
An Auction Behavior-Based Robotic Architecture for
Service Robotics
Bradford A. Towle Jr.
University of Nevada, Reno
Scrugham Engineering/Mines (SEM) 242
College of Engineering | University of Nevada,
Reno/0171, Reno, NV 89577-0171
Phone: (775) 784-6974
 Fax: (775) 784-1877
towle@cse.unr.edu

 Monica Nicolescu
University of Nevada, Reno
Scrugham Engineering/Mines (SEM) 242
College of Engineering | University of Nevada,
Reno/0171, Reno, NV 89577-0171
Phone: (775) 784-1687
 Fax: (775) 784-1877
monica@cse.unr.edu

Abstract – Service robots have the potential of improving

the quality of life and assist with people’s daily activities.

Such robots must be capable of operating over long periods

of time, performing multiple tasks, and scheduling them

appropriately for execution. In addition, service robots must

be capable of dealing with tasks whose goals may be in

conflict with each other and would need to determine,

dynamically, which task to pursue in such a case. Adding to

the complexity of the problem is the fact that some task

requests may have time constraints – deadlines by which the

task has to be completed. Given the dynamic nature of the

environment, the robots must make decisions on what tasks

to pursue in situations where there could be incomplete or

missing information. The robots should also be capable of

accepting requests for new tasks or services at run-time,

while possibly working on another task. In order to achieve

these requirements this paper presents the Auction Behavior

Based Robotic Architecture (ABBRA) that brings the

following contributions: i) it uses an auction mechanism to

determine the relevance of a task to run at any given time,

ii) it handles multiple user requests while dealing with

potentially critical time constraints and incomplete

information, iii) it enables long-term robot operation and iv)

it allows for dynamic assignment of new tasks. The

proposed system is validated on a physical robotic platform,

the Segway RMP® and in simulation.

Keywords Auction-based robotic architecture -

Intelligent action selection - Dynamic time and

environmental constraints- Behavior Based

Robotics

1 INTRODUCTION

Service robots can provide significant assistance

to people in their daily activities, reducing the

workload or serving as helpers for users needing

assistance with achieving certain goals. The

complexity of the environment in which service

robots would need to operate and the number of

issues that such robots have to overcome pose

significant challenges for the development of a

robot control architecture that can handle them

appropriately.

First, a service robot must be capable of operating

over long periods of time, in dynamic

environments, and be continuously prepared to

accept new task requests from users, even if the

robot is still in the process of working on another

task. Therefore, the robot’s control architecture

must be versatile enough to integrate new tasks at

runtime and also to handle the interruptions

caused by the new addition of the new tasks.

Second, the robot must be able to efficiently

schedule multiple task requests for execution.

This requires a task selection mechanism that can

choose what task is most appropriate to run at any

given time. This requirement is particularly

important when dealing with tasks whose goals

may be in conflict with each other. Such conflicts

may occur when two or more tasks require a

specific resource on the robot, in order to achieve

different goals. For example, a conflict will arise

if a task requires the robot to pick up an object

while another requires the robot to empty the

content of its gripper: the goals of the two tasks

are conflicting, as each task would undo the

progress of the other. A solution to this problem is

the use of a pre-defined, static priority [1] that

would select which task to run first. A

deliberative approach could resolve conflicting

goals, however it may not always be feasible in

dynamic environments [2]. In practice, it is hard

to decide what task should have precedence over

another or to use a deliberative system, especially

given that task requests are coming at run-time

and their order is not a priori known. An effective

solution to this problem would enable the robot to

dynamically decide what task to perform given

the current task workload and environmental

situation.

A third challenge for a service robot is that certain

tasks may need to be completed by given

deadlines, thus posing time-constraints that can

vary in length and importance. Some time-

constraints are critical to adhere to, while others

are simply preferential for the user. The robot

must also handle tasks for which there is unknown

or incomplete information. This reinforces the

need for determining the relevance of each task

dynamically and would allow the robot to adapt

and switch tasks if necessary should new

information be discovered in the environment.

Finally, service robots must be capable of

functioning autonomously in dynamic

environments. Any changes in the world could

impact a robot’s current plan of performing its

tasks. Thus, the robot must be capable of

adapting to the new situations and be able to

change its task execution plan, if necessary.

In order to address the above challenges, this

paper presents the Auction Behavior Based

Robotic Architecture (ABBRA), which introduces

the following contributions: first, the architecture

uses an auction mechanism to select which task to

run at any given time. In this system, each task

uses environmental data to determine its relevance

to run at that time and uses this relevance to

compete for control of an actuator on the robot in

order to achieve its goal. The auction mechanism

allows the winning task control of the specific

robotic resource preventing multiple tasks from

attempting to access it at once.

Second, the architecture handles multiple user

requests while dealing with potentially critical

time constraints of the tasks and incomplete

information. Using the auction mechanism for

task selection, ABBRA resolves conflicting goals

without statically setting the priorities for tasks or

by prohibiting two tasks with conflicting goal

from being active at the same time. Whenever

such a case may occur, the fact that a tasks’

relevance is based on environmental data, will

enable the robot to selecting on a single one of

these goals. As a goal state becomes closer to

fulfillment, the more relevant the corresponding

task will be for the architecture to run and the

more likely it is that the task will win the auction,

thus, reducing oscillations between different

tasks.

Third, ABBRA enables a robot to dynamically

accept new task requests, at run-time, without the

need for any designer reconfiguration. Given that

an auction cycle is executed at each time step, a

newly added task begins participating in the

bidding as soon as it is requested, thus becoming a

part of the robot’s set of tasks to be done. The

architecture is based on the behavior-based

paradigm [1], which allows the robot to perform

efficiently in a real-world, dynamic environment

and to react appropriately to unforeseen changes.

This paper covers three stages of development of

the proposed architecture. The first two stages

were validated in a simulated environment, while

the third phase used a physical Segway RMP®

mobile robot.

The first stage demonstrates the basic auction

mechanism for task selection, the ability to handle

a task with time constraints, and the dynamic

rescheduling in changing environments, for

scenarios where all the tasks are requested from

the start. The second stage introduces the ability

to handle time constraints on multiple or all of a

robot’s tasks and the capability to dynamically

add new requests in the system at run-time. The

third stage incorporates two additional features: a

real-time clock and mapping and localization

capabilities, which allow for more accurate time

to completion estimation for the tasks, and thus

for a better task selection mechanism for the

robot.

The remainder of the paper is structured as

follows: Section 2 discusses related work,

Section 3 describes the details of the architecture,

Section 4 provides the results of the tests for each

phase, Section 5 presents directions for future

work and Section 6 gives a summary of the

presented approach.

2 Related Work

The architecture proposed in this paper is related

to three major areas of research: action selection,

market-based robotic systems and job scheduling.

This section describes related work in each of

these domains and discusses how ABBRA relates

to existing approaches.

