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Abstract – Service robots have the potential of improving 

the quality of life and assist with people’s daily activities. 

Such robots must be capable of operating over long periods 

of time, performing multiple tasks, and scheduling them 

appropriately for execution. In addition, service robots must 

be capable of dealing with tasks whose goals may be in 

conflict with each other and would need to determine, 

dynamically, which task to pursue in such a case. Adding to 

the complexity of the problem is the fact that some task 

requests may have time constraints – deadlines by which the 

task has to be completed. Given the dynamic nature of the 

environment, the robots must make decisions on what tasks 

to pursue in situations where there could be incomplete or 

missing information.  The robots should also be capable of 

accepting requests for new tasks or services at run-time, 

while possibly working on another task.  In order to achieve 

these requirements this paper presents the Auction Behavior 

Based Robotic Architecture (ABBRA) that brings the 

following contributions: i) it uses an auction mechanism to 

determine the relevance of a task to run at any given time, 

ii) it handles multiple user requests while dealing with 

potentially critical time constraints and incomplete 

information, iii) it enables long-term robot operation and iv) 

it allows for dynamic assignment of new tasks. The 

proposed system is validated on a physical robotic platform, 

the Segway RMP® and in simulation.  

Keywords    Auction-based robotic architecture - 

Intelligent action selection - Dynamic time and 

environmental constraints- Behavior Based 

Robotics 

 



1 INTRODUCTION   

Service robots can provide significant assistance 

to people in their daily activities, reducing the 

workload or serving as helpers for users needing 

assistance with achieving certain goals. The 

complexity of the environment in which service 

robots would need to operate and the number of 

issues that such robots have to overcome pose 

significant challenges for the development of a 

robot control architecture that can handle them 

appropriately.  

First, a service robot must be capable of operating 

over long periods of time, in dynamic 

environments, and be continuously prepared to 

accept new task requests from users, even if the 

robot is still in the process of working on another 

task. Therefore, the robot’s control architecture 

must be versatile enough to integrate new tasks at 

runtime and also to handle the interruptions 

caused by the new addition of the new tasks. 

Second, the robot must be able to efficiently 

schedule multiple task requests for execution. 

This requires a task selection mechanism that can 

choose what task is most appropriate to run at any 

given time. This requirement is particularly 

important when dealing with tasks whose goals 

may be in conflict with each other. Such conflicts 

may occur when two or more tasks require a 

specific resource on the robot, in order to achieve 

different goals. For example, a conflict will arise 

if a task requires the robot to pick up an object 

while another requires the robot to empty the 

content of its gripper: the goals of the two tasks 

are conflicting, as each task would undo the 

progress of the other. A solution to this problem is 

the use of a pre-defined, static priority [1] that 

would select which task to run first. A 

deliberative approach could resolve conflicting 

goals, however it may not always be feasible in 

dynamic environments [2].  In practice, it is hard 

to decide what task should have precedence over 

another or to use a deliberative system, especially 

given that task requests are coming at run-time 

and their order is not a priori known. An effective 

solution to this problem would enable the robot to 

dynamically decide what task to perform given 

the current task workload and environmental 

situation. 

A third challenge for a service robot is that certain 

tasks may need to be completed by given 

deadlines, thus posing time-constraints that can 

vary in length and importance.  Some time-

constraints are critical to adhere to, while others 

are simply preferential for the user.  The robot 

must also handle tasks for which there is unknown 

or incomplete information. This reinforces the 

need for determining the relevance of each task 

dynamically and would allow the robot to adapt 

and switch tasks if necessary should new 

information be discovered in the environment. 



Finally, service robots must be capable of 

functioning autonomously in dynamic 

environments. Any changes in the world could 

impact a robot’s current plan of performing its 

tasks.  Thus, the robot must be capable of 

adapting to the new situations and be able to 

change its task execution plan, if necessary.   

In order to address the above challenges, this 

paper presents the Auction Behavior Based 

Robotic Architecture (ABBRA), which introduces 

the following contributions:  first, the architecture 

uses an auction mechanism to select which task to 

run at any given time.  In this system, each task 

uses environmental data to determine its relevance 

to run at that time and uses this relevance to 

compete for control of an actuator on the robot in 

order to achieve its goal.  The auction mechanism 

allows the winning task control of the specific 

robotic resource preventing multiple tasks from 

attempting to access it at once.  

Second, the architecture handles multiple user 

requests while dealing with potentially critical 

time constraints of the tasks and incomplete 

information. Using the auction mechanism for 

task selection, ABBRA resolves conflicting goals 

without statically setting the priorities for tasks or 

by prohibiting two tasks with conflicting goal 

from being active at the same time.  Whenever 

such a case may occur, the fact that a tasks’ 

relevance is based on environmental data, will 

enable the robot to selecting on a single one of 

these goals. As a goal state becomes closer to 

fulfillment, the more relevant the corresponding 

task will be for the architecture to run and the 

more likely it is that the task will win the auction, 

thus, reducing oscillations between different 

tasks. 

Third, ABBRA enables a robot to dynamically 

accept new task requests, at run-time, without the 

need for any designer reconfiguration.  Given that 

an auction cycle is executed at each time step, a 

newly added task begins participating in the 

bidding as soon as it is requested, thus becoming a 

part of the robot’s set of tasks to be done.  The 

architecture is based on the behavior-based 

paradigm [1], which allows the robot to perform 

efficiently in a real-world, dynamic environment 

and to react appropriately to unforeseen changes.  

This paper covers three stages of development of 

the proposed architecture. The first two stages 

were validated in a simulated environment, while 

the third phase used a physical Segway RMP® 

mobile robot.   

The first stage demonstrates the basic auction 

mechanism for task selection, the ability to handle 

a task with time constraints, and the dynamic 

rescheduling in changing environments, for 

scenarios where all the tasks are requested from 

the start.  The second stage introduces the ability 

to handle time constraints on multiple or all of a 

robot’s tasks and the capability to dynamically 

add new requests in the system at run-time.  The 



third stage incorporates two additional features: a 

real-time clock and mapping and localization 

capabilities, which allow for more accurate time 

to completion estimation for the tasks, and thus 

for a better task selection mechanism for the 

robot. 

