
A FRAMEWORK FOR LEARNING FROM DEMONSTRATION,
GENERALIZATION AND PRACTICE IN HUMAN-ROBOT DOMAINS

by

Monica Nicolette Nicolescu

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

May 2003

Copyright 2003 Monica Nicolette Nicolescu



Dedication

To Mircea, my husband,

with all my heart.

ii



Acknowledgments

While writing my Ph.D. dissertation I have been extremely fortunate to be surrounded by wonderful

people, whose very special contribution to this dissertation I would like to acknowledge.

First, I would like to express my deepest gratitude to my thesis advisor, Maja Matarić, for her extraor-
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Abstract

This dissertation presents a framework that enables robots to learn complex tasks from one or several

demonstrations by a teacher, based on a set of available underlying robot capabilities. The framework,

inspired from the approach people use when teaching each other through demonstration, uses an action-

embedded approach for task representation, and uses learning by having the robot perform the task along

with the teacher during the demonstration.

Among humans, teaching skills or tasks is a complex process that relies on multiple means of interac-

tion and learning, both on the part of the teacher and of the learner. In robotics, however, skill teaching

has largely been addressed by using only one or very few of these modalities. This dissertation presents a

novel approach that uses multiple modalities for instruction and learning, allowing a robot to learn repre-

sentations of high-level, sequential tasks from instructive demonstrations, generalization over multiple but

sparse demonstrations and by practicing under a teacher’s supervision.

To enable this type of learning, the underlying robot control architecture should exhibit the following

key properties: modularity, reusability of existing modules, robustness and real-time response, support

for learning and the ability to encode complex task representations. Behavior-based control (BBC) is

an effective methodology for robot control, which provides modularity and robust real-time properties,

but is limited with respect to the other capabilities listed above. This dissertation presents a hierarchical

abstract behavior architecture that extends the standard BBC in that: i) it allows for the representation and

execution of complex, hierarchically structured tasks within a behavior-based framework; ii) it enables

reusablity of behaviors through the use of abstract behaviors; and iii) it provides support for automatic

generation of a behavior-based system.
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The experimental validation and evaluation presented in the dissertation demonstrate that the proposed

task representation, in conjunction with multiple instructional modalities, provides an effective approach

for robot learning of high-level sequential tasks, based on a set of underlying capabilities (behaviors).
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Chapter 1

Introduction

This chapter provides an overview of the dissertation and its contributions to increasing the

learning and interactive capabilities of robots through teaching by demonstrations. It dis-

cusses the main challenges involved in this process, and presents the assumptions on which

the proposed solution is based. This chapter also outlines the approach to task learning and

introduces the Hierarchical Abstract Behavior Architecture, which employs action-embedded

representations to facilitate the transfer of task knowledge from demonstrations.

One of the main goals of Robotics is that robots ultimately be used in real-world domains, helping

people in their jobs, and even replacing them completely in harmful or dangerous environments. Advances

in designing autonomous robots take us closer to this possibility and create an increasing interest in the

area of human-robot interaction. As a result, robots will co-exist with people, and their desired role in

the resulting “society” is essential in designing their capabilities and in determining the nature of their

interaction with humans.

This dissertation proposes a framework that allows robots to interact with humans naturally in human-

robot domains, and enables them to learn to perform new tasks from this interaction. This provides robots

with new learning, autonomous control and interaction capabilities that increase their ability to perform in

dynamic, unpredictable environments.
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In existing and future human-robot environments, robots may be workers or members of a team, co-

operating with other robots and people to solve and perform tasks. They may also be entertainers, such

as museum tour-guides and robot pets, trying to capture humans’ attention with their behavior. Finally,

they may be emotional companions, looking to establish social relations and to make friends. Designing

controllers for these types of tasks is usually done by people specialized in programming robots. Even

for them, most often this is a complicated process, as it essentially requires creating by hand a new and

different controller for each particular task. The number of situations which the robot may face and the

wide spectrum of tasks it may have to perform make the job of robot programming difficult. Rather than

pre-programming a robot for all the tasks its users might want it to perform, which is infeasible in most

cases, it would be more useful if the robot could learn such tasks from the user, through flexible and natural

interaction. The wide variety of domains mentioned above indicates the large spectrum of possible robot

users, ranging from factory workers to hospital nurses, and from elderly people to young children. Since

these users do not have the necessary computer programming skills to re-task and program the robots, it

becomes of great interest to develop an approach for robot controller design that is accessible to all users,

from the lay to the skilled.

The work presented in this dissertation aims to provide robots with task learning capabilities that

address the above problems, and thus reduce the amount of time and expertise required for the development

of an autonomous, intelligent robot system. A natural approach to this problem is to have the robots learn a

particular task from a teacher’s demonstration, thus increasing the ability of robots to interact with people,

and relieving the user from writing controllers by hand.

The following section presents in more detail the challenging problem of teaching robots by demon-

stration and the goals of this dissertation.
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1.1 Motivation and Goals

1.1.1 Teaching Robots by Demonstration

The teaching by demonstration paradigm allows the transfer of task knowledge from an expert teacher to

a learner through the use of demonstrations (Figure 1.1).

Figure 1.1: Transfer of task knowledge through demonstration

Although at the first look the problem seems simple (what could be hard in repeating what someone

already showed?), human-robot teaching by demonstration poses numerous challenges:

� the robot’s sensing capabilities are limited and different from human perception. What is the best

way to give demonstrations to robots so as to maximize knowledge transfer?

� a robot’s body is different than a human’s. What matching mechanism is needed to create the

mapping between a teacher’s actions and the robot’s own sensory-motor capabilities?

� learning is incremental, meaning that certain knowledge and skills could only be learned if there is

already an existing appropriate substrate. What could a given robot learn and what are the required

capabilities for learning it?

The following sections elaborate on these topics and present the approach taken in addressing these

issues in the dissertation.
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1.1.2 What Should the Robot Perceive?

An essential part of any robotic system employing teaching by demonstration is the ability of the robot to

interpret the demonstration. Numerous methods have been employed for teaching robots through demon-

strations, relying on different levels of complexity of the robot’s sensory capabilities. Although each of

these approaches has its own particularities, they can be classified into two main categories:

Learning by observation techniques, which rely on the learner passively observing the teacher’s per-

formance, and attempting to reproduce the observed behavior (Kuniyoshi, Inaba & Inoue 1994). These

only allow a robot to gather heteroceptive (i.e., external) sensory information, in most cases from a camera.