2.1 Action Selection

The ability to select the most appropriate task to

perform at any given time is a critical component

of the architecture proposed in this paper. The

issue of action selection, or behavior coordination,

has been widely addressed in robotics, with two

major approaches being most commonly used:

behavior fusion and arbitration.

Fusion is a cooperative approach in which the

outputs of multiple behaviors are combined into a

single output that is sent as command to the robot.

Several methods have been proposed. A first

method of combining behavior outputs is using

voting [2, 3]. This mechanism allows the outputs

of behaviors to vote for what they determine to be

the best action. Action voting in [4] uses a neural

network architecture to vote on an action suitable

from perceived environment. Other methods of

fusion consist of fuzzy command fusion where

each behavior is synthesized by a rule-base based

approach [5]. This approach can be extended into

multi-valued logic [6] and a fuzzy voting system

such as Fuzzy DAMN [7]. Other main fusion

techniques include schemas where vectors will be

added in order to derive the direction the robot

should be moving [8].

Arbitration, also called winner-take-all, is

a competitive action selection approach, which

chooses a single behavior, from a set of multiple

behaviors, to send commands to the robot’s

actuators. ABBRA uses an auction-based

approach to determine the winning behavior and

allocate the robotic resources. Should the arbiter

only choose a behavior once the previous

behavior is finished a stable result can be

expected. However, ABBRA continually

processes bids regardless of whether the currently

running behavior has achieved its goal or not.

This causes a problem, when tasks have

conflicting goals because the arbiter must now

consider if interrupting a task will cause goal-

oscillation. Goal-oscillation occurs when the

robot switches between two or more task that

counteracts each other. When multiple

conflicting goals arise [9], the architecture must

prioritize [10] or select which behavior is most

applicable [11] for the current situation. Another

approach to arbitration is activation networks [9],

which solve the issue of conflicting goals by

allowing behaviors to promote other behaviors

through “activation energy” injection. The

behavior that has the most activation energy will

win control of the desired actuator. Although

similar, ABBRA does not use inter-behavior

communication to promote activation for a certain

behavior. Instead, ABBRA uses the environment

to determine which behavior is most relevant to

run. This follows the standard behavior-based

paradigm where data from the environment

provides the needed state information [12].

Existing behavior-based approaches to dealing

with conflicting goals use statically prioritized

behaviors [10] or use inhibition signals between

behaviors [13]. Instead of prioritizing behaviors

ABBRA allows them to compete and dynamically

change their priority.

Another method of action selection has

been proposed using neural networks [14]. This

method proposes that motor and feature codes

will promote different tasks and one tasks will be

stronger than the rests. This method is useful for

lower level motor controls, determining a motor

function based on outside stimuli, while ABBRA

deals with determining what generic tasks to run.

Another underlying issue is the association

between code and tasks must be known in

advance, while in ABBRA the decision is made

dynamically. Finally, the neural network must be

trained, therefore, tasks outside of the scope will

require re-training. This algorithm was simulated

with a relatively simple scenario, which cannot

handle all of the constraints and dynamic

conditions that are possible using ABBRA.

Another paper used a weighted ontology to detect

false positives by extending the graph

functionality to allow for new nodes [15]. While

the results demonstrated an impressive resistance

to false positives and negatives, the system was

limited to locating objects based on the locality

principle. This system was able to introduce more

behaviors dynamically, but they were used as sub-

goals to a primary goal. In addition, no other

constraints were taken into account and the testing

scenario had only one goal. Although this

algorithm could be expanded, it does not provide

the same functionality as ABBRA.

2.2 Market-Based Systems

Market-based approaches have been used to solve

distributed problems [16]. This approach works

well for multi-agent robotic systems and was

successfully used for task allocation across

multiple robots [17-26]. However, these methods

solve a different problem than proposed in this

paper. First, multiple-agents involve multiple

robots competing for a task, while ABBRA needs

to handle multiple behaviors competing for

control over actuators or other resources on a

single robot. In other words, the prize for a multi-

agent auction is a task, where as the task bids in

ABBRA. Even if you defined each agent in a

multi-agent system as an actuator, the problem is

still different. In multi-agent systems, you would

have actuators bidding for a chance to perform a

task, where in ABBRA the task is bidding for

control of the actuator.

 Second, multiple-agents typically bid for

tasks whenever they become available or when an

agent has completed a task. Mapping multi-

agents problems will usually bid more frequently

but this is because they usually for re-

synchronizing the map and to determine the next

area to explore. However, often these algorithms

will not interrupt the tasks once it has started [27].

In contrast, ABBRA continuously bids and can

interrupt any task if a different task wins the

auction.

 Third, multi-agent systems will sometimes

monitor the robot who won the tasks to ensure

that it is performing well [19]. In ABBRA, if a

task does not perform well in another task will

out-bid it on the next cycle in a process that is

performed automatically by the system.

 Fourth, multi-agent systems deal with

teamwork problems and ensuring robots are

working together [28] [20]. ABBRA allows

behaviors on different resources to work together

without explicitly defining their roles.

 Because of these differences, the problem

solved by ABBRA and the domain of multi-agent

systems are substantially different. The research

closest to our approach is presented in the work

by M. K. Sahota [29]. This work allows each task

to bid for control of an actuator, however, it does

not deal with time or dynamic addition of tasks.

The architecture is composed of two parts:

Executer and Deliberator, similar to hybrid robot

control. The Deliberator uses environmental

context and urgency to determine which bid wins.

Then the deliberator then assigns a winner and

provides a weighted solution to schema actions in

the Executer layer. ABBRA uses environmental

data and the auction mechanism to perform task

arbitration, instead of a deliberative component.

In ABBRA, urgency is incorporated as a time

constraint that allows the behaviors to bid for full

control of the actuator.

2.3 Job Scheduling

Job shop (JSSP) and flow shop (FSSP) scheduling

problems take a set of tasks and attempt to

maximize the throughput of the tasks. This

problem is very similar to that which is solved by

ABBRA. Both problems deal with limited

resources and unknown arrival of jobs that require

completion within certain constraints. However,

there are differences between the two problems.

For example, JSSP and FSSP do not deal with

resource conflict and goal degradation. JSSP and

FSSP can manage jobs across multiple resources

[30], however, the majority of approaches assume

the job cannot be interrupted once it begins. JSSP

and FSSP can break jobs down into smaller

operations to streamline the tasks [31], but these

smaller operations cannot be interrupted once they

begin running. These problem sets deal with jobs

that simply arrive and need processing. Except

for the time lost, there are no detrimental effects

of a job waiting in JSSP and FSSP. In contrasts,

ABBRA is capable of stopping any task and

allowing another task to take control if necessary.

This is because in robotics if the environment

changes, it may be possible to miss a valid

opportunity or worse do potential harm if the

appropriate behavior cannot take control of the

necessary resource.