The remainder of the paper is structured as 

follows:  Section 2 discusses related work, 

Section 3 describes the details of the architecture, 

Section 4 provides the results of the tests for each 

phase, Section 5 presents directions for future 

work and Section 6 gives a summary of the 

presented approach. 

2 Related Work 

The architecture proposed in this paper is related 

to three major areas of research: action selection, 

market-based robotic systems and job scheduling. 

This section describes related work in each of 

these domains and discusses how ABBRA relates 

to existing approaches. 

2.1 Action Selection 

The ability to select the most appropriate task to 

perform at any given time is a critical component 

of the architecture proposed in this paper. The 

issue of action selection, or behavior coordination, 

has been widely addressed in robotics, with two 

major approaches being most commonly used: 

behavior fusion and arbitration.  

Fusion is a cooperative approach in which the 

outputs of multiple behaviors are combined into a 

single output that is sent as command to the robot.  

Several methods have been proposed.  A first 

method of combining behavior outputs is using 

voting [2, 3].  This mechanism allows the outputs 

of behaviors to vote for what they determine to be 

the best action.  Action voting in [4] uses a neural 

network architecture to vote on an action suitable 

from perceived environment.  Other methods of 

fusion consist of fuzzy command fusion where 

each behavior is synthesized by a rule-base based 

approach [5].  This approach can be extended into 

multi-valued logic [6] and a fuzzy voting system 

such as Fuzzy DAMN [7].  Other main fusion 

techniques include schemas where vectors will be 

added in order to derive the direction the robot 

should be moving  [8].  

Arbitration, also called winner-take-all, is 

a competitive action selection approach, which 

chooses a single behavior, from a set of multiple 

behaviors, to send commands to the robot’s 

actuators. ABBRA uses an auction-based 

approach to determine the winning behavior and 

allocate the robotic resources. Should the arbiter 

only choose a behavior once the previous 

behavior is finished a stable result can be 

expected.  However, ABBRA continually 

processes bids regardless of whether the currently 

running behavior has achieved its goal or not.  

This causes a problem, when tasks have 



conflicting goals because the arbiter must now 

consider if interrupting a task will cause goal-

oscillation.  Goal-oscillation occurs when the 

robot switches between two or more task that 

counteracts each other.  When multiple 

conflicting goals arise [9], the architecture must 

prioritize [10] or select which behavior is most 

applicable [11] for the current situation.  Another 

approach to arbitration is activation networks [9], 

which solve the issue of conflicting goals by 

allowing behaviors to promote other behaviors 

through “activation energy” injection.  The 

behavior that has the most activation energy will 

win control of the desired actuator.  Although 

similar, ABBRA does not use inter-behavior 

communication to promote activation for a certain 

behavior.  Instead, ABBRA uses the environment 

to determine which behavior is most relevant to 

run.  This follows the standard behavior-based 

paradigm where data from the environment 

provides the needed state information [12].  

Existing behavior-based approaches to dealing 

with conflicting goals use statically prioritized 

behaviors [10] or use inhibition signals between 

behaviors [13].  Instead of prioritizing behaviors 

ABBRA allows them to compete and dynamically 

change their priority. 

Another method of action selection has 

been proposed using neural networks [14].  This 

method proposes that motor and feature codes 

will promote different tasks and one tasks will be 

stronger than the rests.  This method is useful for 

lower level motor controls, determining a motor 

function based on outside stimuli, while ABBRA 

deals with determining what generic tasks to run.  

Another underlying issue is the association 

between code and tasks must be known in 

advance, while in ABBRA the decision is made 

dynamically.  Finally, the neural network must be 

trained, therefore, tasks outside of the scope will 

require re-training.  This algorithm was simulated 

with a relatively simple scenario, which cannot 

handle all of the constraints and dynamic 

conditions that are possible using ABBRA.  

Another paper used a weighted ontology to detect 

false positives by extending the graph 

functionality to allow for new nodes [15].  While 

the results demonstrated an impressive resistance 

to false positives and negatives, the system was 

limited to locating objects based on the locality 

principle.  This system was able to introduce more 

behaviors dynamically, but they were used as sub-

goals to a primary goal.  In addition, no other 

constraints were taken into account and the testing 

scenario had only one goal.  Although this 

algorithm could be expanded, it does not provide 

the same functionality as ABBRA. 

 

2.2 Market-Based Systems 

Market-based approaches have been used to solve 

distributed problems [16].  This approach works 



well for multi-agent robotic systems and was 

successfully used for task allocation across 

multiple robots [17-26].  However, these methods 

solve a different problem than proposed in this 

paper. First, multiple-agents involve multiple 

robots competing for a task, while ABBRA needs 

to handle multiple behaviors competing for 

control over actuators or other resources on a 

single robot.  In other words, the prize for a multi-

agent auction is a task, where as the task bids in 

ABBRA.  Even if you defined each agent in a 

multi-agent system as an actuator, the problem is 

still different.  In multi-agent systems, you would 

have actuators bidding for a chance to perform a 

task, where in ABBRA the task is bidding for 

control of the actuator.   

 Second, multiple-agents typically bid for 

tasks whenever they become available or when an 

agent has completed a task.  Mapping multi-

agents problems will usually bid more frequently 

but this is because they usually for re-

synchronizing the map and to determine the next 

area to explore.  However, often these algorithms 

will not interrupt the tasks once it has started [27].  

In contrast, ABBRA continuously bids and can 

interrupt any task if a different task wins the 

auction.   

 Third, multi-agent systems will sometimes 

monitor the robot who won the tasks to ensure 

that it is performing well [19].  In ABBRA, if a 

task does not perform well in another task will 

out-bid it on the next cycle in a process that is 

performed automatically by the system.  

 Fourth, multi-agent systems deal with 

teamwork problems and ensuring robots are 

working together [28] [20].  ABBRA allows 

behaviors on different resources to work together 

without explicitly defining their roles. 