This requires the use of complex computer vision techniques to interpret the teacher’s actions.

Learning from experience approaches demand that the robot take active part in the demonstration, per-

forming the task along with the teacher and experiencing it through its own sensors. In addition to the

visual information, the robot is also able to record proprioceptive information such as joint angles or posi-

tions relative to its own body. “Putting robots through” the task is performed through means appropriate for

their own body: in humanoid robots this is mostly achieved through teleoperation (Pook & Ballard 1993),

or by using virtual reality environments (Ogata & Takahashi 1994), while in the mobile robot domain

teacher-following methods are typically used (Hayes & Demiris 1994, Nicolescu & Matarić 2001b).

In learning by observation a robot is faced with the major challenge of accurately perceiving the

teacher’s demonstration, which is subject to partial observability and noise in the majority of real-world

domains. In addition, the learner must also be able to interpret the observations and map them to its own

capabilities, while also accounting for differences in body structure with respect to the teacher. When

learning by experience, a robot has the advantage that, in addition to using external sensory information,

by executing the task to be learned it perceives the task through its own sensors: this avoids the above

problems, as the robot now has an example of the task in terms of its own sensory-motor capabilities. In

this dissertation:
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We rely on experienced demonstration as a modality of the transfer of task knowledge

from teachers to robots.

1.1.3 What Should the Robot Learn?

Irrespective of their particular method of demonstration, all approaches have to address the problem of

what the robot should learn.

If the goal is to have the robot learn a particular sequence of movements (e.g., waving-a-hand) then

learning to reproduce the demonstrated trajectory of the teacher is sufficient. This relies on the assumption

that the environment does not change during the robot’s performance and therefore cannot influence the

behavior of the robot.

However, in most cases the tasks that the robot should learn depend on and are influenced by the state of

the environment. In the case of learning a grasping capability, if the robot only records the exact trajectory

of a particular instance of a demonstration (e.g., grasping an object from the coffee table), it would not

be able to get to the object in a dynamic environment. This problem occurs due the fact that the robot

has no representation of the high-level goals of the task: what is important in this case is to get the object

irrespective of where it may be, not to follow a particular trajectory. In this dissertation:

We focus on learning high-level task representations, rather then precise trajectories

of the teacher.

The level of complexity of the tasks the robot is to learn is also a factor in designing a suitable learning

approach. Two important factors in this complexity are the encoding of sequences and the granularity of

the components that represent the task.

With respect to sequencing, at one end of the spectrum are reactive policies (e.g., maze navigation

(Hayes & Demiris 1994)) which constitute direct mappings from situations to robot actions, and have

no explicit sequencing capabilities. At the other end are the sequential skills/tasks (e.g., assembly tasks

(Kuniyoshi et al. 1994)) which encode explicit sequences of their steps. In the middle of this continuous
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spectrum of approaches for encoding and executing of sequences are those that allow for implicit sequence

representation, in which the sequences arise from the robot’s interaction with the environment (Brooks,

Connell & Ning 1988).

The components from which each of these classes of tasks can be built range from low-level actions

(e.g., turn-right-10-degrees), to higher-level, more complex capabilities (e.g., walking, grasping-a-cup).

The terminology referring to these categories of tasks is not always consistent in the literature. In Chapter 2

we discuss in more detail how these terms are generally used, and show how they are consistent with our

classification.

From the discussion above, it is intuitive that the complexity of the tasks increases with sequential

constraints and the use of higher-level components. In this dissertation:

We aim at giving robots the ability to learn complex tasks, involving temporal se-

quences and history.

1.1.4 What Should the Robot Know?

As mentioned in the previous section, complex tasks may be learned through elaborate combinations of

existing controller components. Intuitively, more complicated tasks may be more easily learned from

higher-level skills than from low-level commands.

The majority of approaches to teaching by demonstration attempt to teach the robot the task that it has

to perform without the robot’s having any pre-existing capabilities. While learning a new robot capability

is not necessarily dependent on having other capabilities, learning complex tasks directly is more difficult,

as the robot needs to learn both the necessary component modules and how to compose them to represent

more elaborate structures. This limits the ability of such methods to acquire complex tasks.

In the domain of assistant/helper robots for the consumer, it would not helpful if the user had to teach

the robot all the basic skills that are needed. It is, however, reasonable to assume that a robot would come

equipped with a set of basic capabilities that cover the spectrum of tasks the robot is able to perform. The
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user would then only have to teach the robot how to use and combine those skills to perform any particular

task that requires them. For this dissertation:

We assume that the robots are equipped with a basic set of capabilities.

Summarizing our discussion, we state the goal of this dissertation as follows:

Goal: Develop a flexible mechanism for robot learning of high level representations

of robotic tasks, through demonstrations experienced through its own sensors, based

on a set of underlying capabilities (behaviors) already available to the robot.

1.2 Task Representations for Learning from Demonstration

1.2.1 Challenges in Selecting the Robot Control Architecture

An important aspect of designing any robot system is to decide on what type of control architecture to use.

This choice is determined in large part by the specifics of the domain in which the robot performs and by

the particulars of the its tasks and required capabilities. For the conditions and goals outlined above, we

consider that a suitable control architecture should be endowed with the following key features:

� Modularity. Our goal is to enable flexible and automatic development of robot controllers from

existing robot capabilities, and therefore it is highly desirable that such skills be encapsulated in

modules that could be easily combined into more complex structures.

� Reusability of existing modules. As different robot skills are employed in various different tasks,

it is desirable that the component modules not require customization and redesign across tasks; they

should be designed so as to maximize module reusability.
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� Support for learning. Since our goal is to develop a method for learning task representations from

teacher demonstrations, the robot’s control architecture should provide the ability to construct such

representations automatically from observations gathered during the training experience.

� Robustness and real-time response. Especially in dynamic environments, such as human domains,

it is essential that a robot be able to respond quickly to sudden changes around it, while at the same

time continuing to perform its task.

� Ability to encode complex task representations. As we aim at designing methods for learning

of complex robot tasks, the underlying control architecture should have the ability to encode the

necessary representations.