Goal degradation occurs where performing one

task will undo another task. JSSP and FSSP do

not encounter this problem because their tasks are

independent from each other [32]. Therefore,

switching between tasks will not detract from the

task previously executed. For example, research

in optimizing scheduling for E-Commerce servers

[33] switches to a different task of higher priority

whenever it is required. However, just because a

server switches to a different process does not

mean the previous process is undone. This

assumption that tasks do not degrade each other is

the largest difference between any shop-

scheduling algorithm and the robotic domain. In

the literature found, none addressed any potential

conflict by switching goals. In contrast, a robot

must be able to finish a goal unless a condition

changes making another goal more relevant.

Therefore, the users are expecting the robot to

converge onto a single task and finish it in a

timely manner.

JSSP and FSSP do not handle time estimation for

task completion. The majority of the methods

reviewed expected time as a parameter for the

simulation and do not estimate completion time

themselves [32, 34-38]. This assumption is valid

since it would be difficult to determine

completion time for computational tasks,

especially if it required human interaction. In one

approach, the scheduler used an approximate

completion time, allowing it to handle times that

were not exact. However, the approach itself was

not estimating the completion time [39]. This is

in direct contrast with ABBRA, which can

estimate completion time for tasks whose

objectives are at a known location.

There are many different approaches to job-shop

scheduling, either by using static priorities [33] or

resembling the subsumption architecture [10].

Once again, the use of static priority prohibits the

robot from taking advantage of opportunities

found in the environment. Another method used

the product based-approach [30], which required

the entire product to be planned out ahead of time

and is thus not applicable to the field of service

robots. The concept of multi-agents was also

applied to schedulers [40], but these methods

solve problems closer to multiple-agent research

than those of service robots. Lastly, other

methods dealt with finding the cost of scheduling

and trying to make it more efficient [41, 42] but

they did not deal with conflicting goals or the

estimation of time.

As discussed in Section 3.3, the scheduling

problem that needs to be solved in the context of

service robots is closest to the problem of

scheduling with release times and deadlines,

which is NP-Complete. ABBRA provides a

greedy approximation solution that schedules, at

every time step, the behavior most relevant to run

as given by a combination of metrics extracted

from the environment. These metrics and the

auction mechanism are described in detail in

Section 3.4.

3 Description of the
Architecture

This section provides a detailed description of

ABBRA, going through the three main phases of

the architecture’s development. This section also

provides a formal definition for the problem

solved by ABBRA, along with a detailed look at

the auction cycle process and activation level

calculations for individual behaviors.

3.1	 Three	 Phases	 of	 Development	 for	

ABBRA	
ABBRA was developed in three phases.

The first phase was a proof of concept to

demonstrate that behaviors bidding for control of

the actuators can resolve conflicting goals and

that a robot could achieve a set of requested goals

using an auction mechanism as a behavior

arbitrator [43, 44]. In this phase tasks with

complex goals are structured as a composition of

potentially multiple behaviors that achieve the

overall goals. The different behaviors compete

for control of the robot’s actuators. Multiple

behaviors with conflicting goals are allowed to

compete for the same actuator, thus demonstrating

there would be no goal oscillation if multiple

behaviors were active. This phase of the research

also demonstrated dynamic re-prioritization of

behaviors. For example, if the robot discovers

that it can complete one of its assigned tasks

(which was not the one currently pursued), the

architecture automatically adjusts the priority of

the behaviors in order to complete the new task.

This enables the robot to takes advantage of

opportunities that arise in order to complete all its

tasks. Phase one also showed that multiple

behaviors could be run simultaneously if they did

not require the same actuator. The third test also

demonstrated the ability to assign a time

constraint on one (only one at this stage)

behavior, giving it priority over other behaviors.

The second phase of research enhanced

the architecture with new capabilities. In this

research phase the behavior bidding system was

improved to allow for multiple tasks to be

requested with temporal constraints (deadlines).

In this version, the timer system relied on

architectural cycles in order to track time.

Therefore, the architecture used the temporal

metric of “How long until behavior must start” in

order to enforce time constraints. This phase of

research also introduced the ability for dynamic

addition of new task requests (and of the tasks’s

corresponding behaviors) during runtime.

ABBRA handled the newly added behaviors

without any noticeable delay and respected all of

the constraints put on a new behavior on the next

auction cycle. These improvements allowed for

the testing of several complex scenarios, which

had not been possible before.

In the third phase, the improvements to the

architecture consisted of introducing mapping and

localization and a real-time clock to enforce the

temporal constraints [45]. ABBRA was also

successfully validated on a Segway Robotic

Mobile Platform (RMP). The motivation behind

adding mapping was to allow the robot to take a

more efficient path to goals that had known

locations. The use of mapping enabled the robot

to determine actual distance to its goals, which

could now estimate how long a behavior would

take to finish and thus to reach the goal. The

second improvement in this phase was the

incorporation of a real-time clock to enforce time

constraints. These ensured temporal constraints

were upheld and made it easier for the user to

specify the time constraint. With these two

modifications, the architecture was successfully

implemented on a Segway Robotic Mobile

Platform (RMP) and ran in a dynamic

environment.

3.2	 Architectural	 Structure	

ABBRA is based on three main

components: goals, behaviors and mutexes. A

goal represents a task, or subtask, assigned to the

robot by a user. When a task is assigned to the

robot a goal object that represents the task is

created. This goal object will spawn one or more

corresponding behavior(s) in order to complete its

objective. Behaviors are the functional modules

that compete and send commands to the robot’s

actuators. Goal objects may also choose between

different behaviors in the situation where there is

more than one way to complete the tasks. These

newly spawned behaviors may have pre-requisites

that are introduced as new goals for the system.

These goal/behavior can be linked together by

pre-requisites in order to form behavior chains

that are capable of more performing complex

tasks. The behaviors gather data from the sensors

and derive a set of metrics that represents how

important it is for them to run. Each behavior will

bid through a mutex for control of the specific

actuator it needs by sending the set of metrics it

gathered. In the case of the behavior-chains these

behaviors will not start bidding until all their pre-

requisite goals are achieved. Therefore, the last

added behavior on this set or chain would remain

running until it completed its goal. Once this

occurred, the next behavior can start running.

This process would repeat until the first behavior

had been completed, hence finishing the desired

goal that represents the desired task. It is also

important to note that the entire state of these

behavior chains are represented through the

environment [12]. The goal objects will notify

the corresponding behavior or behaviors it

spawned that it is no longer necessary to run upon

completion of its objective.

 A mutex is an object that acts as an

auction house for a specific resource on the robot

and enforces mutual exclusion of the behaviors on

that particular resource. The mutex will collect

bids from each behavior that bids for it and then

assign a winner, which gains control of the

actuator for that round (Figure 1). In the event that

a behavior requires more than one actuator, an

abstract behavior is used. Abstract behaviors [46]

are behaviors who perform no direct actions but

simply control other behaviors, as described

below. Abstract behaviors do not control an

actuator therefore do not have to bid for control.

