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Abstract— This paper describes a new action selection mech-
anism that allows the robot controller to dynamically determine
which goals (tasks) are most applicable in the current state of
the environment. This allows the robotic controller to resolve
conflicting goals that arise, allow multiple non-conflicting goals
to run simultaneously, and dynamically switch to a new goal
if the target for the goal has been found in the environment.
This is accomplished by using a behavior based paradigm and
allowing each behavior to calculate its own activation level (run
level). The behaviors then use the activation level to compete
for control in a new distributed control architecture to allow
execution of multiple (and sometimes conflicting) goals on a
robotic system.

I. INTRODUCTION

The research in this paper will focus on the ability for
a robot to execute multiple tasks, some with conflicting
goals, in a rational fashion while still accomplishing all the
goals in a timely manner. This is necessary for robots to
handle multiple goals without constant human supervision.
Imprecise actuators, limited sensor data, and a dynamic
environment are problematic.

This paper presents a new architecture based upon the
principles of behavior based system. This architecture in-
corporates a novel action selection mechanism that can ac-
complish multiple goal executions by allowing each behavior
to calculate an activation level and compete for control of
specific components on the robot. The activation level is
continually updated and used by the robot to determine which
goal is more efficient to execute at the time. This allows the
robot to adjust to dynamic environments.

Three main contributions were derived through the re-
search: Allowing for multiple goals, re-prioritizing goals
based on outside stimuli and resolving conflicting goals
through an auction based system. The architecture allows
for multiple, non-conflicting tasks to be concurrently run on
the robot by separating which actuators (if any) a behavior
needs. The architecture then enforces an exclusive control of
that actuator, thus allowing all behaviors which do not need
that actuator to run.

The architecture can re-prioritize the goals when the
sensor(s) detect a previously unknown target (goal state)
nearby. This gives the robot the ability to dynamically re-
plan. Lastly, the conflicting goals will be resolved by the
architecture in a distributed fashion. The largest problem
of allowing conflicting goals to compete occurs when the
robot continually switches from one task to another (task
oscillation) that achieves an undesired result. However, in the
proposed distributed architecture, as one of the conflicting
goals approaches completion, the activation level increases,

thus resulting in a lower chance that another goal will have a
higher activation level. Should the activation levels be exactly
the same, which is statistically improbable, the system will
choose the behavior which first requested control of an
actuator. This same concept is used to indirectly arbitrate
between user defined goals. Should a user specify two goals,
the robot will estimate which goal is closer to being finished
and attempt to complete it first.

A conceptual explanation is given on how the task selec-
tion mechanism works in section III. section III also details
the new distributed architecture that allows multiple goals
to function concurrently. Section IV shows the test results
and give the proof of concepts for the three contributions
of the paper: multiple goals, conflicting goals, and dynamic
reconfiguration when a new goal is detected.

II. RELATED WORK

There are several categories of action selection mecha-
nisms. Two broad categories are arbitration and command
fusion[10]. The first category, command fusion, combines
multiple outputs of modules into a single output to send
to the actuators. The second category, arbitration, chooses
between different module outputs and selects one that is most
appropriate to run. The arbitration mechanisms of interest is,
priority-based, state-based, and winner-take-all.

Priority-based arbitration consists of modules (or behav-
iors) that are layered at different levels. Higher levels can
inhibit or effect lower level modules because they have a
higher priority. A good example of this would be subsump-
tion [1]. This approach allows the designer to statically
determine which goals are of higher priority; however, it
cannot dynamically reconfigure the priority of a goal.

A second common arbitration scheme for task selection
is State-Based arbitration. This method uses a finite state
machine (FSM). The robot will be at a certain state and move
to a new state depending on what outside stimuli occur[7].
This approach allows for more dynamic situations; however,
the programmer has to specify all the state transitions so
there are no conflicting goals nor can the robot run multiple
goals at once. Another issue is all state transitions must
be defined; therefore, this scheme limits the adaptability to
dynamic environments.