Behavior-based control (BBC) is an effective approach to robot control, which provides modularity and

robust real-time properties. While it constitutes an excellent basis for this work, it has limitations regarding

the other required capabilities. This dissertation investigates methods for extending BBC by proposing a

Hierarchical Behavior-Based Architecture which provides capabilities for behavior reusability, learning,

and complex representations. The architecture employs an action-embedded representation for task execu-

tion and learning. This means that the robot learns representations and tasks through performing of actions

(in this case, behaviors), and not by observation alone. The process of learning such representations is

described in more detail in Chapter 4.

1.2.2 Behavior-Based Control

Behavior-based control (BBC) (Matarić 1997a, Arkin 1998) has become one of the most popular ap-

proaches to embedded system control both in research and in practical applications. Behavior-based sys-

tems (BBS) employ a collection of concurrently executing processes, which take information from the

sensors or other behaviors, and send commands to the actuators. These processes, called behaviors, repre-

sent time-extended actions that aim to achieve or maintain certain goals, and are the key building blocks

for intelligent, more complex behavior.
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An important principle to follow in BBS design is building behaviors that operate on a compatible

execution time scale. Having a behavior that performs reasoning on a centralized world model, as in

deliberative or hybrid systems, is not consistent with the behavior-based philosophy. Using both slow and

fast behaviors in a BBS would make the system hybrid in terms of time-scale, and thus would not maintain

BBC properties: fast, real-time responses, and similar representations and execution time.

An important property of BBS is their ability to contain state, and thus also construct and use dis-

tributed representations. However, this ability has been underused, so BBS are yet to be explored and

extended to their full potential. The reason for this limitation is the fact that behaviors lack the abstract

(symbolic, logic-like) representation that would allow them to be employed at a high level, like operators

in a plan. Behaviors are typically invoked by built-in reactive conditions, and as a consequence, BBS

are typically unnatural for, and thus rarely applied to complex problems that contain temporal sequences.

Since we seek a method that allows learning representations of general tasks that would require the se-

quential activation of the robot’s behaviors, in this dissertation we develop a mechanism that would allow

first the representation and then the execution of such sequences.

A second limitation is that the vast majority of behavior-based systems are still designed by hand for

a single task: the lack of abstract representation prevents automatic generation of BBS. Also, behaviors

themselves, once refined, are usually reused by designers, enabling the gradual accumulation of behavior

libraries. Unfortunately, the remainder of the system that utilizes such libraries is usually constructed by

hand and involves customized behavior redesign in accordance with the specifics of any new task. The

aim of this work is to conserve the robustness and real-time properties of behaviors and to develop a

behavior representation that would support automatic generation of BBS and behavior reuse for multiple

tasks (at least within a class of related tasks) while avoiding behavior redesign and even recompilation

when switching to a different task.

In the next section we introduce the Hierarchical Abstract Behavior Architecture we developed to

extend the capabilities of BBC and address the above limitations.
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1.2.3 A Hierarchical Abstract Behavior-Based Architecture

The Hierarchical Abstract Behavior-Based Architecture allows the construction of complex task repre-

sentations in the form of behavior networks. Within this architecture, the behaviors are built from two

components: one related to perception, the other to action (Nicolescu & Matarić 2003a).

The perceptual component, called abstract behavior, encapsulates information about the behavior’s

preconditions and its goals. The active component, called primitive behavior, performs the actions that

achieve the specified behavior goals under the given conditions. The abstract behaviors are the building

blocks of the network representations, and the links between them represent task-specific precondition -

postcondition dependencies. Within the resulting network, the activation of a behavior is dependent not

only on its own preconditions (particular environmental states) but also on the postconditions of its relevant

predecessors (sequential preconditions encoded as the network links). These links provide a simple and

natural way of representing complex sequences of behaviors and, as we will see, the flexibility required

to learn high-level task representations. In addition, using the links as task-specific activation conditions

enables the reusability of behaviors. The network links provide a simple and natural way of representing

complex sequences of behaviors and the flexibility required to learn high-level task representations.

The architecture also allows the construction of hierarchical representations; entire networks, repre-

senting tasks, can be abstracted into even higher-level components, in the form of Network Abstract Be-

haviors, and can be further combined to represent tasks of increasing complexity. The architecture and its

components are described in more detail in Chapter 3.

1.3 Learning by Multi-Modal Demonstration

Among humans, teaching various tasks is a complex process which relies on multiple means for interaction

and learning, both on the part of the teacher and of the learner. Used together, these modalities lead to

effective teaching and learning approaches, respectively. However, in the robotics domain, task teaching

has been mostly addressed by using only one or very few of these interactions. Human teachers rely on
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concurrent use of multiple instructive modalities, including primarily demonstration, verbal instruction,

attentional cues, or gestures. On the part of the learner, the process is also more complex than a one-shot

teaching experience. Students are typically given one demonstration of the task and then they perform a set

of practice trials under the supervision of the teacher, in order to show what was learned. If needed, during

these runs the teacher provides feedback cues to indicate corrections (irrelevant actions or missing parts

of the task). Alternatively, the teacher may also provide additional demonstrations that the learner could

use for generalization. Most of these aspects are generally overlooked in the majority of robot teaching

approaches, which focus mostly on only one, or very few of these instructive and learning modalities.

We believe that considering these issues significantly improves the learning process by conveying more

information about the task, while at the same time allowing for a very flexible robot teaching approach.

Figure 1.2: Learning and refining tasks through demonstrations, generalization and teacher feedback

This dissertation proposes a multi-modal method for learning representations of high level tasks, sim-

ilar to what people use when teaching each other. Our overall strategy for learning and refining task

representations is presented in Figure 1.2. The flexibility of this strategy consists in allowing the teacher

to choose the methods considered most appropriate at any given time: after a first demonstration, either

provide additional training examples or give feedback on what the robot has learned, during a practice trial.

Our experiments show that similar effects can be achieved by following different teaching approaches (i.e.,

various combinations of demonstrations and feedback), allowing the teacher to adapt his or her teaching

techniques to each particular case.

The thesis of this dissertation can be thus stated as follows:
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Thesis: Instructive demonstrations, generalization over multiple demonstrations and

practice trials can be successfully used for robot learning and refining of high level

representations of complex tasks.

The following sections briefly describe the methods we developed for one-shot learning, generalization

from multiple experiences and the use of practice for task refinement.