The tasks that require more than one actuator are

represented by an abstract behavior with two or

more child goal-behavior pairs that use separate

actuators. None of the abstract behavior’s

children competes against each other and all run

simultaneously. When all child behaviors reach

their goal states, the goal of the abstract behavior

will be complete, thus completing the tasks. This

mechanism allows the architecture to avoid the

multiple-prize-auction problem where the

architecture needs to compare a behavior trying to

get multiple actuators to a behavior that only

needs one. An example of such a task is the

“center camera and robot on green object” task

used an abstract behavior to control two child

behaviors that separately. One child behavior

would center the camera on the green object while

the other child behavior centered robot. Abstract

behaviors are also used to fuse outputs of

behaviors together - in this case the abstract

behavior will bid for control a single actuator.

After the abstract behavior has won control, it will

invoke a set of behaviors and fuse their outputs

into a single command, which is then sent to the

actuator. In this scenario, the child behaviors do

not have goal object they are simply modules that

can be called when necessary.

Figure 1: High-level diagram of ABBRA

3.3	 Formal	 Description	 of	 the	 Action	

Selection	 Problem	
 This section provides a formal description

of the scheduling problem solved by ABBRA’s

auction system. Given the following:

,

 a set of N resources available on the robot,

a set of M behaviors available to the robot,

 a set of time constraints for each behavior (could

be empty), the main objective of the architecture

is to determine which behavior(s) to run at each

time step in order to service all the requests

efficiently (that is without missing any deadlines

or minimizing the lateness for all the tasks). The

resources are actuators on the robot such as the

wheel motors, gripper, or swivel camera.

 In the service robot domain the times

when new requests are coming are not known

from the beginning as users may come in with

new requests at any time. Assuming that the times

for the requests would be known in advance, and

assuming that the robot has only one resource

available, the problem of scheduling the tasks in

order to minimize the lateness is an instance of

scheduling with release times and deadlines which

is NP-Complete. Given that for the service robot

scheduling problem the request times are

unknown and that there is more than one resource

available, it follows that an approximation

algorithm is needed to solve this optimization

problem. ABBRA solves this scheduling problem

as follows. Given the following sets:

}, it is

true that the behavior sets are mutually exclusive

between resources (Equation 1)

(1)

At any time behaviors can be introduced or

deleted in the system, as a new request can come

in from a user. Therefore, the following two

components need to be considered:

With these two components, the change in the

behavior sets for a resource Rj, at time t is

modeled as follows:

where j = 1… N

(2)

 Each behavior has a set of metrics that

apply to it. Some can be spatial, such the distance

to the objective, some can be temporal, such as

the time remaining before the behavior must

complete, and finally some may be state based

such as the content of the robotic gripper. We

denote the set of all metrics as:

The values of the individual metrics can change

over time, which is one reason conventional

scheduling does not work for this problem. This is

due to the fact that an inactive behavior may have

the value of its metrics changed if another

behavior runs first, as the other behavior may

have altered the state of the robot in the

environment (e.g., moving toward a goal in one

direction would increase the distance to another

goal, which is in the opposite direction). We

consider Value(mBi, t, mq) the value of the q-th

metric for behavior Bi at time t and Delta(mBi, t,

mq) the change in the value of the q-th metric for

behavior Bi at time t. Thus:

At this point the problem is choosing, for each

resource Rj, at time t, the behavior BSRj for which

the aggregate of the metric values are minimized.

In other words, the architecture chooses to run the

behavior with the most critical measurements

from the environment (Equation 3).

 (3)

The set of behaviors chosen to run for all

resources at time t is:

 (4)

3.4	 Calculating	 the	 Activation	 Level	

 The value that behaviors use to bid for

control of the actuators is the activation level.

This value represents the importance of the

specific behavior to run at a particular time. In

order to derive its activation level each active

behavior will use a certain set of metrics. These

metrics could be spatial distance, temporal

constraints, or state variables. Once the behavior

has calculated the values for its metrics, it will bid

for control of the actuator by sending these values

to the specific resource mutex. The mutex then

determines the maximum value for each metric

type from the information received from all the

behaviors bidding for it. ABBRA is a single stage

auction where the mutex takes the metric values

given to it by the competing behaviors and

calculates an activation level for each. The

behavior with the highest activation level is

awarded control of the actuator for that round.

The activation level of a particular behavior (B) is

the sum of all metric contributions divided by the

total number of metrics used by the particular

behavior (See Equation 5).

(5)

 where ALB is the activation level for behavior B

and CMi is the contribution to the activation level

for metric Mi.

 Each one of the contributions CMi

represents the influence of a specific measurement

(or metric) from the environment or the imposed

time constraints. There are two methods of

calculating an activation level contribution: one

for non-temporal and one for temporal

constraints. Some examples of metrics are:

distance to goal (both Euclidean and actual

distance), time remaining before the goal must be

complete, starting time for the current behavior,

change in the direction of the robot, blob size, and

direction the camera is facing. The contribution

for non-temporal measurements uses a fitness

function that takes the ratio of the specific

behaviors metric value to the maximum value of

that metric type. If smaller values are more

desirable, such as in spatial distance, then the

whole ratio is subtracted from 1 (Equation 6).

The contributions for metric Bi ()(BimCTAL) is

calculated as follows:

(6)

where || Bim is the value of metrics for behavior

Bi and is calculated by the behavior or taken from

the environment. || BimMax is the maximum over

all the values for metric Bim submitted by the

behaviors to the mutex and is calculated by the

mutex itself. To compute the contribution to a

behavior’s activation level for temporal

constraints, the time constraint provided by the

user is used. Based on mapping and localization

data ABBRA can estimate how long it should take

the robot to reach a goal. The temporal fitness

function is calculated as follows (Equation 7):

(7)

where TCB is the time constraint for current

behavior (deadline by which the behavior should

end), TSys is the current time of the system clock,

TLeftB is the estimated time it will take behavior B

to reach the goal based on true distance, LatestTC

is the longest existing time constraint and

EarliestST is the earliest starting time for any

unfinished behavior that has a time constraint.

 The reason two methods were necessary is

that the effect of time on the activation level is not

linear. Experimentally it was observed that the

desired influence of time on the activation level

should be minimal until roughly 20% of the

remaining time is left, after which the time

constraint should begin influencing the activation

level at a much more substantial rate. For

example, if the robot has two behaviors, where

one takes five minutes to complete and the other

takes ten minutes, and both must be finished in an

hour, the time constraint should have almost no

influence as to which goal wins the auction.

However, if the behavior that is finished in 5

minutes has a time constraint of ten minutes, then

it should be substantially more important than the

behavior with an hour time constraint. Because of

this, a non-linear exponential decay curve was

used to model the influence the time constraint

had on the activation level.

4 Experimental Results

This section presents the experimental validation

for the three stages of development of ABBRA.