The third approach to arbitration action selection mecha-
nisms is winner-take-all, meaning the behaviors compete for
exclusive control of the robot. Activation Networks [8] use a
graph to contain goals which inject “activation energy” into
the system. Each goal will determine how much “activation
energy” based on sensors and states of the system. Each node



will then propagate this energy via three different types of
links: successor, predecessor, and conflicter. The behavior
with the highest activation energy wins control of the robot.
The distributed architecture can handle conflicting goals as
well as multiple goals where the activation network was
designed to use the conflictor link to disable conflicting
goals. This means the designer/programmer must know and
be able to disable all behaviors that may conflict with the
desired goal being programmed. This arduous task is not
necessary with the distributed architecture because it uses a
mutex schema to protect actuators.

This research also deals with multiple goals. Research has
been done with cost benefit ratios[6] where the robot will
dynamically re-plan when another high level goal wishes
to run. This goal will then have total control unless an
emergency arises or the environment changes. It is important
to note that this method plans high level or abstracted task
where the distributed architecture does this for each active
behavior regardless of its abstraction level.

Work has also been done using semaphores (or mutexs) as
a guard for system resources[11]. However, the distributed
architecture also uses the semaphore/mutex idea as an auc-
tion house for behavioral competition. Where research up
until now the semaphore/mutex idea simply is used to inhibit
any behavior that would be conflicting with the current
running goal.

The DAMN architecture[5] is very similar in design as
the distributed architecture except it will fuse outputs from
modules by allowing each behavior to vote for what it thinks
the correct action for the robot is. The distributed architec-
ture is winner-take-all, where the behavior with the highest
activation level wins. This arbitration occurs every program
cycle achieving a similar effect to the voting schema.

III. APPROACH

There are three main computational components of the
distributed architecture which allow dynamic task selection.
These components are goals, behaviors, and mutexes. These
elements fit together to create a dynamic distributed system.
Goals are objects which determine if a condition is met.
If not, the goals are responsible for creating or linking to
a behavior, functional component, which can complete the
desired condition. Each cycle of the program consists of
multiple execution steps. All goals specified by the user will
determine whether or not they need to run. If they do, the
behavior that is linked to the goal will compete for control
of the mutex or allow any prerequisite goals to repeat the
same procedure.

If the behavior can run, it will calculate how “far” the
goal state is based on different parameters. For example, a
behavior that uses a motor can use a Euclidean distance to
goal, change in yaw and remaining time to calculate how
“far” the desired goal state is from its current state. The
behavior then requests control of a mutex. This mutex then
scans all the state distances and determines if any particular
distance is a maximum value for that distance type.

After all the behaviors and goals have been updated, the
mutexes themselves share data to make sure they have up to
date maximum state distances. Then, each mutex will request
for each challenging behavior to calculate its activation level.
The reason this must be done after all the behaviors have
requested control is to ensure that the maximum values for
each state distance are accurate. Each mutex will award
the behavior, with the highest activation level control over
the actuator. The final step activates each behavior and if
the behavior has ownership, it can send commands to the
actuator. It is important to note that a behavior could be
designed to still provide some service without ownership of
a mutex as long as it does not issue commands to an actuator
or shared resource.

A. Goals

This project allowed a human to control the robot by
specifying goals, not instruction sets. The goals are designed
as a separate computational object from the behavior (or
functional) object of the architecture. The goal represents
a condition which needed to be met. While this condition
was met, the goal would not attempt to use any behaviors.
Since the goal is separate from the behavior, it can select
which behavior is best suited to fulfill the requirement based
on what actuators and sensors are available.

When a goal is created, it must either create a new
behavior or link to an existing goal that can complete the
desired task. It must also know when the task is complete and
update itself to any changes that occur in the environment.

B. Behaviors

Before running the functional component of the behavior,
each behavior updates the state distance and state variables
it uses to determine the activation level.

The programmer can also use pre-requisites and co-
requisite goals to create more advanced behaviors by telling
the system what needs to be done before and while the
behavior is executing. Abstract behaviors [9] can also be used
to further the capability of the system. Abstract behaviors are
behaviors that simply call other goals and do not actually
command any actuators themselves. If the behavior has no
unmet prerequisites, it will request control of any mutex
it requires to run. Once the behavior has ownership of a
mutex, it can send commands to the desired actuator. Also,
the behavior does not actually have to use an actuator. It
could simply read data from a sensor and return a value.