1.3.1 Single-Trial Learning

In order to learn a task from experience, the robot has to create a link between the observations (internal

and external sensory information) gathered during the demonstration experience and its own skills (in our

case behaviors) that would achieve the desired, observed effects. This is enabled by our particular architec-

ture of the primitives (behaviors), which have both an active and a perceptual component. The perceptual

component fires each time the observations match a primitive’s goals, allowing the robot to identify dur-

ing the demonstration the behaviors that are suited for and should be included in the corresponding task

representation.

The advantage of putting the robot through the task during the demonstration is that the robot is able to

adjust its behaviors (through their parameters) using the information gathered through its own sensors. If

designed by hand, the parameters would have to be set by the programmer. Also, the observations gathered

through the task experience provide temporal information for proper behavior sequencing, which would

be tedious to design by hand for tasks with long temporal sequences. The methods for learning from a

single demonstration are described in more detail in Chapter 4.

1.3.2 Generalization from Multiple Demonstrations

Generalization is an essential capability for a successful approach to learning by demonstration. Limited

sensing capabilities, the quality of the teacher’s demonstration, or the particularities of the environment

may prevent a robot from learning the task correctly from only one trial.

12



The goal of the generalization mechanism is to build a task representation that encodes the specifics

of each example while also capturing the common aspects among all demonstrations. Given the particular

network-like representation we employ for the robot tasks, this is achieved by merging the corresponding

networks at the nodes that are common, while maximizing the length of the common sequence of nodes

between the tasks. Chapter 5 presents this methodology in more depth.

It is important to note that although we may rely on multiple demonstrations, since the goal is to reduce

the amount of time and expertise that the process of robot controller design would require, the method is

focused on learning from a very small number of trials.

1.3.3 Task Refinement through Practice

A limitation of our generalization mechanism is that it cannot account for situations when unnecessary

task steps are repeatedly observed and included in the task representation, or when a robot consistently

misses a relevant part of the task. To deal with such cases, this dissertation proposes the use of practice

runs, during which the teacher observes the execution of the robot and is allowed to provide more accurate

feedback to indicate where the problems occurred.

The advantage of this approach is that it does not require that the teacher have any knowledge about

the specifics of the architecture and about how the learned task is encoded in order to provide appropriate

guidance. The simple observation of the robot’s performance is a sufficient indicator of what the robot has

learned. As such, the teacher may indicate when seeing the robot performing unnecessary steps, and also

may intervene when noticing that the robot has skipped essential parts of the task. Chapter 6 describes in

detail how practice and teacher feedback improve the quality of the learned task representations.

1.4 Contributions

The main contributions of this dissertation are:
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� The development of the Hierarchical Abstract Behavior Architecture as an extension of standard

Behavior-Based Systems. This contribution includes the hierarchical behavior-network representa-

tions and an on-line learning algorithm that enables the automatic construction of these representa-

tions.

� The use of Abstract Behavior Networks and the learning algorithm for task teaching by demonstra-

tion in human-robot domains.

� Methods for generalizing and improving the accuracy of the learned representations by using multi-

ple, but still sparse, demonstrations and feedback from the teacher.

The auxiliary contributions, developed in support of the ones above, are:

� The development of various behaviors, comprising a set of basic robot skills that allow a robot to

track colored targets, pick up and drop objects, and open small doors.

� A vocabulary of “guiding” symbols, used for robot instruction and for improving the accuracy of

the learned task representations.

1.5 Dissertation Outline

The reminder of this dissertation is organized as follows:

� Chapter 1: Introduction

gives an introduction to the issues of knowledge transfer and communication in the human-robot

interaction domains and motivates our use of action-embedded representations for addressing these

issues.

� Chapter 2: Related Work

provides a review of the relevant previous work in the area.
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� Chapter 3: Hierarchical Abstract Behavior Architecture

presents our behavior architecture, describes its use for representing and executing complex, hi-

erarchically structured robotic tasks and gives illustrative examples demonstrating the use of the

architecture.

� Chapter 4: Learning from Experienced Demonstrations

describes the process of on-line construction of task representations from experienced demonstra-

tions and interactions with a teacher and presents experiments showing the robot’s learning abilities.

� Chapter 5: Learning through Generalization from Multiple Examples

explains our method for combining several demonstrations into a unique task representation that

best generalizes the presented task.

� Chapter 6: Improving Learning through Practice and Teacher Feedback

describes the human-robot interactive approach for refining learned tasks through teacher-supervised

practice.

� Chapter 7: Conclusions

presents a summary of the work described in this dissertation.

� Appendix A: Teaching Your Robot

provides the manual containing the information necessary for a non-expert user to teach a robot by

demonstration.
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Chapter 2

Related Work

This chapter presents a review of related work in areas of Robotics, Machine Learning and

Artificial Intelligence. First, it presents examples of the most representative mobile robot

control architectures from the perspective of their adaptation to the key features required in

robot teaching by demonstration. Next, it discusses existing methods for encoding task repre-

sentations, and it analyzes current approaches to task learning, with emphasis on techniques

for learning from demonstration. The chapter also discusses current techniques for learn-

ing from multiple demonstrations. The purpose of this chapter is to relate the Goal of this

dissertation to the existing work and give the motivation for the proposed solution.

The previous chapter introduced the goal of this dissertation as the ability to transfer complex task

knowledge through demonstration, which does not require the need for programming skills or a strong

robotics background on the part of the robot users. The discussion introduced a number of relevant key

issues that influence the design of the solution: the choice of the control architecture, learning of task

representations, approach for demonstration, and the ability to refine the learned tasks through multiple

demonstrations and practice. This chapter discusses existing approaches to these problems and how they

relate to the solution proposed in this dissertation.
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2.1 Representation in Robot Control Architectures

As discussed in the previous chapter, choosing a suitable control architecture for robot teaching by demon-

stration is influenced by factors such as modularity, component reusability, robustness, and real-time prop-

erties, and by the ability to encode complex task representations, and to provide support for learning. This

section presents the most representative approaches to robot control and discusses their capabilities relative

to these issues. Although the focus will be on a restricted group of control architectures, it is important

to note that there exists a continuous spectrum of approaches to robot control that bear relations to differ-

ent classes of systems. Among these, the class of hierarchical, partial-order execution architectures will

be discussed, as it is highly related to the Hierarchical Abstract Behavior Architecture proposed in this

dissertation.