The first stage tested the architecture’s basic

capabilities: (1) allowing multiple behaviors to

function in unison, (2) resolving conflicting

behaviors with conflicting goals and a (3) basic

mechanism to allow a time constraint to influence

the outcome. The testing on this stage was

performed in the Player/Stage simulation

environment [47]. The second stage incorporated

the addition of new goals during runtime and

allowed every goal to have temporal influence.

The testing for this stage was also performed in

Player/Stage. However, these tests were

composed of multiple goals, whose objective’s

locations were known and unknown, with varying

time constraints making for more complex

scenarios than in the previous phase. The final

stage of testing incorporated mapping

functionality into ABBRA. This allowed the

behaviors to know the true distance to any known

location, which also allowed for the estimation of

the task’s completion time. The third stage of

testing used a real time clock instead of counting

the number of auction cycles as a means to

enforce time constraints. The third phase was

integrated with the Robotic Operating System

(ROS) and the tests were performed on the

Segway Robotic Mobile Platform (RMP).

4.1 Validation of Phase 1

The first phase of validation used the Stage

robotic simulator to simulate a robot with three

actuators: a pivoting camera, a 2D gripper and the

robot’s differential drive. Although in tests, the

gripper was never used, both the pivot camera and

the robot were used in unison. The robot is

equipped with a behavior set that allows it to

reach locations indicated by known (x,y) position

information and different colored markers (blue,

red) and to center or align the robot on a colored

marker (green). The robot also has a safe avoid

that kicks in when an obstacle is detected, steering

the robot around the obstacle. At this point in

time mapping was not used. The center camera

behavior is represented as an abstract behavior as

described in Section 3.2 with two sub-behaviors:

one that centers the robot on a green object, and

one that centers the camera.

In phase one of the architecture, three

experimental evaluations were performed to

demonstrate the feasibility of using the auction

mechanism for action selection. We also ran

preliminary tests to see if goal oscillation,

degradation or emergent behavior would occur.

Because of the imperfect control of the robot, it

would always successfully converge onto a goal.

Test 1.1: in this experiment the robot was

requested to visit a red and blue goal with known

locations. There were no other constraints or

goals so the robot visited the blue goal first

because it was closer (Figure 2). Since the robot

had no knowledge about the environment, it had

to wander around the obstacle and use a best

guess exploration to reach the goal. After

reaching the blue goal, the robot then moves

towards the red goal.

Figure 1: Robot trajectory during Test 1.1

Figure 3, details the graph of the winning
behaviors versus time. Although a small
oscillation occurred between the goals at time 3,
the robot does converge onto finishing the blue
goal first, and then the red goal.

Figure 2: The winners of the auction over time for Test 1.1

Test 1.2: This experiment demonstrates the ability

of the auction system to handle requests with time

constraints. Similar to the last test the robot had

to visit two goals, red and blue, with the

difference that this time the red goal has a critical

time constraint (i.e. it needs to be completed by a

certain deadline). Given that the robot does not

have a map of the environment in this phase, it

cannot estimate the time it would take it to reach

the red goal. At this phase of the research, the

robot based the time constraint on the Euclidean

distance, this changed in the third phase when

mapping was introduced. During the experiment

the robot heads directly to the red goal, avoiding

the wall on the right, visits the red goal and then

moves toward the blue goal (Figure 4).

Figure 3: Robot trajectory for Test 1.2 (time constraint on

the red goal).

Figure 5 shows the plot of winning

behaviors over time. The observed oscillation

comes from too much emphasis being placed on

spatial metrics because redundant forms of the

same spatial metric were used by each behavior.

For example, the Euclidean distance was used, as

well as the difference in the X and Y axes. This

was modified in the second phase of development

to correct the problem so the auction mechanism

would only consider the distance to goal as a

single metric.

Figure 4: The winners of the auction over time for Test 1.2.

Test 1.3: This experiment demonstrates the

robot’s ability to act opportunistically if situations

arise in the environment (such as detecting a

target whose location was unknown). In this test

the robot is required to visit the blue and red

targets (which had known coordinates) and then

to center itself on a green target, whose location

was unknown. While going toward the known

location targets, after the robot turns around the

corner of the first wall it detects the green object.

This is an opportunity for the robot to fulfill its

center task while on the way to the other targets:

the auction mechanism takes advantage of this

dynamically allowing the robot to finish this task

before continuing to the blue and red goals

(Figure 6). Since the time constraint component

was not used in this test therefore, the robot visits

the blue goal first (because it is closer) and then

the red goal.

Figure 5: Robot trajectory for Test 1.3.

The oscillation observed in Figure 7 is due

to the wander behavior, which activated whenever

the robot came within a certain distance of a wall.

At the point where the green object was detected

the robot stopped what it was doing and finished

that behavior. The rest of the oscillation was due

to the over-emphasis placed on the spatial metrics.

However, the robot still behaved as expected by

finishing the green goal first, then blue, and

finally red.

Figure 6: The winners of the auction over time for Test 1.3.

4.2 Validation of Phase 2

The second phase of ABBRA’s

development focused on adding the following

main capabilities: (1) a more robust time

constraint system and (2) the ability to handle the

addition of new goals dynamically at runtime.

Six tests were performed with this phase of

research. These test scenarios included the

following tasks: visiting of 5 goal targets with

known (x,y) locations (Figure 8) and centering on

the green target, which will be referred to as green

goal. The green goal’s location was unknown by

the robot.

Test 2.1: This is a basic control test where the

robot had to execute all the tasks mentioned above

(visit the 5 goal targets and center on the green

target). In this test no time constraints were used

nor was any goal dynamically added during

runtime. As shown in Figure 8, the robot visits

the goal with the shortest distance first until it

discovers the green goal in which it will

dynamically reprioritizes. Then it finishes the

remaining goals. The goals were met in the

following order: 4, 2, green, 1, 3 and 5.

Figure 7: Path taken by control test for Test 2.1.

Figure 9 details the winning behaviors

over time. The robot simply follows the shortest

goal first until it detects the green object and then

proceeds with the rest of them.

Figure 8: The winners of the auction over time for Test 2.1.

Test 2.2: In the second test two goals were

requested with critical time constraints. Both

goals 1 and 5 have a critical time requirement

remaining before they had to start. The robot

would immediately choose the closer of the two,

goal 5, and finish it. It would then move directly

to goal 1 and finish it. After it finished goal 1 it

then finishes the green goal next to it, therefore,

proving that the time constraint outweighed the

opportunity presented by the discovery of the

green target, which was very close to the robot.

The robot thus passes by the green target while

moving toward goal 5, meaning that the green

goal was not as important as a time critical goal

(Figure 10). The order in which the goals were

completed is as follows: 5, 1, green, 2, 4, 3.

Figure 9: Robot trajectory for Test 2.2 (goals 1 and 5 have a

critical time constraint).

Figure 11 shows the winning behaviors

over time, indicating that goals 1 and 5 finished

first. Notice that the oscillation exhibited from

the previous stage is no longer present because in

this phase only one form of the distance to goal is

used (Euclidean distance)

Figure 10: The winners of the auction over time for Test 2.2

(goals 1 and 5 have critical time constraints.)

