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Abstract: The ability to learn new concepts is essential for any robot to be successful in real-world applications. This

is due to the fact that it is impractical for a robot designer to pre-endow it with all the concepts that it would

encounter during its operational lifetime. In this context, it becomes necessary that the robot is able to acquire

new concepts, in a real-world context, from cues provided in natural, unconstrained interactions, similar to a

human-teaching approach. However, existing approaches on concept learning from visual images and abstract

concept learning address this problem in a manner that makes them unsuitable for learning in an embodied,

real-world environment. This paper presents a developmental approach to concept learning. The proposed

system learns abstract, generic features of objects and associates words from sentences referring to those

objects with the features, thus providing a grounding for the meaning of the words. The method thus allows

the system to later identify such features in previously unseen images. The paper presents results obtained on

data acquired with a Kinect camera and on synthetic images.

1 INTRODUCTION

The ability to learn new concepts is essential for any

robot to be successful in real-world applications. This

is due to the fact that it is impractical for a robot de-

signer to endow the robot with all the concepts that it

would encounter during its operational lifetime. In

this context, it becomes necessary that the robot is

able to acquire new concepts, in a real-world context,

from cues provided in a natural, human-like teaching

approach. The problem of concept learning has been

widely studied in the fields of computer vision and

machine learning, both as concept learning from vi-

sual images, or as abstract concept learning. How-

ever, the existing approaches address this problem in

a manner that makes them unsuitable for learning in

an embodied, real-world environment.

The field of computer vision has provided a wealth

of approaches for learning of concepts from visual

images. In the vast majority, the learning problem is

to associate each image with a unique class, of which

the object is a member. The focus is on creating al-

gorithms that better discriminate between the mem-

bers of different classes. While being important for

a large class of applications, this approach limits the

learning problem to a single “feature” of the object,

which in most cases is the object’s name. Psycholog-

ical research (Bloom, 2002; Horst et al., 2005) indi-

cates that humans perceive and use objects from the

perspective of their multiple characteristic features or

possible uses. Features such as size, texture, weight,

etc. are typically present in all objects. However, the

standard classification approach prevents any gener-

alization of objects at this level. For example, a sys-

tem that would be trained with images of blue books

(class 1) and red balls (class 2) would only be able to

distinguish between those classes. If presented with

a red book the system would be unable to say any-

thing about the new object, although it had seen books

and red objects before. Humans learn to recognize

these separate features and are able to generalize from

them, although they might have not seen an identical

object before. The ability to generalize at this level

is essential for any robotic system that is to be used

in real-world applications, given that it is impractical

to pre-train a robot with all possible objects it might

need to recognize for its tasks.

The concept learning problem has also been

widely addressed in the field of machine learning.

The learning problem is stated as inducing abstract

concepts from combinations of multiple features. For

each feature, appropriate values are provided in a

feature-value pairs array, which are used to general-

ize the characteristic features of the concept. While

these methods are very successful when given training

information in the above form, they could not be di-



rectly applicable to a system that needs to learn from

real-world interactions. First, the symbol grounding

problem is avoided by providing the learning system

with direct labels for the training samples. Second, an

assumption is made that it is known which value cor-

responds to each feature, for example such that small

and large are values of the size feature. Third, it is

also assumed that a single training sample contains

information about all the relevant features of the con-

cept, which are known in advance and pre-selected by

the user. In practice, robots would need to learn from

information extracted from the sensors, and would

have to solve the symbol grounding problem by re-

lating their observations with verbal cues provided by

a human user. The learning information is also not

structured as complete feature-value arrays, but rather

comes from natural means of communication (such

as speech or visual cues), which by nature cannot ex-

press information in this way. A human user might

only mention that an object is large or small, but not

that these values relate to the object’s size. In addi-

tion, it is not ensured that a human would enumerate

all the attributes of an object of interest, to provide the

complete information.

This paper takes a developmental approach to

concept learning, in order to address the above lim-

itations. The hypothesis is that robots need to be able

to learn from visual and auditory cues during interac-

tions with human teachers, in an incremental fashion,

in a manner similar to how young children acquire

new concepts.

The remainder of the paper is structured as fol-

lows: Section 2 discusses related research, Section 3

describes our approach, Section 4 presents our results

and Section 5 gives a summary of our work.

2 RELATED WORK

Concept learning is a significant research problem,

which has been addressed in computer science, cogni-

tive science, neuroscience and psychology. This sec-

tion presents related research in these areas.