2.1.1 Reactive Systems

Control in Reactive Systems (RS) is based on a tight loop connecting the robot’s sensors with its effectors,

allowing for very fast response to changing and unstructured environments (Brooks 1986). The approach

does not allow the robot to have memory, maintain state and any internal representations of the world,

and thus is restricted to relatively simple classes of problems. The characteristics of these systems are

summarized in Table 2.1 and discussed in more detail below.

Table 2.1: Summary of Reactive Systems capabilities with respect to our evaluation criteria

Representation No
Task execution and

representation richness
Simple (Reactive rules)

Robustness and
real-time response

Very good

Modularity Possible
Reusability Possible
Support for

learning
Only reactive policies
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Ability to encode complex task representations. In the case of reactive systems, the minimal, if any,

internal state information employed is used only to index the current environmental state into the possible

set of situations, embedded in the reactive rules. This makes the systems unsuitable for more complex

problems that require the use of internal models and memory.

Reactive systems implement collections of rules that map particular situations to particular actions.

With respect to the organization, there are several ways in which these systems can be structured:

� flat: if the perceptual world can be divided into mutually exclusive or unique situations, there is only

one action that can be triggered for a given situation, and the system is structured as a one-to-one

mapping between those state and action spaces.

� layered: if there is more than one action that can be triggered for a given situation, a hierarchy

of priorities for these actions is used to perform arbitration among them. These priorities can be

pre-assigned at design-time, can be dynamic, or can be learned.

Examples of representative reactive architectures include Universal Plans (Schoppers 1987), systems

with circuit semantics (Agre & Chapman 1990, Kaelbling & Rosenschein 1990, Horswill 1997), and T-R

programs (Nilsson 1994).

In reactive systems there is no explicit representation of sequences: the principle in their design is that

sequences, and intelligent behavior in general, should emerge from the dynamic interaction of the robot

with the environment (Brooks 1990b), (Brooks et al. 1988). This is another constraint that limits RS to

relatively simple tasks.

Robustness and real-time response. As mentioned above, the most important feature of reactive systems

is their ability to respond quickly in dynamic, unstructured environments, which also gives them robustness

for real-world domains. For problems which do not require complex reasoning abilities, RS are able to

offer a fast reaction time.

18



Modularity. Depending on the particularities of the implementation, reactive systems may be constructed

from modules, but many are also built from low-level actions. Therefore, both modular and non-modular

controllers are supported within the reactive framework.

Reusability. The degree of reusability of various parts of the system is dependent on the specifics of the

implementation. Rules and/or modules may be reused, while Universal Plans or T-R programs would have

to be redesigned.

Support for learning. Reactive systems provide support for learning, but due to the limitations in task

representation expressiveness, learning is limited to reactive policies.

Considering the above criteria, although the real-time and robustness properties would make reactive

systems a good choice for the dynamic human-robot domains, their limitations in terms of task represen-

tations and learning would not make them suitable for our proposed challenge.

2.1.2 Deliberative Systems

The principle for control in Deliberative Systems (DS) is to use all the available sensory information and

the stored knowledge to reason about what action should be performed. Typically, the sensory information

is used to build an internal model of the world, which is next used to plan for possible paths that reach

a given goal. Although the architecture allows a robot to look into the future and thus generate complex

action sequences, it is best suited for environments that do not change rapidly. Real-world, unpredictable

environments would require continuous updates of the internal world model and re-planning, which is

time-consuming. Table 2.2 summarizes the characteristics of Deliberative Systems with respect to our

evaluation criteria, features which are discussed in more detail below.

Ability to encode complex task representations. In contrast to reactive systems, Deliberative Systems

make extensive use of internal representations of the world, since they require complete or very detailed

world models in order to be able to reason about what actions to take next. World models are prepro-

grammed or built from sensory information, and give the ability to look ahead and predict the outcomes
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Table 2.2: Summary of Deliberative Systems capabilities with respect to our evaluation criteria

Representation Yes (extensive)
Task execution and

representation richness
Complex (Plans)

Robustness and
real-time response

Low

Modularity Yes
Reusability Yes
Support for

learning
Operator preconditions/effects

and plan caching

of possible actions in various situations. Thus, along with additional knowledge about the tasks, they are

essential for constructing a plan that leads to the goal.

Deliberative systems enable the representation of complex sequences of actions, through their ability

to reason about and represent possible paths to a goal. In the classical deliberative approach, once a plan

is constructed, it is executed step by step, until the goal is achieved. However, most real-world domains

are dynamic, and thus the world model on which a plan is based may change frequently, rendering the

plan obsolete. Solutions to this problems include re-planning after a small number of steps (Moravec

1977, Moravec 1990), monitoring (Nilsson 1984), and incremental planning or plan caching (Firby 1989,

Georgeff & Lansky 1987).

Robustness and real-time response. These properties follow directly from the discussion above. Since

world model updating and replanning are both time consuming processes, when faced with a sudden

change in the environment, a robot would not be able to find an action to perform within the short time

available. The inability to react in real-time is thus an important factor for decreasing the robustness of the

system.

Modularity. The building blocks in a Deliberative System are most often high-level, symbolic operators,

with well-defined preconditions and post-conditions (Fikes & Nilsson 1971). These operators also enable

a hierarchical decomposition of the tasks, resulting in a modular task representation.
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Reusability. Since operators are self-contained modules, in the sense that they are completely specified

by their preconditions and effects, they may be easily reused for other tasks.

Support for learning. In Deliberative Systems learning has been investigated at the level of learning

plan operators (Wang 1996, Wang & Carbonell 1994), refining operators (Carbonell & Gil 1990), opera-

tor preconditions (Mitchell, Utgoff & Banerji 1993), procedural planning knowledge (Pearson 1996) and

learning plans from experience (Carbonell 1983). Thus, although Deliberative Systems offer the ability to

construct and represent solutions for complex, sequential tasks, with respect to our goal, their real-time and

robustness properties do not make them a suitable choice for noisy, dynamic human-robot environments.

2.1.3 Hybrid Systems

Reactive and deliberative systems have advantages and disadvantages that complement each other. Re-

active systems are responsive to unpredictable environments but can only be applied to relatively simple

tasks. Deliberative systems can build and execute complex plans, but are impractical for many real-world

domains.