Test 2.3: This experiment tested the performance

of the system in situations when a critical time

constraint is given to tasks whose objectives’

location in the environment was unknown (center

on green target). In this case, instead of going to

the goal that had the shortest distance, the robot

began wandering around trying to locate the green

object (Figure 12). The robot passes by goal 3,

however this was purely a coincidence because

the robot was wandering looking for a green

object. After the robot locates the green object, it

resumes going to the goal whose objective is the

shortest distance. The goals were finished in the

following order: 3 (due to wandering), green, 5, 4,

2, 1.

Figure 11: Robot trajectory for Test 2.3 (goal with unknown

location has a critical time constraint).

After plotting the winning behaviors

versus time it is possible to see that center on

green object remained the only active goal to be

completed (Figure 13). Goal 3 was completed un-

intentionally because the wandering behavior took

the robot in the proximity of the goal (the

corresponding behavior never won an auction

cycle.)

Figure 12: The winners of the auction over time for Test 2.3

(goal with an unknown location has a critical time

constraint.)

Test 2.4: This test validates the ability to handle

task requests given at run time. In particular, in

this scenario the green goal is requested, with a

time constraint, right after goal 2 is accomplished.

Thus, the new task takes precedence over other

goals when it is created. The path of the robot

looks very similar to the control run (Figure 14).

However, the green goal was not introduced until

after goal two finished (Figure 15). The goals

were finished in the following order: 4, 2 green, 1,

3, 5.

Figure 13: Robot trajectory for Test 2.4 (goal with unknown

location is added at runtime with a critical time constraint.)

Figure 14: Winning behaviors over time for Test 2.4 (goal

with unknown location is added at runtime with a critical

time constraint.)

Test 2.5: This experiment is similar to test 2.4,

except that a goal with a known location for its

objective (goal 5) is dynamically added with a

critical time constraint after goal 2 finishes. Once

this goal is created, it will take control and move

toward goal 5 because of the time constraint. This

test demonstrates that it is possible for ABBRA to

add a goal whose objective has a known location

dynamically during run time (Figure 16). The

goals were finished in the following order: 4, 2, 5,

3, 1, green.

Figure 15: Robot trajectory for Test 2.5 (goal with a known

location is added during runtime with a critical time

constraint.)

Figure 17 plots the winning behaviors

versus time and demonstrates that behavior 5

immediately takes control from behavior 1 when

added. This behavior was automatically

introduced into the system after goal 2 has been

met.

Figure 16: Winning behaviors over time for Test 2.5 (goal

with a known location is added during runtime with a

critical time constraint.)

Test 2.6: This experiment was similar to test 2.5

(dynamically adding goal 5 after goal 2 was

reached), however this time no time constraint

was given to goal 5. This in resulted in a run that

looked exactly like the control test, where the

robot would simply visit the shortest goal first

because the architecture had no reason to react

when goal 5 was added (Figure 17). The goals

were finished in the following order: 4, 2, green,

1, 3, 5.

Figure 17: Robot trajectory for Test 2.6 (goal with a known

location is added during runtime and has no time

constraint.)

Likewise graphing the winning behaviors

against time shows the same results even though

goal five is added after goal 2 is reached (Figure

19).

Figure 18: Winning behaviors over time for Test 2.6 (goal

with a known location is added during runtime and has no

time constraint.)

4.3 Validation of Phase 3

The third phase of development added the

following capabilities: 1) modified the timer

system to use a real-time clock (this allowed the

user to enter time constraints in terms of hours,

minutes, seconds) and 2) introduced mapping and

localization capabilities (allowing the behaviors to

predict whether they could meet certain time

constraints.) For this phase ABBRA was

validated on a Segway Robotic Mobile Platform

(RMP), using Willow Garage’s robotic operating

system (ROS)[48]. These tests were performed in

the halls of the Computer Science and

Engineering building at the University of Nevada,

Reno.

Figure 19: Segway Robotic Mobile Platform (RMP)

The five different testing scenarios for this

phase used three goals with known locations,

represented by yellow, orange, and red targets.

Goal 4, or green goal, was used once again to

demonstrate the center on green behavior.

Test 3.1: The first test performed on the third

phase was a basic control test, in which the robot

had to visit three goals whose objectives had

known locations and also find the green object.

With no time constraints, the robot would simply

visit the goal with the shortest distance first and

only interrupting the active goal to take advantage

of discovering the green goal (Figure 21).

Likewise, the graph showing the winning

behaviors over time demonstrate a clear

convergence onto the desired goals (Figure 22).

The goals were finished in the following order: 1,

green, 2, 3.

Figure 20: Physical robot trajectory for Test 3.1.

Figure 21: Winning behaviors over time for Test 3.1.

Test 3.2: This experiment tested a scenario in

which goal 2, which has a time constraint, could

not be accomplished in time. The architecture

estimates the amount of time necessary to reach

the goal based on the distance from the map and

determined that it could not meet the temporal

constraint. In this scenario the robot simply drops

the goal and considers it missed. This is to

demonstrate a different approach as compared to

the previous phases of the architecture, where if a

goal missed its time constraint it would get higher

priority. Both approaches are thus feasible to be

used, the choice depending only on the

preferences of designer for a particular domain. In

this experiment the robot visits the closest goals

first, taking time to finish the green goal but

without going to goal 2 (Figure 23). Figure 24

shows an oscillation when the robot is going

toward the green goal, which is due to noise on

the color blob tracker, but the architecture

gracefully handles the noise in the sensory data,

accomplishing the requested tasks. The goals

were finished in the following order: 1, green, 3.

Figure 22: Robot trajectory for Test 3.2 (goal 2 cannot meet

its time constraint.)

Figure 23: Winning behaviors over time for Test 3.2 (goal 2

cannot meet its time constraint.)

Test 3.3: This experiment demonstrates that the

architecture can handle scenarios where attainable

time constraints are given; the goal with the time

constraint is completed before any other goal with

lesser or no time constraint. In this scenario goal

2 is given a time constraint that can be achieved

therefore the robot goes to that goal first. After

this goal is finished, it will simply find the closest

goal to finish next (Figure 25). Note that the

green goal is completed after goal 2 is reached

(Figure 26). The goals were finished in the

following order: 2, 3, green, 1.

Figure 24: Robot trajectory for Test 3.3 (feasible time

constraints.)

Figure 25: The winning behaviors over time for Test 3.3

(feasible time constraints.)

Test 3.4: This experiments demonstrates that the

architecture can handle the addition of new task

requests dynamically at runtime. Goal 1 is added

after four minutes of the program running. For

this test, goal 1 had no time constraints therefore

the robot would continue with the closer goals and

deal with goal 1 last (Figure 27). As shown in

Figure 28, although the blob tracker caused

oscillations, the auction mechanism handled the

noise efficiently and enabled the robot to finish its

tasks. The goals were finished in the following

order: green, 2, 3, 1.