C. Mutex

Our proposed approach for task selections was to use
the concept of a mutex to guard resources on the robot. In
operating systems and parallel computation theory, a mutex
is used to enforce mutual exclusion of code for certain critical
areas. For example, if two threads use a shared memory
space, they usually cannot access it at the same time. The
mutex in this distributed architecture enforces that only one
behavior at a time can control the resource it is guarding. For
the research purposes, a camera, gripper, and motor mutex



Fig. 1: Goal A and X are both user specified goals. The remaining goals
are prerequisites. Behaviors X and A will compete for Mutex 3. Behaviors
C and Y will compete for Mutex 1

were used. These entities would record all the behaviors
which requested control and then award ownership of the
resource to the behavior with the highest activation level. In
other words, the mutex acts as an auction house.

An important attribute of most robotic architecture is the
capability of being distributed across multiple processors.
When addressing the mutex concept, it appears that the rule
of distribution is broken. However, consider any parallel
system which requires a hardware resource. The mutex which
guards that resource has to be reachable by any process that
requires it. Also, it makes sense to place the mutex on the
processor in which the piece of hardware is attached. The
architecture itself is distributed. A programmer could divide
separate behavior chains or even individual goal/behavior
pairs amongst any number of processors. However, the pro-
cessor where the actuator was controlled would still need a
mutex to protect it. Thus, using the mutex as an auction house
does not break the distributive nature of the architecture.

D. Calculating Activation Levels

The action selection mechanism of the distributed archi-
tecture contains two possible metrics which can be combined
to compute an activation level of a behavior. The first metric
is a state distance to a desired goal state. This state distance
would be compared with the maximum distance for that
particular type, and the smallest ratio would be given the
highest priority. Thus, increasing the activation level of that
particular behavior the most. As mentioned before, this
state distance is not necessarily Euclidean. There are several
variables such as time which are non-spatial.

The second metric used is a state counter. When trying to
calculate an activation level, it became apparent that there
could be other possible variables that could contribute to the
importance of the behavior. Mathematically, the only other
variable type that was feasible to incorporate and still allow a
versatile degree of programming was a counter. By adding a
state counter, the behaviors were now able to track how many

times they occured over time. The main difference is the state
counter would increase the activation level based on how
high (or low) it was versus the state distance which would
increase the activation level based on how much smaller it
was from the maximum value of that type (explained in the
following two sections). The state counter is divided by a
scaling factor that the system changes (see section III-D.2)
and added to the activation level.

1) State Distance Integration: Each running behavior
reads the sensor data it requires. (For example: laser range
finder, odometry, camera blob-tracker, etc. ). From these
data, the behavior tries to determine the state distance to
the desired goal state for each state variable. If a state
distance cannot be determined or estimated, the behavior sets
the value to -1 specifying that it cannot use that particular
state variable for the activation level calculations. Again the
behaviors only consider the state variables in terms of what
they control. For example, a camera controller would utilize
camera pan and camera tilt while not considering the location
of the robot or any readings from the gripper.

There were three mutexes developed for each actuator in
order to prove this concept: gripper, motor, and camera. First,
each behavior is aware of the state variables it uses. An active
behavior should be able to generate a state distance to the
goal state for each state variable it uses (it can be a spatial
distance or state distance). When the behavior requests
control, the mutex looks through the behavior distances and
determines if any are the maximum for that type. Each
behavior needs to request the maximum values from the
mutex it is competing for. Then, each distance is divided
by the maximum value of that variable type. The result is a
normalized ratio (between 0 and 1). Once these values are
found for each state distance in the behavior, they are all
averaged together and the result is a normalized activation
level (2).