In single robot control, the most common approach used to merge the advantages and bridge the gap

between reactive and deliberative architectures are Hybrid Systems, which employ both a symbolic deliber-

ative layer and a reactive layer. The deliberative component allows for looking ahead and reasoning about

possible paths to the goal, relying on internal world representations and operating on a long time-scale.

The reactive component deals with the robot’s immediate needs, thus acting on a much shorter time scale.

In order to provide a smooth interaction between the two layers, such systems, also called three-layer

systems, require a middle layer whose role is to resolve the conflicts and the difference in the time scale

and representation used by the other two layers (Gat 1998). Building the middle layer, which handles the

complex interaction between these two layers is however the biggest challenge of hybrid systems design.

In Table 2.3 we present a summary of how the Hybrid Systems’ capabilities match the challenges we

proposed for our work.
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Table 2.3: Summary of Hybrid Systems capabilities with respect to our evaluation criteria

Representation Yes
Task execution and

representation richness
Plans and reactive rules

Robustness and
real-time response

Good

Modularity Yes
Reusability Partial
Support for

learning
Operator preconditions/effects

and plan caching

Ability to encode complex task representations. Through their deliberative component Hybrid Systems

make extensive use of internal representation of the world and stored knowledge. Similar to deliberative

systems, they require this information in order to be able to reason about possible paths to the goal.

Hybrid Systems combine the representational richness of complex plans with the simplicity of reactive

modules. With respect to the execution, both deliberative and reactive layers provide a control component

which has to be coordinated by the system’s middle layer in order to avoid potential conflicts.

There are various approaches to designing hybrid systems. Agre & Chapman (1990) used a planner to

give advice to the reactive control system, which could choose to use or ignore it. Arkin & Balch (1997)

proposed a hybrid strategy that integrated a symbolic, deliberative level with a reactive (schema-based)

controller, as a selection tool for the behavioral composition and parameters used during execution. Other

representative hybrid architectures are Shakey (Nilsson 1984), RAPs (Firby 1989), SSS (Connell 1992),

3T (Bonasso, Firby, Gat, Miller & Slack 1997) and architectures relying on the Discrete Event Systems

(DES) theory (Kosecká & Bogoni 1994, Huber & Grupen 1997).

Robustness and real-time response. The reactive component of Hybrid Systems enables a robot to react to

immediate changes in the environment, increasing the level of robustness of an otherwise pure deliberative

architecture. However, the time for reaction may be longer than in the purely reactive systems, due to

possible conflicts between decisions taken by the reactive layer (responding to sudden challenges) and the

deliberative layer (trying to achieve the task).
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Modularity. Hybrid systems inherit their modular properties from their reactive and deliberative layers.

At the symbolic level, the representations are built from abstract operators, which allow for a modular,

hierarchical task decompositions. At the reactive level, as previously discussed, it is also possible to use a

modular design.

Reusability. The components at the higher level, similar to the deliberative systems case, can be reused

without any changes. At the lower level, depending on the choice of implementation, components may or

may not be reused.

Support for learning. Hybrid systems can use learning techniques employed both in reactive and deliber-

ative systems. Benson & Nilsson (1994) describe a hybrid architecture that learns the effects of an agent’s

actions in the environment, such that they could be used to construct more reliable plans.

So far in our analysis of mobile robotic architectures, Hybrid systems provide the best support for the

issues involved in our challenge. The drawback of using such systems, however, is the complexity involved

in designing the middle layer, responsible for the coordination of two significantly different control layers.

We will consider Hybrid Systems in greater detail in the next section, which will present a comparison

between these systems and behavior-based control.

2.1.4 Behavior-Based Systems

Behavior-Based Systems (BBS) are a biologically inspired approach to control in complex, dynamic en-

vironments, and thus are best suited to unstructured, real-world domains. They are built from goal/task-

achieving modules (behaviors) that are executed continuously and in parallel, and have the ability to main-

tain state and build representations. However, distributing these representations effectively over the behav-

ior structure is a major challenge and an important reason why the majority of BBS to date have not used

complex representations.

In Table 2.4 we summarize the capabilities of BBS with respect to our evaluation criteria, and discuss

these issues in more details next.
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Table 2.4: Summary of Behavior-Based Systems capabilities

Representation Underused ability
Task execution and

representation richness
Relatively simple

Robustness and
real-time response

Very good

Modularity Yes
Reusability Possible
Support for

learning
Underused ability

Ability to encode complex task representations. The ability of behaviors to store state and to commu-

nicate with each other allows them to construct world models/representations. Due to the complexity of

the representation construction process, this ability of BBS has been underused, but there is no intrinsic

reason that would preclude the use of representation in BBS.

An early example of embedding representation and successfully integrating a deliberative component

into BBS was done by Matarić (1992). The representation was constructed from behaviors, and was

successfully used in the navigation domain for mapping and path planning.

The limited use of representation in BBS influences the complexity of the tasks to which they can be

applied. Most often, behaviors are invoked by built-in, reactive conditions, which makes them unnatural

for complex problems, requiring temporal sequencing. There are numerous approaches to the problem of

behavior activation, also known as the action selection problem (Pirjanian 1999).

Maes (1990b) and Maes (1990a) describe a dynamic action selection mechanism for a situated agent,

based on spreading activation within a network created from a given behavior repertoire. Brooks (1990a)

and Connell (1990) use a selectionist approach to behavior arbitration. In that case, although behaviors

are executed in parallel, and more than one behavior may produce an output at a given time, they are

subjected to a prioritization scheme, which ultimately selects a “winner”, whose outputs are propagated

to the actuator. Other action selection mechanisms include fusion-based methods (Saffiotti, Ruspini &

Konolige 1993, Steels 1994), in which outputs from various behaviors are blended together into a new
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actuator command, voting mechanisms (Rosenblatt 1997), and winner-take-all strategies, which select the

behavior with the largest number of votes received. A detailed description of action-selection strategies

can be found in (Pirjanian 1999).

Robustness and real-time response. Since behaviors are fast-running processes, directly connecting

the robot’s sensors and its effectors, they enable the system to react in real-time to any environmental

challenge. This also gives robustness to the system, since any changes in the world would be immediately

processed and allow the robot to take a decision as soon as they occurred.

Modularity. BBS are modular by the nature of their components. They are constructed in a bottom-up

fashion, starting with simple, survival modules at the bottom, and incrementally continuing with more

complex capabilities toward the top.