 Because of these differences, the problem 

solved by ABBRA and the domain of multi-agent 

systems are substantially different.  The research 

closest to our approach is presented in the work 

by M. K. Sahota [29].  This work allows each task 

to bid for control of an actuator, however, it does 

not deal with time or dynamic addition of tasks.  

The architecture is composed of two parts: 

Executer and Deliberator, similar to hybrid robot 

control.  The Deliberator uses environmental 

context and urgency to determine which bid wins.  

Then the deliberator then assigns a winner and 

provides a weighted solution to schema actions in 

the Executer layer. ABBRA uses environmental 

data and the auction mechanism to perform task 

arbitration, instead of a deliberative component.    

In ABBRA, urgency is incorporated as a time 

constraint that allows the behaviors to bid for full 

control of the actuator.   

2.3 Job Scheduling 

Job shop (JSSP) and flow shop (FSSP) scheduling 

problems take a set of tasks and attempt to 

maximize the throughput of the tasks.  This 



problem is very similar to that which is solved by 

ABBRA.  Both problems deal with limited 

resources and unknown arrival of jobs that require 

completion within certain constraints.  However, 

there are differences between the two problems.  

For example, JSSP and FSSP do not deal with 

resource conflict and goal degradation.  JSSP and 

FSSP can manage jobs across multiple resources 

[30], however, the majority of approaches assume 

the job cannot be interrupted once it begins.  JSSP 

and FSSP can break jobs down into smaller 

operations to streamline the tasks [31], but these 

smaller operations cannot be interrupted once they 

begin running.  These problem sets deal with jobs 

that simply arrive and need processing.  Except 

for the time lost, there are no detrimental effects 

of a job waiting in JSSP and FSSP.  In contrasts, 

ABBRA is capable of stopping any task and 

allowing another task to take control if necessary.  

This is because in robotics if the environment 

changes, it may be possible to miss a valid 

opportunity or worse do potential harm if the 

appropriate behavior cannot take control of the 

necessary resource.    

Goal degradation occurs where performing one 

task will undo another task.  JSSP and FSSP do 

not encounter this problem because their tasks are 

independent from each other [32].  Therefore, 

switching between tasks will not detract from the 

task previously executed.  For example, research 

in optimizing scheduling for E-Commerce servers 

[33] switches to a different task of higher priority 

whenever it is required.  However, just because a 

server switches to a different process does not 

mean the previous process is undone.  This 

assumption that tasks do not degrade each other is 

the largest difference between any shop-

scheduling algorithm and the robotic domain. In 

the literature found, none addressed any potential 

conflict by switching goals.  In contrast, a robot 

must be able to finish a goal unless a condition 

changes making another goal more relevant.  

Therefore, the users are expecting the robot to 

converge onto a single task and finish it in a 

timely manner. 

JSSP and FSSP do not handle time estimation for 

task completion.  The majority of the methods 

reviewed expected time as a parameter for the 

simulation and do not estimate completion time 

themselves [32, 34-38].  This assumption is valid 

since it would be difficult to determine 

completion time for computational tasks, 

especially if it required human interaction.  In one 

approach, the scheduler used an approximate 

completion time, allowing it to handle times that 

were not exact.  However, the approach itself was 

not estimating the completion time [39].  This is 

in direct contrast with ABBRA, which can 

estimate completion time for tasks whose 

objectives are at a known location. 

There are many different approaches to job-shop 

scheduling, either by using static priorities [33] or 



resembling the subsumption architecture [10].  

Once again, the use of static priority prohibits the 

robot from taking advantage of opportunities 

found in the environment.  Another method used 

the product based-approach [30], which required 

the entire product to be planned out ahead of time 

and is thus not applicable to the field of service 

robots.  The concept of multi-agents was also 

applied to schedulers [40], but these methods 

solve problems closer to multiple-agent research 

than those of service robots.  Lastly, other 

methods dealt with finding the cost of scheduling 

and trying to make it more efficient [41, 42] but 

they did not deal with conflicting goals or the 

estimation of time.   

As discussed in Section 3.3, the scheduling 

problem that needs to be solved in the context of 

service robots is closest to the problem of 

scheduling with release times and deadlines, 

which is NP-Complete. ABBRA provides a 

greedy approximation solution that schedules, at 

every time step, the behavior most relevant to run 

as given by a combination of metrics extracted 

from the environment. These metrics and the 

auction mechanism are described in detail in 

Section 3.4. 

  

3 Description of the 
Architecture 

This section provides a detailed description of 

ABBRA, going through the three main phases of 

the architecture’s development.  This section also 

provides a formal definition for the problem 

solved by ABBRA, along with a detailed look at 

the auction cycle process and activation level 

calculations for individual behaviors.  

3.1	   Three	  Phases	  of	  Development	  for	  

ABBRA	  
ABBRA was developed in three phases.  

The first phase was a proof of concept to 

demonstrate that behaviors bidding for control of 

the actuators can resolve conflicting goals and 

that a robot could achieve a set of requested goals 

using an auction mechanism as a behavior 

arbitrator [43, 44].  In this phase tasks with 

complex goals are structured as a composition of 

potentially multiple behaviors that achieve the 

overall goals.  The different behaviors compete 

for control of the robot’s actuators.  Multiple 

behaviors with conflicting goals are allowed to 

compete for the same actuator, thus demonstrating 

there would be no goal oscillation if multiple 

behaviors were active. This phase of the research 

also demonstrated dynamic re-prioritization of 

behaviors.  For example, if the robot discovers 

that it can complete one of its assigned tasks 



(which was not the one currently pursued), the 

architecture automatically adjusts the priority of 

the behaviors in order to complete the new task. 

This enables the robot to takes advantage of 

opportunities that arise in order to complete all its 

tasks.  Phase one also showed that multiple 

behaviors could be run simultaneously if they did 

not require the same actuator. The third test also 

demonstrated the ability to assign a time 

constraint on one (only one at this stage) 

behavior, giving it priority over other behaviors.  

The second phase of research enhanced 

the architecture with new capabilities.  In this 

research phase the behavior bidding system was 

improved to allow for multiple tasks to be 

requested with temporal constraints (deadlines). 