F (x) =
Np∑
i=0

maxK(Vk,i))− Vb,i

maxK(Vk,i)
(1)

Which simplifies to:

F (x) = Np−
Np∑
i=0

Vb,i

maxK(Vk,i)
(2)

NormalizedF (x) =
F (x)
V

(3)

(4)

F (x) =State Distance Component of the Activation level.
VK,i is the maximum value for the ith variable which is
stored in the mutex.
V is total number of active behaviors.
b is the behavior that is requesting control.
Np is the total number of different parameter types.
K is a set of all challenging behavior’s parameter of type i.

With this technique, the sensor data are transformed into
state distances, which are then translated into comparable
ratios with any other behavior. This technique only works



with state distances, where a max value of the same type of
distance can be found.

2) State Counter Integration: The second metric of the
action selection mechanism is a general state counter. For
example, a counter was used to track the number of consec-
utive failed attempts at gaining access to the mutex.

The state counter cannot be calculated the same way as
the state distance. If all state counters values were close in
proximity, they would exhibit little influence on the activation
level, especially if they all contained high values. This is
because the state distance algorithm calculates a ratio and
measures the difference between the state distance and the
maximum distance for that state distance type. Likewise,
in situations where the counters are relatively low, a single
increment could influence the activation level substantially
even though it has only incremented once.

In order to incorporate counters into the run level, the
system must know what to scale the counter by. In other
words, divide the number of the state counter by the scalar
value to get the ammount you must add to the activation
level. This scalar value can be arbitrarily assigned or the
value can be estimated by the different outputs from equation
4. For example, to make the activation level summation
count up .01 every time the counter increments the resolution
would be 100. Using the following piece-wise equation,
a counter can be incorporated into the distance ratio (see
equation 5).

Y (x) =
{

count/scalar ifcount < res,
1.0 ifcount ≥ res.

(5)

count is the counter that is being incorporated.
scalar is the scalar value (normally a power of ten) in which
to divide by.
For the purpose of this project the scalar value was set to
100. The result of equation 5 would be added to the sum
of the ratios from equation 4. Also, the number of active
variables would need to be increased in order to keep the
normalized ratio (less than or equal to 1). After finding the
normalized value for the counter, it must be incorporated
with the measurement value to calculate the activation level.
The final equation for a behavior’s activation level then looks
like equation 6.

Activation Level =
F (x) + Y (x)

Np + Nc
(6)

Nc is the number of counters that are being incorporated
into the run level ratio.
Np is the number of active measurements being incorporated
into the run level ratio.
Y (x) is the result from equation 5.
F (x) is the result from equation 2.

IV. RESULTS

In order to test this architecture, the Player/Stage robotic
simulator was used to test the task selection mechanism.
Three scenarios were conceived in order to prove that the

Fig. 2: The robot’s path as it attempts visit two goals.

Competing Behaviors Red Target
Blue Target

Mutex which is being competed for Motor
State variables used to find activation levels: Euclidean distance

robotic yaw
Time left until start

Denial counter

TABLE I: Competing Behaviors and the parameters used.

robot could handle multiple conflicting goals, incorporate
time into the selection mechanism, and finally re-prioritize a
goal should the desired target of that goal be detected in the
environment.

A. Multiple Conflicting Goals

The red and blue targets shown in Figure 2 need to be
visited by the robot in order to complete the test. For a
breakdown of which behaviors were tested please refer to
Table I. From the robot’s starting location the blue goal is
closer therefore this goal’s behavior has a higher activation
level. This causes the robot to move to the blue goal first then
moves to the red. From Figure 3, oscillation can be observed
when the test first begins, however, the architecture quickly
converges to visiting the blue target first.

The smart wander behavior was used by the “go to”
behavior as a prerequisite goal. If the robot came within a
certain distance of a wall the “go to” behavior would activate
a smart wander goal. This smart wander was only activated if
the go to behavior had gained control of the mutex. Therefore
it did not compete with the parent behaviors (Go to red target
and go to blue target)

B. Multiple Conflicting Goals With Time Constraint

This scenario is set up like the first scenario with a blue
and red target. However, this time, the red goal uses a
much smaller “time to start” value to demonstrate the ability
for this system to prioritize goals on other basis besides



Fig. 3: The Time Line of execution for the ”visit two goals” test.