Reusability. Typically, in order to design an behavior-based controller, behavior activation conditions

are customized to capture the particularities of the tasks. Reusing behaviors for different tasks requires

continuous changing and customization of behaviors, although the underlying behavior process remains

the same.

Support for learning. Although the majority of approaches to learning in BBS have focused on learning

policies, these systems have the ability to learn more complex task representations.

The analysis of the above characteristics of BBS shows that several of their potential abilities are

typically underused, although they would be able to provide full support for learning, behavior reusability

and the ability to encode complex task representations. BBS and Hybrid Systems have similar capabilities,

although each of them has its own particulars (Arkin 1998, Matarić 1997a). Both systems have the same

expressive and computational abilities: while Hybrid Systems use world models and search techniques to

plan and look ahead, BBS distribute the representation across the behavior structure and are able to reason

within the same time scale as the entire system, eliminating the need for a middle layer. Also, both have

good real-time and robustness properties; however, while Hybrid Systems are well suited for environments

with few real-time demands and where more elaborate internal models have to be used, BBS are best suited

for environments with significant changes which also require some looking ahead.
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Due to these essential properties, we consider that it is of particular interest to address the limitations

of BBS and to extend BBS with abilities to encode complex representations, reusability and task learning

(Nicolescu & Matarić 2002).

2.1.5 Hierarchical Architectures

A class of systems that is important to address due to the high relevance to the architecture proposed in

this dissertation is that of hierarchical, partial-order execution architectures.

Such systems employ a hierarchical task structure, either completely provided a priori (Nicolescu

& Matarić 2002) or dynamically expanded at execution time (Pearson, Huffman, Willis, Laird & Jones

1993, Simmons 1994, Tambe, Johnson, Jones, Koss, Laird, Rosenbloom & Schwamb 1995). The building

blocks of these hierarchies are extended-time, continuous execution modules, which are activated based

on environmental conditions and information generated by other modules. These representations use such

conditions to move forward at any level of hierarchy and also downward in the hierarchy.

A hierarchical architecture that provides a more sophisticated control flow and allows for more expres-

sive representations was presented by Sycara, Williamson & Decker (1996), and has been implemented

in an Internet-based multi-agent system. Conditional branches are enabled through the use of “provision

links”, which relate the outcome of an action to the provision (i.e., the information needed by and action)

of other action. The framework allows for both periodic and aperiodic actions, and also provides support

for triggered actions, which are enabled in response to external events.

Hierarchical architectures for behavior control have also been developed for agents embedded in virtual

environments. Bindiganavale, Schuler, Allbeck, Badler, Joshi & Palmer (2000) describes a Parameterized

Action Representation (PAR), to hierarchically encode the actions of a virtual human agent. The Hierarchi-

cal Agent Control Architecture (HAC) presented in Atkin, King, Westbrook, Heeringa, Hannon & Cohen

(2001) uses three hierarchies: for action, for sensors, and for context. The hierarchy for structuring the sen-

sory information into increasing levels of abstraction is similar to the goal representation for the abstract

behaviors, but it is not linked with the behaviors whose goals it represents. In the above two architectures
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the knowledge about the ordering of the steps in a task is maintained at a higher-level responsible with the

activation of high-level actions or PARs (Atkin et al. 2001). While we encode this task-specific ordering

information into behavior links, both types of representations provide support for successfully achieving

the execution of a task having a hierarchical decomposition.

Having reviewed the main classes of robot control architectures, next we consider their ability to in-

corporate learning, as it is one of the key challenges of the work presented in this dissertation.

2.2 Task Representation in Robot Learning by Demonstration

2.2.1 Terminology

Learning is one of the greatest challenges in Artificial Intelligence and a key issue in robotics. It implies,

in principle, the ability of a robot system to autonomously acquire new concepts and/or skills, to adapt

to changes in the environment and/or task, and to improve its performance over time. Experience and/or

instruction provided by a teacher may facilitate the learning process, by providing additional knowledge,

advice, or specific instructions. The level at which learning occurs is dependent on the abilities that are

desired from the system. To better define the focus of our learning problem and to be able to present the

difficulties at the various learning levels, we are interested in distinguishing between skill and task-level ap-

proaches for teaching by demonstration, differentiated by the complexity of the capabilities being learned.

The literature on learning from demonstration does not make a clear distinction among these various levels,

and in numerous cases the notion of task learning has been used to refer to learning capabilities with skill-

level complexity. To clarify the distinction we are aiming to make, and to explain what is implied by skill

and task complexity, along with the complexity that each is able to encode, we propose definitions of these

notions and discuss how they relate to existing terminology. As will be seen throughout the remainder of

this chapter, these distinctions are essential for the design of systems that learn by demonstration.

We consider a skill to be a pattern of activity which describes an aptitude or ability

that achieves or maintains a particular goal.
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Kaiser & Dillmann (1996) denote a skill as “the learned power of doing a thing competently,” giving

peg-insertion and door-opening as examples of such skills. The system performs actions that achieve a

particular goal, associated with each given skill. In Friedrich & Kaiser (1995), elementary skills (like peg-

insertion) are defined as “perception-action transformations involving no model knowledge, that represent

basic capabilities of the robot.” These definitions convey the general idea of skills being temporal ex-

tended activities, relying on simpler motor capabilities also called primitive actions (Schaal 1999). These

elementary actions can be “simple point-to-point movements” such as go-forward or go-backward and

they serve as building blocks for higher-level compounds called either movement primitives, movement

schemas (Arkin 1987, Arbib 1992), basis behaviors (Matarić 1997a), units of action, or macro actions

(Schaal 1999). In turn, these are defined as “sequences of actions that accomplish a complete goal-

directed behavior” (Schaal 1999). The blurry boundary between the meanings ascribed to these terms

is clear, as Schaal argues that such primitives can be as simple as an elementary action for symbolic ap-

proaches to imitation (e.g., go-forward, go-backward), but that in fact it would be more useful for such

primitives to encode “complete temporal behaviors” (like grasping-a-cup, walking or a tennis-serve), in

order to provide a more compact state-action representation. In this dissertation we choose to take the

second interpretation, and distinguish primitive actions as being the building components for skills.

Skill learning may thus be regarded as the learning of abilities (such as avoiding obstacles, following

light) “from scratch,” by enabling the robot to create a mapping between situations and actions. However,

in some approaches more elaborate skill learning may involve creating situation-behavior mappings, such

as learning to coordinate behaviors for walking in legged robots (Maes & Brooks 1990).