The goal of psychology and child development re-

search, as it relates to concept learning, is to under-

stand the mechanisms that underlie the formation of

concepts in children and humans in general. Various

aspects of this problem have been explored. (Schyns

et al., 1998) explore the interplay between the high-

level cognitive process over the perceptual system,

which gives rise to new concept formation. (Feldman,

2003) proposes a principle that indicates that people

induce the simplest categories consistent with a given

set of examples and introduces an algebra for repre-

senting human concept learning. (Kaplan and Mur-

phy, 200) evaluate the effect of prior knowledge on

category learning and suggest that the category exem-

plars as well as prior knowledge about the category’s

domain influence the learning process. The concept

learning approach proposed in this paper aims to build

a feature space for representing the concepts. The is-

sue of category dimensionality has been examined in

(Hoffman and Murphy, 2006), supporting the motiva-

tion to address this problem at the level of the object

feature space. This approach is consistent with find-

ings in child psychology research, which indicate that

children start by learning the individual features and

only form a single category after more extensive fa-

miliarization (Horst et al., 2005).

This paper takes the view that a robot should learn

by using both language and vision input, which stud-

ies in neuroscience and psychology have found likely

in human children (Scholl, 2005), (Pinker, 2007). The

simple comparison of sights and sounds may allow an

infant to develop a world model, and development re-

lies on interaction with people and the environment.

For more information on developmental robotics see

(Lungarella et al., 2003). Most previous work done

with images and text has been done in data mining.

For example, images from the internet can be auto-

matically associated with labels, as those on websites

like Flickr, or webpages related to keywords can be

retrieved. Usually the focus of these works is not to

learn the meaning of the words but to accurately label

the images so that a user may find them quickly with a

text search. However this is really the same problem,

and many of these techniques may be applied here, es-

pecially methods used to eliminate poor labels which

are common in internet databases (Brodley and Friedl,

1999). There has been much work done purely on im-

ages or on text, such as in the cases of document re-

trieval and content-based image retrieval, which rely

on word features or image features, not on both. For

a more complete review of existing methods see (Lew

et al., 2006).

The field of computer vision provides a wide spec-

trum of approaches to this problem. (Huang and Le-

Cun, 2006) proposes a combination of support vector

machines (SVMs) and convolutional nets to charac-

terize objects in variable conditions of illuminations

and with multiple different viewpoints. (Yang and

Kuo, 2000) uses content as the relevant feature to

categorize images. (Wolfgang Einhauser and Konig,

2002) demonstrates how a hierarchical neural net-

work evolves structures invariant to features such as

color and orientation, consistent with physiological

findings. (Piater and Grupen, 2000) presents an in-

cremental approach to learning the set of features nec-



essary for visual classification; whenever the system

has difficulty classifying an image, it seeks new fea-

tures that are capable of helping differentiate between

the multiple classes. Our proposed system assumes a

one class classification problem, where we can only

guarantee positive examples, not negatives. We make

use of one class SVMs, although it may be beneficial

to try neural networks in the future, which are similar

to SVMs in behavior, but less sensitive to parameter

choice (Khan and Madden, 2010). Techniques from

these methods may be used in a system that relies on

both images and text to find correspondences. For ex-

ample the features used to relate images may be used

to represent images in our system, and the processes

used to eliminate unimportant words could be used

the same way in our system. For now we use fea-

tures provided by Isomap in order to avoid features

that may be specific to a word, and assume that the

result of classification can be used to indicate whether

a word should be eliminated (Uzwyshyn, 2009).

The work proposed in this paper departs from the

standard computer vision and machine learning tech-

niques in several important directions. With regards

to computer vision, the difference in our techniques is

that we aim at learning concepts at the level of their

main characteristic features, rather than at the level

of a single class. In the proposed approach, one ob-

ject will be a member of multiple classes (e.g., a book

can be both large and red) and different objects will

be members of the same class (e.g. a book or a ball

could be both large). The goal is to learn a multi-

dimensional space of features, which could be used

to characterize previously unseen objects. With re-

spect to the machine learning techniques, this work

departs from the assumptions related to the structure

of the training data and propose an approach that uses

visual and text input, similar to that which would be

provided in natural interactive scenarios.

3 APPROACH

Our general approach is similar to how parents teach

young children things about the world: while pointing

to an object that captures the childs attention, or by

showing an object to the child, a parent describes the

object saying things like “That’s yellow”, “Look at the

big box!”, “Keep this stick vertical”. Over time, and

with sufficient examples, the child learns the meaning

of yellow, big and vertical and is able to recognize

these features in objects previously unseen.