Figure 26: Robot trajectory for Test 3.4 (new task requested

at runtime without time constraint.)

Figure 27: The winning behaviors over time for Test 3.4

(new task requested at runtime without time constraint.)

Test 3.5: This experiment is similar to Test 3.4,

with the difference that the newly added task had

a time constraint. Goal 1 is dynamically added at

the four-minute marker with a critical time

constraint. The new task is requested shortly after

the robot has finished the green goal. Due to the

critical time constraint the robot switches to

working on the new goal (Figure 29). The graph

of winning behaviors shows this as goal 1

interrupts goal 2 when it is added (Figure 30).

The goals were finished in the following order:

green, 1, 2, 3.

Figure 28: Robot trajectory for Test 3.5 (new task requested

at runtime with time constraint.)

Figure 29: Winning behaviors over time for Test 3.5 (new

task requested at runtime with time constraint.)

5 Discussion and Future
Work

ABBRA has demonstrated that it can

handle many dynamic constraints in the real

world environment. However, the architecture

has a few drawbacks. For example, if a user

would like that the robot determines what it

should do on its own (in the absence of specific

user requests), a different module would have to

be implemented to handle this situation. Another,

potential disadvantage is that in its current

implementation ABBRA does not support

learning. The robot can only perform tasks that it

already knows, but it should be possible to

incorporate learning approaches that allow the

robot to acquire new skills. Furthermore, ABBRA

is not a cognitive architecture – while a robot can

make decisions on what tasks to perform next in

order to be efficient using ABBRA, additional

extensions to the architecture would be needed in

order to handle symbolic representations and

reasoning.

The next phase of research consists of

integrating capabilities for Human Robotic

Interaction (HRI) into ABBRA, thus adding

another degree of complexity to the action

selection mechanism. This research will consist

of two phases. The first phase will develop

capabilities that allow a human user to make task

requests to the robot in an efficient and easy to

use way. Once challenge that needs to be address

in this context is handling the situations in which

the robot may not have time to interact with the

human due to existing deadlines. Another

requirement of this phase is to create an interface

that is modular and can be ported to different

hardware. Currently, mobile devices are

becoming more wide-spread along with laptops

and Tablet PCs, which makes these devices a

more ideal HRI interface. This phase of the tests

will focus on human interaction with the robot

directly, interacting through a PC and interacting

through a mobile device.

 The second phase of this research is

expanding the HRI to multiple robotics. This

area research will focus on the ease of controlling

multiple robots with the mechanisms as developed

in the previous phase. Once the interface is

developed the last requirement would be creating

a collaborative control system that allows humans

and robots to work together [49-51].

6 Conclusion

This paper presents a control architecture

(ABBRA) that allows a robot to handle multiple

types of constraints and determines what order the

robot should pursue its assigned tasks. This is

vital for service robot so they can function in

dynamic environments and provide useful

services to human users. This paper

experimentally shows that the auction mechanism

provide robust action selection and allow the

robot to consider multiple constraints of different

types. This paper also demonstrates that the

auction method resolves tasks that have

conflicting goals. ABBRA adheres to time

constraints and determines whether it is possible

to achieve a task in time. This architecture is also

capable of handling tasks added dynamically

during runtime without having to stop and re-plan

or degrade the quality of the robot’s performance.

This paper details the work done on ABBRA by

presenting the results from the three different

stages of testing, which include results from both

simulation and in real dynamic environments.

This paper presents a formal description of the

scheduling problem solved by ABBRA and gives

a detailed description of the solution. The results

support the use of auctions as a form of arbitration

in real-world environments, yielding efficient and

robust results that can handle many dynamic

conditions that are challenging in real-world

domains.

7 Reference

[1] Arkin, and R. C., Behavior-Based
Robotics, 1 ed., p.^pp. 1-491,
Massachusetts: Massachusetts Institute of
Technology, 1998.

[2] J. K. Rosenblatt, “DAMN: A distributed
architecture for mobile navigation,”
Journal of Experimental & Theoretical
Artificial Intelligence, vol. 9, no. 2-3, pp.
339-360, 1997.

[3] J. Riekki, and J. Roning, "Reactive task
execution by combining action maps." pp.
224-230 vol. 1.

[4] J. Hoff, and G. Bekey, "An architecture
for behaviour coordination learning." pp.
2375-2380.

[5] A. Saffiotti, “The uses of fuzzy logic in
autonomous robot navigation,” Soft
Computing-A Fusion of Foundations,
Methodologies and Applications, vol. 1,
no. 4, pp. 180-197, 1997.

[6] A. Saffiotti, K. Konolige, and E. H.
Ruspini, “A multivalued logic approach to
integrating planning and control,”
Artificial intelligence, vol. 76, no. 1-2, pp.
481-526, 1995.

[7] J. Yen, and N. Pfluger, “A fuzzy logic
based extension to Payton and Rosenblatt's
command fusion method for mobile robot
navigation,” Systems, Man and
Cybernetics, IEEE Transactions on, vol.
25, no. 6, pp. 971-978, 1995.

[8] R. C. Arkin, "Motor schema-based mobile
robot navigation." pp. 264-271.

[9] P. Maes, “How to do the right thing,”
Connection Science, vol. 1, no. 3, pp. 291-
323, 1989.

[10] R. A. Brooks, “A ROBUST LAYERED
CONTROL-SYSTEM FOR A MOBILE
ROBOT,” Ieee Journal of Robotics and
Automation, vol. 2, no. 1, pp. 14-23, 1986.

[11] J. Koseck , and R. Bajcsy, “Discrete event
systems for autonomous mobile agents,”
Robotics and Autonomous Systems, vol.
12, no. 3-4, pp. 187-198, 1994.

[12] R. Brooks, “Elephants don't play chess,”
Robotics and autonomous systems, vol. 6,
no. 1-2, pp. 3-15, 1990.

[13] M. Proetzsch, T. Luksch, and K. Berns,
“Development of complex robotic systems
using the behavior-based control
architecture iB2C,” Robotics and
Autonomous Systems, vol. 58, no. 1, pp.
46-67, Jan, 2010.

[14] P. Haazebroek, S. van Dantzig, and B.
Hommel, “A computational model of
perception and action for cognitive
robotics,” Cognitive processing, vol. 12,
no. 4, pp. 355-365, 2011.

[15] G. H. Lim, and I. H. Suh, "Improvisational
goal-oriented action recommendation
under Incomplete Knowledge Base." pp.
896-903.

[16] R. Davis, and R. G. Smith, “Negotiation
as a metaphor for distributed problem
solving,” Artificial intelligence, vol. 20,
no. 1, pp. 63-109, 1983.

[17] F. Brandt, W. Brauer, and G. Weiss, “Task
assignment in multiagent systems based
on vickrey-type auctioning and leveled
commitment contracting,” Cooperative
Information Agents IV-The Future of
Information Agents in Cyberspace, vol.
1860, pp. 95-106, 2000.