In this version, the timer system relied on 

architectural cycles in order to track time.  

Therefore, the architecture used the temporal 

metric of “How long until behavior must start” in 

order to enforce time constraints.  This phase of 

research also introduced the ability for dynamic 

addition of new task requests (and of the tasks’s 

corresponding behaviors) during runtime.  

ABBRA handled the newly added behaviors 

without any noticeable delay and respected all of 

the constraints put on a new behavior on the next 

auction cycle.  These improvements allowed for 

the testing of several complex scenarios, which 

had not been possible before. 

In the third phase, the improvements to the 

architecture consisted of introducing mapping and 

localization and a real-time clock to enforce the 

temporal constraints [45].  ABBRA was also 

successfully validated on a Segway Robotic 

Mobile Platform (RMP).  The motivation behind 

adding mapping was to allow the robot to take a 

more efficient path to goals that had known 

locations.  The use of mapping enabled the robot 

to determine actual distance to its goals, which 

could now estimate how long a behavior would 

take to finish and thus to reach the goal. The 

second improvement in this phase was the 

incorporation of a real-time clock to enforce time 

constraints.  These ensured temporal constraints 

were upheld and made it easier for the user to 

specify the time constraint.  With these two 

modifications, the architecture was successfully 

implemented on a Segway Robotic Mobile 

Platform (RMP) and ran in a dynamic 

environment. 

3.2	   Architectural	  Structure	  

ABBRA is based on three main 

components: goals, behaviors and mutexes.  A 

goal represents a task, or subtask, assigned to the 

robot by a user.  When a task is assigned to the 

robot a goal object that represents the task is 

created.  This goal object will spawn one or more 

corresponding behavior(s) in order to complete its 

objective.  Behaviors are the functional modules 

that compete and send commands to the robot’s 



actuators.  Goal objects may also choose between 

different behaviors in the situation where there is 

more than one way to complete the tasks.  These 

newly spawned behaviors may have pre-requisites 

that are introduced as new goals for the system.  

These goal/behavior can be linked together by 

pre-requisites in order to form behavior chains 

that are capable of more performing complex 

tasks.  The behaviors gather data from the sensors 

and derive a set of metrics that represents how 

important it is for them to run.  Each behavior will 

bid through a mutex for control of the specific 

actuator it needs by sending the set of metrics it 

gathered.  In the case of the behavior-chains these 

behaviors will not start bidding until all their pre-

requisite goals are achieved.  Therefore, the last 

added behavior on this set or chain would remain 

running until it completed its goal.  Once this 

occurred, the next behavior can start running.  

This process would repeat until the first behavior 

had been completed, hence finishing the desired 

goal that represents the desired task.  It is also 

important to note that the entire state of these 

behavior chains are represented through the 

environment [12].  The goal objects will notify 

the corresponding behavior or behaviors it 

spawned that it is no longer necessary to run upon 

completion of its objective.   

 A mutex is an object that acts as an 

auction house for a specific resource on the robot 

and enforces mutual exclusion of the behaviors on 

that particular resource.  The mutex will collect 

bids from each behavior that bids for it and then 

assign a winner, which gains control of the 

actuator for that round (Figure 1). In the event that 

a behavior requires more than one actuator, an 

abstract behavior is used.  Abstract behaviors [46] 

are behaviors who perform no direct actions but 

simply control other behaviors, as described 

below.  Abstract behaviors do not control an 

actuator therefore do not have to bid for control.  

The tasks that require more than one actuator are 

represented by an abstract behavior with two or 

more child goal-behavior pairs that use separate 

actuators.  None of the abstract behavior’s 

children competes against each other and all run 

simultaneously.  When all child behaviors reach 

their goal states, the goal of the abstract behavior 

will be complete, thus completing the tasks.  This 

mechanism allows the architecture to avoid the 

multiple-prize-auction problem where the 

architecture needs to compare a behavior trying to 

get multiple actuators to a behavior that only 

needs one.  An example of such a task is the   

“center camera and robot on green object” task 

used an abstract behavior to control two child 

behaviors that separately.  One child behavior 

would center the camera on the green object while 

the other child behavior centered robot.  Abstract 

behaviors are also used to fuse outputs of 

behaviors together - in this case the abstract 

behavior will bid for control a single actuator.  



After the abstract behavior has won control, it will 

invoke a set of behaviors and fuse their outputs 

into a single command, which is then sent to the 

actuator.  In this scenario, the child behaviors do 

not have goal object they are simply modules that 

can be called when necessary.   

 
Figure 1: High-level diagram of ABBRA 

3.3	   Formal	  Description	  of	  the	  Action	  

Selection	  Problem	  
 This section provides a formal description 

of the scheduling problem solved by ABBRA’s 

auction system. Given the following: 

, 

 a set of N resources available on the robot, 

 

  
a set of M behaviors available to the robot, 

  a set of time constraints for each behavior (could 

be empty), the main objective of the architecture 

is to determine which behavior(s) to run at each 

time step in order to service all the requests 

efficiently (that is without missing any deadlines 

or minimizing the lateness for all the tasks). The 

resources are actuators on the robot such as the 

wheel motors, gripper, or swivel camera.  