The hypothesis of our work, as indicated by meth-

ods such as Isomap (Tenebaum et al., 2000) is that

lower dimensionality spaces obtained through such

methods incorporate significant relevant features of

the data, such as for example an object’s size, orien-

tation, or shading. However, these algorithms stop at

the level of classification, and do not attempt to auto-

matically infer the relation that the actual object fea-

tures have with the reduced feature space. The goal

of this work is to build on the dimensionality reduc-

tion paradigm in order to provide an automated way

for learning the correspondence between the reduced

feature space and the physical features of the data.

Figure 1: Example synthetic images.

Our methodology follows a two stage approach:

(1) unsupervised dimensionality reduction for feature

extraction and (2) learning of word-feature relations.

The validation consists of characterizing a previously

unseen object in terms of its features, based on the

learned feature space.

We created a database of images, combining ar-

tificial images and images of objects gathered using

a Kinect camera. We described all the images using

complete English sentences, similar to utterances that

a parent would say to a child when talking about the

object in the image. The artificial data consists of 500

by 500 color images of shapes of varying colors, sizes

and positions on a plain white background, as seen in

Figure 1. For each image a text file is created by a

human which consists of a sentence per line describ-

ing the shape or some feature of the image. At the

moment these sentences are assumed to be positive

to avoid any language processing, for example a sen-

tence may be “The shape is round” but cannot be “The

shape isn’t round.” There are also suplemental files

which attempt to list negative labels, which are used

to check results.

In practice this may not be complete enough: one

user may say a thing is round, and another may dis-

agree. For now we assume that labels are not sub-

jective. We also have a greyscale generated dataset,

in order to test accuracy with color removed. The



Figure 2: Example masked Kinect images from the RGB-D
database.

non-synthetic dataset is a collection of Kinect images

gathered in the lab and combined with the RGB-D

dataset (Lai et al., 2012), at 640 by 480 resolution.

These images were masked to remove the background

and every object is roughly at center, with some noise

from the background still present (see Figure 2).

These were similarly labeled by users who desrcibed

them in complete sentences, and supplemented with a

set of negative labels for truth testing. All images are

currently stored as PNG files. A simple data collec-

tion system was constructed to get images of more ob-

jects. This system used a Kinect and the Point Cloud

Library to grab point clouds from the Kinect (Bog-

dan Rusu and Cousins, 2011). These point clouds

are then processed using a depth filter to remove most

of the background, and a planar segmenter based on

RANSAC which removes the flat surface on which

objects are assumed to lie. From this data an image is

generated with a white value given to all empty space.

There is no additional noise removal, since it did not

seem necessary in this setup. In future projects the

depth information may be used as well to more accu-

rately describe the concepts to be learned.

3.1 Feature extraction

In this step we perform feature extraction by apply-

ing Isomap to the image training data, which reduces

the feature space from several hundred thousand to

around a hundred features. This improves generaliza-

tion and shortens training times. Isomap is a form of

multi-dimensional scaling which preserves geodesic

distance rather than Euclidean. Generally, the user

selects an initial goal number of dimensions to reduce

to, although some algorithms reduce dimensions un-

til an error threshold is crossed. This algorithm may

have problems if too few or too many neighbors are

used for the search, and also has trouble if points are

moved off the manifold by noise. This does not have

a significant effect in the current system, but for better

results on real data it may be necessary to change to

another method.

Several other dimensionality reduction techniques

were considered, and may be used in the future. One

which was implemented and tested, created overlap-

ping patches of the images, and used K-Means Clus-

tering to determine template types of patches in the

images, as seen in (Coates et al., 2010). These types

were then used as features, so that patches would be

collected from an image, and its representative feature

vector would indicate which patch types were present

in the image. It was determined that k would need

to be very large to avoid loosing information, espe-

cially with real data. Isomap, in this case, was better

for our data, but also requires more memory and time.

This method may be useful on larger datasets, where

the gain in dimensions becomes less important then

speed and space taken up by the reduction method.

