

 

Figure 4: Path for Test 3A (Top), Order of goals for 3A (Bottom) 

 

Figure 5: The path taken by the robot for Test 3B (Top), Order 

of goals for Test 3B (Bottom) 

The blue “x” close to the 100 mark on Figure 5 (Bottom), 

mark indicates the step in which Goal 5 was added to the 

system.  Since the behavior associated with goal five has an 

urgent time constant, it immediately takes over and begins 

running. 

 

 



4.6 Experiment 4: Dynamically Adding a 

Goal without Time Constraint 

 

In this test, Goal 5’s addition occurs at the same time as in the 

previous test; however, Goal 5 has no time critical 

component.  This test demonstrated that the addition of a goal 

with relative equal temporal priority would have very little 

effect on the system.  As the results show, Goal 5 has no 

impact when added with no time constraints (Figure 6).  

Figure 6 (top) details Goal 5 being added and no real change 

occurring to ABBRA’s order of goal fulfillment. 

 

Figure 6: Path taken for Test 4 (Top), process order for Test 4 

(Bottom) 

 

5. Discussion 
 

The data shown above supports the following two claims:  

first, allowing the robot to consider temporal constraints gives 

the robot a much more adaptive ability.  For example, the 

robot may change the time priority of a goal in case an 

emergency arises.  The time constraint could also allow the 

robot to have safety thresholds.  For instance, if a robotic arm 

dealing with chemicals required the addition of extra 

chemicals with accurate timing, the architecture could 

consider this.  Allowing multiple time constraints gives the 

user the ability to specify that a goal can execute whenever 

there is no other time critical goals challenging.  The user 

could also ask the robot to do something when it was 

convenient - if the robot had pre-existing goals that contained 

a time critical component, it would finish those goals first. 

 Second, the ABBRA also allows the robot to handle 

additional goals given to it after startup.  This is necessary in 

order to ensure that the robot can adapt to new challenges, 

requests and obstacles.  One of the most common use cases 

for adding a goal dynamically is allowing the user the ability 

to add a new task requirement for a robot.  This could be 

through any medium as long as the goal is registered and 

introduced into the system.  The robot may also detect an 

obstacle that was unexpected, and overcoming this obstacle 

may require dynamically adding a new task.   

6. Future Work 
 

This paper demonstrates the importance of the ABBRA’s 

adaptability.  The next step of this work incorporates this 

system into the real world by testing it on a physical robot.  

Future work is also needed regarding human robot interaction 

(HRI).  If humans interact with the robot, the architecture 

must choose between performing a task and interacting with 

the human.  A way of dealing with this consists of using 

teamwork between the robot and human [25-30].  However, 

the user must still interact with the robot in terms of 

behaviors and goals; this requires the architecture to fuse low 

level behaviors into a level of abstraction users want to 

interact in [31].   Incorporating SLAM (Simultaneous 

Localization and Mapping) increases the accuracy of the 

architecture substantially.  If the robot can identify real 

distance to goals versus straight-line distance, the architecture 

will have a more accurate understanding of its current state in 

the environment. 

7. Conclusion 
 

In conclusion, the ABBRA gives the robot the ability to adapt 

to dynamic environments.  By allowing temporal constraints 

in the behavior’s activation level calculation, the robot can 

prioritize a task based on temporal requirements.  This paper 

demonstrates the ability for the robot to introduce a new goal 

into the architecture that was not initially running at the 

beginning of runtime.  The robot can use these new features 

coupled with the older features provided by the ABBRA to 

adapt to a wide variety of dynamic environments as 

demonstrated by the scenarios presented.  
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