 In the service robot domain the times 

when new requests are coming are not known 

from the beginning as users may come in with 

new requests at any time. Assuming that the times 

for the requests would be known in advance, and 

assuming that the robot has only one resource 

available, the problem of scheduling the tasks in 

order to minimize the lateness is an instance of 

scheduling with release times and deadlines which 

is NP-Complete. Given that for the service robot 

scheduling problem the request times are 

unknown and that there is more than one resource 

available, it follows that an approximation 

algorithm is needed to solve this optimization 

problem. ABBRA solves this scheduling problem 

as follows. Given the following sets: 

 
}, it is 

true that the behavior sets are mutually exclusive 

between resources (Equation 1) 

 
(1) 

 

At any time behaviors can be introduced or 

deleted in the system, as a new request can come 



in from a user.  Therefore, the following two 

components need to be considered: 
 

 

 
With these two components, the change in the 

behavior sets for a resource Rj, at time t is 

modeled as follows: 

  

where  j  =  1…  N 

 

(2) 

 Each behavior has a set of metrics that 

apply to it.  Some can be spatial, such the distance 

to the objective, some can be temporal, such as 

the time remaining before the behavior must 

complete, and finally some may be state based 

such as the content of the robotic gripper.  We 

denote the set of all metrics as: 

   

 

The values of the individual metrics can change 

over time, which is one reason conventional 

scheduling does not work for this problem. This is 

due to the fact that an inactive behavior may have 

the value of its metrics changed if another 

behavior runs first, as the other behavior may 

have altered the state of the robot in the 

environment (e.g., moving toward a goal in one 

direction would increase the distance to another 

goal, which is in the opposite direction).  We 

consider Value(mBi, t, mq) the value of the q-th 

metric for behavior Bi at time t and Delta(mBi, t, 

mq) the change in the value of the q-th metric for 

behavior Bi at time t.  Thus: 

 

 

At this point the problem is choosing, for each 

resource Rj, at time t, the behavior BSRj for which 

the aggregate of the metric values are minimized.  

In other words, the architecture chooses to run the 

behavior with the most critical measurements 

from the environment (Equation 3).  

 

                 
 (3) 

The set of behaviors chosen to run for all 

resources at time t is: 

 
 (4) 

3.4	   Calculating	  the	  Activation	  Level	  

 The value that behaviors use to bid for 

control of the actuators is the activation level.  

This value represents the importance of the 

specific behavior to run at a particular time.  In 

order to derive its activation level each active 

behavior will use a certain set of metrics.  These 



metrics could be spatial distance, temporal 

constraints, or state variables.  Once the behavior 

has calculated the values for its metrics, it will bid 

for control of the actuator by sending these values 

to the specific resource mutex. The mutex then 

determines the maximum value for each metric 

type from the information received from all the 

behaviors bidding for it.  ABBRA is a single stage 

auction where the mutex takes the metric values 

given to it by the competing behaviors and 

calculates an activation level for each.  The 

behavior with the highest activation level is 

awarded control of the actuator for that round.  

The activation level of a particular behavior (B) is 

the sum of all metric contributions divided by the 

total number of metrics used by the particular 

behavior (See Equation 5). 

   

(5) 

 where ALB is the activation level for behavior B 

and CMi is the contribution to the activation level 

for metric Mi.  

 Each one of the contributions CMi 

represents the influence of a specific measurement 

(or metric) from the environment or the imposed 

time constraints.  There are two methods of 

calculating an activation level contribution: one 

for non-temporal and one for temporal 

constraints. Some examples of metrics are: 

distance to goal (both Euclidean and actual 

distance), time remaining before the goal must be 

complete, starting time for the current behavior, 

change in the direction of the robot, blob size, and 

direction the camera is facing. The contribution 

for non-temporal measurements uses a fitness 

function that takes the ratio of the specific 

behaviors metric value to the maximum value of 

that metric type.  If smaller values are more 

desirable, such as in spatial distance, then the 

whole ratio is subtracted from 1 (Equation 6).  

The contributions for metric Bi ( )( BimCTAL ) is 

calculated as follows: 

 

(6) 

where || Bim is the value of metrics for behavior 

Bi and is calculated by the behavior or taken from 

the environment. || BimMax is the maximum over 

all the values for metric Bim  submitted by the 

behaviors to the mutex and is calculated by the 

mutex itself. To compute the contribution to a 

behavior’s activation level for temporal 

constraints, the time constraint provided by the 

user is used.  Based on mapping and localization 

data ABBRA can estimate how long it should take 

the robot to reach a goal.  The temporal fitness 

function is calculated as follows (Equation 7): 



 

(7) 

where TCB is the time constraint for current 

behavior (deadline by which the behavior should 

end), TSys is the current time of the system clock, 

TLeftB is the estimated time it will take behavior B 

to reach the goal based on true distance, LatestTC  

is the longest existing time constraint and 

EarliestST is the earliest starting time for any 

unfinished behavior that has a time constraint. 

 The reason two methods were necessary is 

that the effect of time on the activation level is not 

linear.   Experimentally it was observed that the 

desired influence of time on the activation level 

should be minimal until roughly 20% of the 

remaining time is left, after which the time 

constraint should begin influencing the activation 

level at a much more substantial rate.  For 

example, if the robot has two behaviors, where 

one takes five minutes to complete and the other 

takes ten minutes, and both must be finished in an 

hour, the time constraint should have almost no 

influence as to which goal wins the auction.  

However, if the behavior that is finished in 5 

minutes has a time constraint of ten minutes, then 

it should be substantially more important than the 

behavior with an hour time constraint.  Because of 

this, a non-linear exponential decay curve was 

used to model the influence the time constraint 

had on the activation level.  

  

4 Experimental Results 

This section presents the experimental validation 

for the three stages of development of ABBRA.  

The first stage tested the architecture’s basic 

capabilities: (1) allowing multiple behaviors to 

function in unison, (2) resolving conflicting 

behaviors with conflicting goals and a (3) basic 

mechanism to allow a time constraint to influence 

the outcome.  The testing on this stage was 

performed in the Player/Stage simulation 

environment [47].  The second stage incorporated 

the addition of new goals during runtime and 

allowed every goal to have temporal influence.  

The testing for this stage was also performed in 

Player/Stage.  However, these tests were 

composed of multiple goals, whose objective’s 

locations were known and unknown, with varying 

time constraints making for more complex 

scenarios than in the previous phase.  The final 

stage of testing incorporated mapping 

functionality into ABBRA.  This allowed the 

behaviors to know the true distance to any known 

location, which also allowed for the estimation of 

the task’s completion time.  The third stage of 

testing used a real time clock instead of counting 

the number of auction cycles as a means to 

enforce time constraints.  The third phase was 



integrated with the Robotic Operating System 

(ROS) and the tests were performed on the 

Segway Robotic Mobile Platform (RMP). 