3.2 Learning word-feature relations

Once the feature vectors for the images have been

created, a one class SVM is trained for each word,

as follows. The sentences describing the images are

stripped of punctuation, and transformed to all lower

case. In the future both punctuation and capitalization

may be useful to differentiate words, but for now they

are assumed to be unimportant. Words that occur too

frequently or infrequently are removed and no SVM

is trained. For now this limit is set at less than 5%

of samples or more than 95%. This is to avoid both

“stop” words which occur everywhere (is, a, the), and

rare words from which the SVM can learn little (ver-

tically for example, occured once.) This is a “bag of

words” approach, and it may be useful at a later time

to use bigrams (word pairs) as labels to determine cor-

relation of features. For each word, for example red,

we collected all of the images for which that word has

occured in any sentence relative to it. This produced

a set of images in which there is a high probability

that an object with the color red may be present. For

each word, using this subset of images we used a one

class support vector machine. Due to the assumption

that words in sentences are positive labels we do not

have any images labeled as negative examples. Fur-

thermore, as mentioned previously, deciding negative

examples may prove difficult as descriptions may be

subjective. SVMs are good at classifying high dimen-

sional data, and are efficiently represented as well, al-

though one class SVMs may not perform as well. A

one class SVM assumes that the training data is only

of a single class, and attempts to fit a hyperplane to

that class. This results in a very strict border on the

training data, which can be a problem if the training



data does not represent that class completely. At the

present the system is using a radial basis function with

a degree of 3, and 0.3 as the upper bound on training

error, although degree of 2, 4 and errors of .2, .4 and

.5 were also tested, and did not perform as well across

the data. In future versions these parameters will be

set using grid search on a per word basis.

4 RESULTS

The system was tested on a set of 128 generated im-

ages and 134 real objects. This data was split into

positive training cases and a mix of positive and un-

known testing cases. These included features and ob-

jects that were not seen in the training data. The test

cases were in some cases labeled negative in the afore

mentioned ground truth, and other times unlabeled if

the true label was ambiguous (for example, a label

such as “several” which may or may not describe a

learnable feature). Where the true label was unde-

fined, the result was not counted for or against the

system’s accuracy, but was used as input for manual

adjustment of the system. This included updating the

ground truth, and testing methods for adding positive

examples. The dictionary for generated data was 91

words, and the real data was 195 words. It was im-

plemented in Python, using the Python Image Library

and numpy to store and process images, and scipy to

plot data. Scikit learn was used for scaling, Isomap,

and one class SVMs (Pedregosa et al., 2011). Train-

ing takes roughly 40 minutes without memory limits,

but nearly an hour and a half with memory limits.

4.1 Feature extraction results

The isomap dimensionality reduction was given a

limit of 100 dimensions to reduce to. The generated

data reduced from 750000 features (raw color images)

to 75 features. This is essential for the success of the

SVM, which is generally good for datasets where the

number of features exceed the number of samples, but

still performs poorly if the number of features greatly

exceeds the number of samples. It is possible that the

raising the dimension of the final feature space will

aid in learning certain complex words, but this may

also cause the SVMs to fail.

4.2 Word-feature learning results

The results for the synthetic data indicate that features

such as color, shape and location can all be learned in

this simple manner. Many of the words had too many

or too few examples, but these words were mainly

stop words. For example shape occurs in almost every

case, as in “The shape is yellow.” We calculate preci-

sion, recall and F1 score based on the predicted labels

compared to the ground truth. If a label is not indi-

cated in the ground truth, the example is not used in

calculating the scores, but is listed as an “unknown.”

The results are summarized in Table 1 for a subset of

the data, with Table 2 containing several words which

performed well, but with many unknown ground truth

labels. Essentially these words may be learnable, but

should have improved ground-truth for example cor-

ners was used with rectangles, squares and triangles,

but due to 18 images not being labeled as either hav-

ing corners or not, further testing is needed to verify

these results.

Table 3 contains similar results with a different

error permitted by the one class SVM. The error for

this was increased to 0.3 permitted, which resulted in

significantly better scores on some labels such as four

and square, but worse results on others such as red.

This indicates that the process used here can perform

better, but it is impossible to know how significant the

change will be.

The real data did not perform as well as the arti-

ficial images. While colors which were well repre-

sented did well, almost every other word in the data

set was used only once, or only with a single object

which occured several times. The result is that a word

like shiny might occur only with regards to a flash-

light, and could then be associated with any of the

flashlight’s features. It is likely that a much larger

dataset will be necessary for real data to show any

valuable results, since the dictionary is too broad to

be captured in a hundred objects. The results from

the words that succeeded may need more examples

as well, since the features have a broader range on

real objects. For example red in the generated data

set is a single color, however, red in real objects is

many shades. While the results indicate that the sys-

tem is learning color across shades, if more shades

Table 1: Generated Data Results: 128 total samples, per-
mitted error of 0.2, degree 3, radial basis kernel.

Word Samples Precision Recall F1

“yellow” 22 1.0 0.45 0.62

“four” 26 1.0 0.5 0.66

“black” 37 1.0 0.62 0.76

“circle” 37 1.0 0.54 0.70

“triangle” 38 1.0 0.52 0.68

“square” 21 1.0 0.33 0.5

“blue” 18 1.0 0.5 0.66

“red” 17 1.0 0.64 0.78



were present that may change. To see the color re-

sults for real data see Table 4.