[18] P. Faratin, C. Sierra, and N. R. Jennings,
“Negotiation decision functions for
autonomous agents,” Robotics and
Autonomous Systems, vol. 24, no. 3-4, pp.
159-182, 1998.

[19] B. P. Gerkey, and M. J. Mataric, “Sold!:
Auction methods for multirobot
coordination,” Robotics and Automation,
IEEE Transactions on, vol. 18, no. 5, pp.
758-768, 2002.

[20] B. Jennings, and Å. Arvidsson, “Co-
operating market/ant based multi-agent
systems for Intelligent Network load
Control,” Intelligent Agents for
Telecommunication Applications, pp. 71-
71, 1999.

[21] H. Jung, M. Tambe, and S. Kulkarni,
"Argumentation as distributed constraint
satisfaction: Applications and results." pp.
324-331.

[22] R. Krovi, A. C. Graesser, and W. E.
Pracht, “Agent behaviors in virtual
negotiation environments,” Systems, Man,
and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 29,
no. 1, pp. 15-25, 1999.

[23] M. J. Matari , G. S. Sukhatme, and E. H.
Østergaard, “Multi-robot task allocation in
uncertain environments,” Autonomous
Robots, vol. 14, no. 2, pp. 255-263, 2003.

[24] R. G. Smith, “The contract net protocol:
High-level communication and control in
a distributed problem solver,” Computers,
IEEE Transactions on, vol. 100, no. 12,
pp. 1104-1113, 1980.

[25] K. Sycara, and D. Zeng, “Coordination of
multiple intelligent software agents,”
International Journal of Cooperative
Information Systems, vol. 5, no. 2, pp.
181-212, 1996.

[26] M. P. Wellman, and P. R. Wurman,
“Market-aware agents for a multiagent
world,” Robotics and Autonomous
Systems, vol. 24, no. 3-4, pp. 115-125,
1998.

[27] W. Sheng et al., “Distributed multi-robot
coordination in area exploration,”
Robotics and Autonomous Systems, vol.
54, no. 12, pp. 945-955, 2006.

[28] M. B. Dias, and A. Stentz, Traderbots: A
market-based approach for resource, role,
and task allocation in multirobot
coordination, Carnegie Mellon University,
Carnegie Mellon University, 2003.

[29] M. K. Sahota, “Action selection for robots
in dynamic environments through inter-
behaviour bidding,” From animals to
animats, vol. 3, pp. 138-142, 1994.

[30] A. Almeida, and L. Figueiredo, "A
product oriented approach to Dynamic
Scheduling." pp. 523-528.

[31] F. T. S. Chan, T. Wong, and L. Chan, "Lot
splitting under different job shop
conditions." pp. 4722-4728.

[32] J. B. Wang, and M. Z. Wang, “Worst-case
behavior of simple sequencing rules in
flow shop scheduling with general
position-dependent learning effects,”
Annals of Operations Research, pp. 1-15,
2011.

[33] M. Younas et al., “Priority scheduling
service for E-commerce web servers,”
Information Systems and E-Business
Management, vol. 6, no. 1, pp. 69-82,
2008.

[34] H. Liu, A. Abraham, and Z. Wang, “A
multi-swarm approach to multi-objective
flexible job-shop scheduling problems,”
Fundamenta Informaticae, vol. 95, no. 4,
pp. 465-489, 2009.

[35] D. Lei, “Solving fuzzy job shop
scheduling problems using random key
genetic algorithm,” The International
Journal of Advanced Manufacturing
Technology, vol. 49, no. 1, pp. 253-262,
2010.

[36] J.-Q. Li, Q.-K. Pan, and K.-Z. Gao,
“Pareto-based discrete artificial bee colony
algorithm for multi-objective flexible job
shop scheduling problems,” Int. J Adv
Manuf Technol, vol. 55 pp. 10, 2011.

[37] X. Miao, P. B. Luh, and D. L. Kleinman,
"Dynamic job scheduling with strict
deadline." pp. 116-121 vol. 1.

[38] C. Anandaraman, “An improved sheep
flock heredity algorithm for job shop
scheduling and flow shop scheduling
problems,” International Journal of
Industrial Engineering, vol. 2, pp. 749–
764, 2011.

[39] Y. Hu, M. Yin, and X. Li, “A novel
objective function for job-shop scheduling
problem with fuzzy processing time and
fuzzy due date using differential evolution
algorithm,” The International Journal of
Advanced Manufacturing Technology, vol.
56, pp. 1-14, 2011.

[40] A. Kouider, and B. Bouzouia, “Multi-
agent job shop scheduling system based on
co-operative approach of idle time
minimisation,” International Journal of
Production Research, vol. 50, no. 2, pp.
409-424, 2011.

[41] J. P. Watson et al., "Toward a descriptive
model of local search cost in job-shop
scheduling."

[42] A. Yahyaoui, and F. Fnaiech, "Recent
trends in intelligent job shop scheduling."
pp. 191-195.

[43] B. A. Towle, and M. Nicolescu, “Fusing
Multiple Sensors through Behaviors with
the Distributed Architecture,” in 2010
IEEE International Conference on
Multisensor Fusion and Integration for
Intelligent Systems, Salt Lake, Utah, 2010,
pp. 115-120.

[44] B. A. Towle Jr, and M. Nicolescu,
“Applying dynamic conditions to an
auction behavior-based robotic
architecture,” Int'l
Conf. Artificial Intelligence (ICAI'11), vol.
Volume 1, no. July 18-21, 2011, pp. 6,
2011.

[45] B. Towle, and M. Nicolescu, “Real-world
implementation of an Auction Behavior-
Based Robotic Architecture (ABBRA),” in
IEEE International Conference on
Technologies for Practical Robot
Applications (TePRA), Woburn, MA,
2012, pp. 79-85.

[46] M. N. Nicolescu, and M. J. Mataric, "A
hierarchical architecture for behavior-
based robots." pp. 227-233.

[47] P. Stage. "Player," 15 Oct 2012, 2012;
http://playerstage.sourceforge.net/.

[48] W. Garage. "ROS | Willow Garage," 7
Mar 2012, 2012;
http://www.willowgarage.com/pages/soft
ware/ros-platform.

[49] T. Fong et al., “A personal user interface
for collaborative human-robot
exploration,” in 6th International
Symposium on Artificial Intelligence,

Robotics, and Automation in Space
(iSAIRAS), Montreal, Canada, 2001, pp.
23.

[50] T. Fong, C. Thorpe, and C. Baur,
“Collaborative control: a robot-centric
model for vehicle teleoperation,” Carnegie
Mellon University, The Robotics Institute,
2001.

[51] T. Fong, C. Thorpe, and C. Baur, “Robot,
asker of questions,” Robotics and
Autonomous Systems, vol. 42, no. 3-4, pp.
235-243, 2003.