4.1 Validation of Phase 1 

The first phase of validation used the Stage 

robotic simulator to simulate a robot with three 

actuators: a pivoting camera, a 2D gripper and the 

robot’s differential drive.  Although in tests, the 

gripper was never used, both the pivot camera and 

the robot were used in unison.  The robot is 

equipped with a behavior set that allows it to 

reach locations indicated by known (x,y) position 

information and different colored markers (blue, 

red) and to center or align the robot on a colored 

marker (green). The robot also has a safe avoid 

that kicks in when an obstacle is detected, steering 

the robot around the obstacle.  At this point in 

time mapping was not used. The center camera 

behavior is represented as an abstract behavior as 

described in Section 3.2 with two sub-behaviors: 

one that centers the robot on a green object, and 

one that centers the camera.   

In phase one of the architecture, three 

experimental evaluations were performed to 

demonstrate the feasibility of using the auction 

mechanism for action selection.  We also ran 

preliminary tests to see if goal oscillation, 

degradation or emergent behavior would occur.  

Because of the imperfect control of the robot, it 

would always successfully converge onto a goal.   

Test 1.1: in this experiment the robot was 

requested to visit a red and blue goal with known 

locations.  There were no other constraints or 

goals so the robot visited the blue goal first 

because it was closer (Figure 2).  Since the robot 

had no knowledge about the environment, it had 

to wander around the obstacle and use a best 

guess exploration to reach the goal.  After 

reaching the blue goal, the robot then moves 

towards the red goal. 

 

Figure 1:  Robot trajectory during Test 1.1 

Figure 3, details the graph of the winning 
behaviors versus time.  Although a small 
oscillation occurred between the goals at time 3, 
the robot does converge onto finishing the blue 
goal first, and then the red goal. 

 



 

Figure 2: The winners of the auction over time for Test 1.1 

 

Test 1.2: This experiment demonstrates the ability 

of the auction system to handle requests with time 

constraints.  Similar to the last test the robot had 

to visit two goals, red and blue, with the 

difference that this time the red goal has a critical 

time constraint (i.e. it needs to be completed by a 

certain deadline).  Given that the robot does not 

have a map of the environment in this phase, it 

cannot estimate the time it would take it to reach 

the red goal.  At this phase of the research, the 

robot based the time constraint on the Euclidean 

distance, this changed in the third phase when 

mapping was introduced. During the experiment 

the robot heads directly to the red goal, avoiding 

the wall on the right, visits the red goal and then 

moves toward the blue goal (Figure 4). 

 

Figure 3: Robot trajectory for Test 1.2 (time constraint on 

the red goal). 

Figure 5 shows the plot of winning 

behaviors over time.  The observed oscillation 

comes from too much emphasis being placed on 

spatial metrics because redundant forms of the 

same spatial metric were used by each behavior.  

For example, the Euclidean distance was used, as 

well as the difference in the X and Y axes. This 

was modified in the second phase of development 

to correct the problem so the auction mechanism 

would only consider the distance to goal as a 

single metric.   



 

Figure 4: The winners of the auction over time for Test 1.2. 

 

Test 1.3: This experiment demonstrates the 

robot’s ability to act opportunistically if situations 

arise in the environment (such as detecting a 

target whose location was unknown).  In this test 

the robot is required to visit the blue and red 

targets (which had known coordinates) and then 

to center itself on a green target, whose location 

was unknown. While going toward the known 

location targets, after the robot turns around the 

corner of the first wall it detects the green object.  

This is an opportunity for the robot to fulfill its 

center task while on the way to the other targets: 

the auction mechanism takes advantage of this 

dynamically allowing the robot to finish this task 

before continuing to the blue and red goals 

(Figure 6).  Since the time constraint component 

was not used in this test therefore, the robot visits 

the blue goal first (because it is closer) and then 

the red goal.   

 

Figure 5: Robot trajectory for Test 1.3. 

 

The oscillation observed in Figure 7 is due 

to the wander behavior, which activated whenever 

the robot came within a certain distance of a wall.  

At the point where the green object was detected 

the robot stopped what it was doing and finished 

that behavior.  The rest of the oscillation was due 

to the over-emphasis placed on the spatial metrics.  

However, the robot still behaved as expected by 

finishing the green goal first, then blue, and 

finally red.   

 

Figure 6:  The winners of the auction over time for Test 1.3. 



4.2 Validation of Phase 2 

The second phase of ABBRA’s 

development focused on adding the following 

main capabilities:  (1) a more robust time 

constraint system and (2) the ability to handle the 

addition of new goals dynamically at runtime.  

Six tests were performed with this phase of 

research.  These test scenarios included the 

following tasks: visiting of 5 goal targets with 

known (x,y) locations (Figure 8) and centering on 

the green target, which will be referred to as green 

goal.  The green goal’s location was unknown by 

the robot. 

Test 2.1: This is a basic control test where the 

robot had to execute all the tasks mentioned above 

(visit the 5 goal targets and center on the green 

target). In this test no time constraints were used 

nor was any goal dynamically added during 

runtime.  As shown in Figure 8, the robot visits 

the goal with the shortest distance first until it 

discovers the green goal in which it will 

dynamically reprioritizes.  Then it finishes the 

remaining goals.  The goals were met in the 

following order: 4, 2, green, 1, 3 and 5. 

 

 

Figure 7: Path taken by control test for Test 2.1. 

 

Figure 9 details the winning behaviors 

over time.  The robot simply follows the shortest 

goal first until it detects the green object and then 

proceeds with the rest of them. 

 

Figure 8: The winners of the auction over time for Test 2.1. 

 

Test 2.2: In the second test two goals were 

requested with critical time constraints.  Both 

goals 1 and 5 have a critical time requirement 

remaining before they had to start.  The robot 

would immediately choose the closer of the two, 

goal 5, and finish it.  It would then move directly 



to goal 1 and finish it.  After it finished goal 1 it 

then finishes the green goal next to it, therefore, 

proving that the time constraint outweighed the 

opportunity presented by the discovery of the 

green target, which was very close to the robot.  