Fig. 4: The robot’s path to both a time critical goal and a non-time critical
goal

Euclidean distances. See Table I for a list of the behaviors
and parameters (They are the same as the first test). Figure
4 details the path taken by the robot going to the red goal
first due to its more critical time limit then to the blue
goal. As seen in Figure 5, oscillation occurred between the
red and blue goal around the middle of the test. This was
caused by the robot making a small detour around a wall
and coming very close to equal distances between the two
targets. However, with a significant difference in the time
constraint, the robot returned to trying to finish the red goal.
If the robot had moved into close proximity of the blue goal,
it may have chosen to finish the blue goal before finishing
the red goal purely for convenience sake.

C. Dynamic Re-planning When A New Goal Becomes Acti-
vated

The last scenario duplicates the original test but also
requires the robot to turn and face a green target with blob
tracker should it encounter a green object. Figure 6 gives
the path the run and II details the behaviors and goals used.
One main difference between this test and the orginal test is

Fig. 5: The time line of execution for the “time critical goal”

Fig. 6: The robot’s path while discovering a new goal

the ”Center on Color” object was used. Once the robot is in
range of the green object it centers itself on the target before
moving on to the next goal. After the green goal has been
completed, the blue goal is closer to the robot. The red goal
does not have a time constraint; therefore, the blue goal is
achieved first. Figure 7 displays the timeline of execution for
this task. This system used two other behaviors for swiveling
the camera and centering the camera on the target. These two
behaviors do not compete for the motor mutex therefore they
are not included in the table and graph. This proves that the
distributed system allows multiple non-conflicting goals to
be activated at once.

V. FUTURE WORK

Abstraction levels are used in robotics to solve compli-
cated tasks with smaller, easier components. However, it is
difficult to define what the levels of abstraction are. Even
a well formed criteria for abstraction can have ambiguity
[12][4]. The distributed architecture provides three levels of
abstraction without any ambiguity. The lowest level consists

Competing Behaviors Go to Red Target
Go to Blue Target

Center Robot on Green
Object

Mutex which is being competed for Motor
State variables used: Euclidean distance

Change in robotic yaw
Time left until must start

Denial counter

TABLE II: Competing Behaviors and the parameters used.



Fig. 7: The time line of execution for the “goal discover test”

of any goal that was not explicitly specified by the user.
The second layer would consist of any user specified goal.
The highest layer would be a collection of all the user
specified goals. These three definitive levels of abstraction
could provide standardization allowing different development
teams the ability to create compatible software.

Another area of research is human and robot teams trying
to efficiently allocate tasks with each other for the purpose
of accomplishing a goal more efficiently [2][3]. This is
generally used to find the most efficient work plan and
take full advantage of limited field time (i.e. astronauts on
Mars). Finally, any system that can dynamically change its
goals is not necessarily “user friendly”. Thus, considerations
must be made for a human interacting with any robot using
this paradigm. The problem becomes more difficult if you
consider the multi-agent domain where the human must now
control multiple robots at the same time.

VI. CONCLUSION

This architecture provided three main points: The robot
has the capability of achieving multiple non-conflicting
goals. The architecture allows for goals to be dynamically
detected from the enviroment. The architecture can resolve
conflicting goals by determining which has a higher priority.
This architecture provides the robot with the capacity to run
multiple behaviors which do not require the same actuator.
This is done by using a mutex to protect robotic actuators.
This allows the robot to use more of its non-conflicting ca-
pabilities at once and provides more efficient task allocation.
Secondly, the distributed architecture allows for discovering

new goals and making logical decision as to whether or not
it needs to be run. This allows the distributed architecture
to adapt to a dynamic enviroment by re-prioritizing the
active goals. Finally, the distributed architecture will use an
activation level to prioritize the goals. This activation level
will then be used to compete for control of an actuator
against other behaviors. As the robot approaches the goal
state, the activation level of the behavior of the goal will
increase, thus reducing the chance of goal oscillation. With
these three contributions, the robot can re-prioritize tasks
which may become activated at any time in a dynamic
environment.
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