4.3 Discussion and future work

We found that when collecting sentences about the

objects, they were not described completely. So a red

square may be described as red, or square, but not al-

ways as both. This should not be a concern as long as

the training data covers the class well. Another dif-

ficulty results from our system’s lack of knowledge

about the langauge: it cannot make assumptions about

the presence of one word implying the absence of an-

other, for example a red object may also be described

as orange. This means that as well as being unable

to determine if a label is present or not if the word is

missing, we can also make no assumptions about ex-

clusivity of the labels. Since this is in part, a feature of

human language, it makes creation of ground truth la-

bels difficult. In training many people may agree that

an object is red, but another person may say it is ma-

roon, making it difficult to say that a label is correct

or not. For now we assume that our ground truth set

is accurate and does not conflict with the user labels.

The main problem of the one class classifier is a

high false negative rate. Since it fits to only positive

examples, it can exclude negatives very well. How-

ever, if the training data did not cover the class well,

or if the hyperplane did not fit to all examples (degree

too small, permitted error too small), or there is noise

in the data which moves it off of the hyperplane, then

the classifier can have a high false negative rate. This

can be seen in the analysis of our system’s results.

Handling this problem is a major goal of future work.

Many of the parameters (SVM error, SVM degree,

Isomap neighbors, Isomap dimension) need to be set

procedurally to find the best combination. Isomap

takes up a large amount of time and space, and is

Table 2: Generated Data Results with many unknowns: 128
total samples, permitted error of 0.2, degree 3, radial basis
kernel.

Word Samples Precision Recall F1

“three” 24 1.0 0.66 0.8

“top” 19 1.0 0.63 0.77

“oval” 27 1.0 0.55 0.71

“right” 19 1.0 0.47 0.64

“corners” 46 0.96 0.56 0.71

“round” 34 1.0 0.55 0.71

“upper” 16 1.0 0.5 0.66

“shape” 77 1.0 0.74 0.85

Table 3: Generated Data Results: 128 total samples, per-
mitted error of 0.2, degree 3, radial basis kernel.

Word Samples Precision Recall F1

“yellow” 22 1.0 0.36 0.53

“four” 26 1.0 0.57 0.73

“black” 37 1.0 0.56 0.72

“circle” 37 1.0 0.62 0.76

“triangle” 38 1.0 0.52 0.68

“square” 21 1.0 0.66 0.8

“blue” 18 1.0 0.33 0.5

“red” 17 1.0 0.41 0.58

not robust to noise. It may be necesary to replace it

with another method, especially if more data is added.

More Kinect data is needed, of more objects, and with

varying features. More sentences describing objects

should also be collected, to broaden the vocabulary

and collect more examples of rarely used words. Sim-

ilarly the ground truth set needs to be updated, due

to the fact that many of the words describing the real

data were not listed as either true or false, and so these

results could not be verified. This may require a bet-

ter categorization, since several words have multiple

meanings. This means it may be necessary to identify

multiple clusters within a word’s training set and treat

them as separate words. Other techniques for process-

ing images, and correcting labels which were found

during a literature search were not implemented due

to time constraints, but may improve future results.

Furthermore, we plan to develop an interactive ap-

proach to data collection, in which auditory and visual

training data is acquired directly by a robot through

interactions with human users.

5 CONCLUSION

This paper presented an approach to developmental

concept learning from images and text, in order to

associate attributes extracted from the images with

words. The system relies on feature extraction and

one class classification to accomplish this goal. The

results indicate reasonable success of around .7 to .8

Table 4: Real Data Results: 128 total samples, permitted
error of 0.3, degree 3, radial basis kernel.

Word Samples Precision Recall F1

“yellow” 22 1.0 0.64 0.78

“black” 34 1.0 0.64 0.78

“blue” 35 1.0 0.74 0.85

“purple” 10 1.0 0.6 0.75

“red” 60 0.83 0.73 0.77

“white” 36 1.0 0.58 0.73



F1 score on simple color, shape and location words.

In general, lower scores resulted where few examples

were given, or the word was more complex, as in the

cases of vertically, shiny, or even handle. Overall

the results are encouraging, although better results on

non-synthetic data is necessary to prove the utility of

this approach.

Further extending this approach can lead to a sys-

tem that can be used as a basis for learning human

communication. This will allow for better robot col-

laborators, which can learn interactively in similar

ways in which humans learn from each other.
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