The robot thus passes by the green target while 

moving toward goal 5, meaning that the green 

goal was not as important as a time critical goal 

(Figure 10).  The order in which the goals were 

completed is as follows: 5, 1, green, 2, 4, 3. 

 

Figure 9: Robot trajectory for Test 2.2 (goals 1 and 5 have a 

critical time constraint). 

Figure 11 shows the winning behaviors 

over time, indicating that goals 1 and 5 finished 

first.  Notice that the oscillation exhibited from 

the previous stage is no longer present because in 

this phase only one form of the distance to goal is 

used (Euclidean distance) 

 

 

Figure 10: The winners of the auction over time for Test 2.2 

(goals 1 and 5 have critical time constraints.) 

Test 2.3: This experiment tested the performance 

of the system in situations when a critical time 

constraint is given to tasks whose objectives’ 

location in the environment was unknown (center 

on green target).  In this case, instead of going to 

the goal that had the shortest distance, the robot 

began wandering around trying to locate the green 

object (Figure 12).  The robot passes by goal 3, 

however this was purely a coincidence because 

the robot was wandering looking for a green 

object.  After the robot locates the green object, it 

resumes going to the goal whose objective is the 

shortest distance.  The goals were finished in the 

following order: 3 (due to wandering), green, 5, 4, 

2, 1. 



 

Figure 11: Robot trajectory for Test 2.3 (goal with unknown 

location has a critical time constraint). 

After plotting the winning behaviors 

versus time it is possible to see that center on 

green object remained the only active goal to be 

completed (Figure 13).  Goal 3 was completed un-

intentionally because the wandering behavior took 

the robot in the proximity of the goal (the 

corresponding behavior never won an auction 

cycle.)   

 

Figure 12: The winners of the auction over time for Test 2.3 

(goal with an unknown location has a critical time 

constraint.) 

Test 2.4: This test validates the ability to handle 

task requests given at run time. In particular, in 

this scenario the green goal is requested, with a 

time constraint, right after goal 2 is accomplished. 

Thus, the new task takes precedence over other 

goals when it is created.  The path of the robot 

looks very similar to the control run (Figure 14).  

However, the green goal was not introduced until 

after goal two finished (Figure 15).  The goals 

were finished in the following order: 4, 2 green, 1, 

3, 5. 

 

Figure 13: Robot trajectory for Test 2.4 (goal with unknown 

location is added at runtime with a critical time constraint.) 

 

 

Figure 14: Winning behaviors over time for Test 2.4 (goal 

with unknown location is added at runtime with a critical 

time constraint.) 



Test 2.5: This experiment is similar to test 2.4, 

except that a goal with a known location for its 

objective (goal 5) is dynamically added with a 

critical time constraint after goal 2 finishes.  Once 

this goal is created, it will take control and move 

toward goal 5 because of the time constraint.  This 

test demonstrates that it is possible for ABBRA to 

add a goal whose objective has a known location 

dynamically during run time (Figure 16).  The 

goals were finished in the following order: 4, 2, 5, 

3, 1, green. 

 

Figure 15: Robot trajectory for Test 2.5 (goal with a known 

location is added during runtime with a critical time 

constraint.) 

Figure 17 plots the winning behaviors 

versus time and demonstrates that behavior 5 

immediately takes control from behavior 1 when 

added.  This behavior was automatically 

introduced into the system after goal 2 has been 

met. 

 

Figure 16: Winning behaviors over time for Test 2.5 (goal 

with a known location is added during runtime with a 

critical time constraint.) 

Test 2.6: This experiment was similar to test 2.5 

(dynamically adding goal 5 after goal 2 was 

reached), however this time no time constraint 

was given to goal 5.  This in resulted in a run that 

looked exactly like the control test, where the 

robot would simply visit the shortest goal first 

because the architecture had no reason to react 

when goal 5 was added (Figure 17).  The goals 

were finished in the following order: 4, 2, green, 

1, 3, 5. 

 

Figure 17: Robot trajectory for Test 2.6 (goal with a known 

location is added during runtime and has no time 

constraint.) 



Likewise graphing the winning behaviors 

against time shows the same results even though 

goal five is added after goal 2 is reached (Figure 

19). 

 

Figure 18: Winning behaviors over time for Test 2.6 (goal 

with a known location is added during runtime and has no 

time constraint.) 

4.3 Validation of Phase 3 

The third phase of development added the 

following capabilities: 1) modified the timer 

system to use a real-time clock (this allowed the 

user to enter time constraints in terms of hours, 

minutes, seconds) and 2) introduced mapping and 

localization capabilities (allowing the behaviors to 

predict whether they could meet certain time 

constraints.)  For this phase ABBRA was 

validated on a Segway Robotic Mobile Platform 

(RMP), using Willow Garage’s robotic operating 

system (ROS)[48].  These tests were performed in 

the halls of the Computer Science and 

Engineering building at the University of Nevada, 

Reno.   

 

Figure 19: Segway Robotic Mobile Platform (RMP) 

The five different testing scenarios for this 

phase used three goals with known locations, 

represented by yellow, orange, and red targets.  

Goal 4, or green goal, was used once again to 

demonstrate the center on green behavior.   

Test 3.1: The first test performed on the third 

phase was a basic control test, in which the robot 

had to visit three goals whose objectives had 

known locations and also find the green object.  

With no time constraints, the robot would simply 

visit the goal with the shortest distance first and 

only interrupting the active goal to take advantage 

of discovering the green goal (Figure 21).  

Likewise, the graph showing the winning 

behaviors over time demonstrate a clear 

convergence onto the desired goals (Figure 22).  

The goals were finished in the following order: 1, 

green, 2, 3. 



 

Figure 20: Physical robot trajectory for Test 3.1. 

 

Figure 21: Winning behaviors over time for Test 3.1. 

Test 3.2: This experiment tested a scenario in 

which goal 2, which has a time constraint, could 

not be accomplished in time.  The architecture 

estimates the amount of time necessary to reach 

the goal based on the distance from the map and 

determined that it could not meet the temporal 

constraint.  In this scenario the robot simply drops 

the goal and considers it missed.  This is to 

demonstrate a different approach as compared to 

the previous phases of the architecture, where if a 

goal missed its time constraint it would get higher 

priority. Both approaches are thus feasible to be 

used, the choice depending only on the 

preferences of designer for a particular domain. In 

this experiment the robot visits the closest goals 

first, taking time to finish the green goal but 

without going to goal 2 (Figure 23). Figure 24 

shows an oscillation when the robot is going 

toward the green goal, which is due to noise on 

the color blob tracker, but the architecture 

gracefully handles the noise in the sensory data, 

accomplishing the requested tasks. The goals 

were finished in the following order: 1, green, 3. 

 

Figure 22: Robot trajectory for Test 3.2 (goal 2 cannot meet 

its time constraint.) 



 

Figure 23: Winning behaviors over time for Test 3.2 (goal 2 

cannot meet its time constraint.) 

Test 3.3: This experiment demonstrates that the 

architecture can handle scenarios where attainable 

time constraints are given; the goal with the time 

constraint is completed before any other goal with 

lesser or no time constraint.  In this scenario goal 

2 is given a time constraint that can be achieved 

therefore the robot goes to that goal first.  After 

this goal is finished, it will simply find the closest 

goal to finish next (Figure 25).  Note that the 

green goal is completed after goal 2 is reached 

(Figure 26).  The goals were finished in the 

following order: 2, 3, green, 1. 

 

Figure 24: Robot trajectory for Test 3.3 (feasible time 

constraints.) 

 

 

Figure 25: The winning behaviors over time for Test 3.3 

(feasible time constraints.) 

Test 3.4: This experiments demonstrates that the 

architecture can handle the addition of new task 

requests dynamically at runtime. Goal 1 is added 

after four minutes of the program running.  For 

this test, goal 1 had no time constraints therefore 



the robot would continue with the closer goals and 

deal with goal 1 last (Figure 27).  As shown in 

Figure 28, although the blob tracker caused 

oscillations, the auction mechanism handled the 

noise efficiently and enabled the robot to finish its 

tasks. The goals were finished in the following 

order: green, 2, 3, 1. 

 

Figure 26: Robot trajectory for Test 3.4 (new task requested 

at runtime without time constraint.) 

 

 

 

Figure 27: The winning behaviors over time for Test 3.4 

(new task requested at runtime without time constraint.) 

Test 3.5: This experiment is similar to Test 3.4, 

with the difference that the newly added task had 

a time constraint. Goal 1 is dynamically added at 

the four-minute marker with a critical time 

constraint.  The new task is requested shortly after 

the robot has finished the green goal. Due to the 

critical time constraint the robot switches to 

working on the new goal (Figure 29).  The graph 

of winning behaviors shows this as goal 1 

interrupts goal 2 when it is added (Figure 30).  

The goals were finished in the following order: 

green, 1, 2, 3. 



 

Figure 28: Robot trajectory for Test 3.5 (new task requested 

at runtime with time constraint.) 

 

Figure 29: Winning behaviors over time for Test 3.5 (new 

task requested at runtime with time constraint.) 

 

5 Discussion and Future 
Work 

ABBRA has demonstrated that it can 

handle many dynamic constraints in the real 

world environment.  However, the architecture 

has a few drawbacks. For example, if a user 

would like that the robot determines what it 

should do on its own (in the absence of specific 

user requests), a different module would have to 

be implemented to handle this situation.  Another, 

potential disadvantage is that in its current 

implementation ABBRA does not support 

learning.  The robot can only perform tasks that it 

already knows, but it should be possible to 

incorporate learning approaches that allow the 

robot to acquire new skills. Furthermore, ABBRA 

is not a cognitive architecture – while a robot can 

make decisions on what tasks to perform next in 

order to be efficient using ABBRA, additional 

extensions to the architecture would be needed in 

order to handle symbolic representations and 

reasoning. 

The next phase of research consists of 

integrating capabilities for Human Robotic 

Interaction (HRI) into ABBRA, thus adding 

another degree of complexity to the action 

selection mechanism.  This research will consist 

of two phases.  The first phase will develop 

capabilities that allow a human user to make task 

requests to the robot in an efficient and easy to 



use way.  Once challenge that needs to be address 

in this context is handling the situations in which 

the robot may not have time to interact with the 

human due to existing deadlines.  Another 

requirement of this phase is to create an interface 

that is modular and can be ported to different 

hardware.  Currently, mobile devices are 

becoming more wide-spread along with laptops 

and Tablet PCs, which makes these devices a 

more ideal HRI interface.  This phase of the tests 

will focus on human interaction with the robot 

directly, interacting through a PC and interacting 

through a mobile device.   

 The second phase of this research is 

expanding the HRI to multiple robotics.   This 

area research will focus on the ease of controlling 

multiple robots with the mechanisms as developed 

in the previous phase.  Once the interface is 

developed the last requirement would be creating 

a collaborative control system that allows humans 

and robots to work together [49-51].   

 

6 Conclusion 

This paper presents a control architecture 

(ABBRA) that allows a robot to handle multiple 

types of constraints and determines what order the 

robot should pursue its assigned tasks.  This is 

vital for service robot so they can function in 

dynamic environments and provide useful 

services to human users.  This paper 

experimentally shows that the auction mechanism 

provide robust action selection and allow the 

robot to consider multiple constraints of different 

types.  This paper also demonstrates that the 

auction method resolves tasks that have 

conflicting goals.  ABBRA adheres to time 

constraints and determines whether it is possible 

to achieve a task in time.  This architecture is also 

capable of handling tasks added dynamically 

during runtime without having to stop and re-plan 

or degrade the quality of the robot’s performance.  

This paper details the work done on ABBRA by 

presenting the results from the three different 

stages of testing, which include results from both 

simulation and in real dynamic environments.   

This paper presents a formal description of the 

scheduling problem solved by ABBRA and gives 

a detailed description of the solution.  The results 

support the use of auctions as a form of arbitration 

in real-world environments, yielding efficient and 

robust results that can handle many dynamic 

conditions that are challenging in real-world 

domains. 
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