As discussed in the previous chapter, another factor that influences the complexity of any robot capabil-

ity is the ability to use or incorporate temporal sequences. Skills could range from purely reactive actions

with no sequence capabilities, to reactive skills in which sequencing may emerge from the interaction with

the environment, and finally to skills with explicit sequence representations. An example of a completely

reactive skill is learning to navigate a maze (Hayes & Demiris 1994), in which the robot learns to coordi-

nate its “left”, “right” and “forward” movements based on the state of the environment (e.g., opening to the

28



left, on corridor, etc.). Schaal (1997) shows the use of demonstration to speed up reinforcement learning

for acquiring a pole balancing skill. Although sequences are not explicitly represented in the controller,

the overall resulting behavior is a sequence of actions that allows the robot to perform this activity in an

effective and competent manner.

The difference between skill and task-level complexity is described in Friedrich & Kaiser (1995) as

follows: a program schema (or task-level program) is a “a sequence of elementary skills including proper

application conditions.” In Voyles & Khosla (2001) a set of such skills (or “sensory motor primitives”)

is said to “approximate the set of primitives that a human uses to perform a task from the particular

application domain.” Assuming an existing set of such skills, a task may be regarded as follows:

We consider a task to be an activity involving the coordination of an existing set of

skills in order to achieve a given set of goals.

This definition does not imply that tasks could not be directly built from elementary actions. How-

ever, such a non-modular approach is in general quite difficult, as it does not benefit from the ability to

rely on already existing capabilities, either within the same or across different tasks. Designing such sys-

tems becomes difficult, as any given task would have to be completely re-written using a set of low-level

elementary actions, and would result in cumbersome task representations.

Various types of control structures may be employed in building and executing of task representations:

sequences, unordered execution, conditional branches, periodic skills, loops, and externally enabled ac-

tions, which may be embedded in both flat and hierarchical representations (Sycara et al. 1996). In the

discussions following in this dissertation, it is considered that task-level learning is performed at a higher

level of abstraction and takes into consideration principled methods for the representation and execution of

complex problems which typically require temporal sequences and hierarchical decomposition. Although

the proposed task learning approach is focused primarily on learning from demonstrations of sequenced

tasks, the control architecture provides support for using other control structures. The current capabilities

of the architecture are presented in more detail in Chapter 3 (Section 3.6).
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This dissertation focuses on the issue of task learning to address the challenge of automating control

system design. The following sections present current approaches to skill and task learning, and describe

their applicability domains and the expressiveness of the learned representations.

2.2.2 Symbolic vs. Non-Symbolic Representations

Another new distinction that can be made with respect to the representations of robot skills/tasks is between

symbolic and non-symbolic approaches to representation.

One form of encoding a robot’s capabilities is in the form of a control function (or policy). Such

representations are defined as “computing a command u in a state x at a time t,” in order to achieve a goal

associated with the skill. Given a sufficient number of training examples, the policy is computed through

function approximations techniques (Kaiser 1997). Such methods constitute the class of non-symbolic

representations for robotic controllers, and are most often applied in articulated control.

In the context of learning from demonstration, the class of symbolic task representations includes hi-

erarchical structures (Ikeuchi, Kawade & Suehiro 1993, Ikeuchi & Suehiro 1992), graphs (Friedrich &

Dillmann 1995, Voyles & Khosla 2001), execution tree representations (Ogata & Takahashi 1994) of as-

sembly tasks, or hierarchically structured knowledge of a flying task (van Lent & Laird 1999). In the

area of learning assembly tasks, the high-level, symbolic representations are also built as sequences of

particular types of contacts between the manipulated objects (Tominaga, Takamatsu, Ogawara, Kimura &

Ikeuchi 2000). Executing the task involves reproducing the same sequence of contacts, using an a priori

designed set of skills that can reproduce the required contact transitions. The high-level representations

built by these approaches are generally separated from the level of robot control, which means that ad-

ditional mechanisms are necessary to further process them and convert them into actual robot commands

(Tominaga et al. 2000). The architecture proposed in this dissertation allows building of abstract task rep-

resentations in terms of existing robot skills. As such, the robot is able to use the learned representation

directly for performing the task.
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2.2.3 Skill Learning

At the level of skill learning, the majority of approaches have been applied to learning movement primitives

(Jenkins & Matarić 2003, Ramesh & Matarić 2002) or navigation skills (Demiris & Hayes 2002).

In the area of mobile robotics, Michael Kasper & von Puttkamer (2001) present a behavior-based

approach for learning reactive motor behaviors (door-passage, wall-following) and outline a strategy for

learning history-dependent behaviors. An interesting aspect of this work is that “teaching” can be per-

formed by an already existing behavior running on the robot: this enables behavior cloning, in which the

same functionality can be obtained by using different sensors for input. Also in the mobile robot domain,

Hayes & Demiris (1994) demonstrated maze learning, i.e., learning turning behaviors, by following an-

other robot teacher. The robot uses its own observations to relate the changes in the environment with its

own forward, left, and right turn actions, and constructs a reactive policy representation of the task.

In the area of humanoid robotics, Jenkins & Matarić (2002) demonstrate learning of a set of basis

behaviors or perceptual-motor primitives from data of multiple observed human motions. The approach,

implemented on a 20 DOF dynamic humanoid simulation, uses spatio-temporal non-linear dimension

reduction techniques to segment the human motion data. The obtained segments are clustered into action

units, which are further generalized into parameterized primitives. The approach provides a unique model

for robot imitation (Jenkins, Matarić & Weber 2000), as the obtained primitives can be used both for

recognition and generation of complex humanoid movement through sequencing or superposition.

Various approaches for learning of manipulation skills, such as performing a peg insertion operation

have also been demonstrated. While Kaiser & Dillmann (1996) use a control function representation for

the learned skill, in Onda, Suehiro & Kitagaki (2002) the skill is represented as a sequence of contact state

transitions that achieve a cylindrical peg insertion.
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2.2.4 Task Learning

The existing approaches for task learning from demonstration have focused mostly on learning manipula-

tion or assembly tasks using humanoid robots (Ikeuchi & Suehiro 1992). The representations built in these

cases may be constructed in terms of high-level operators constituting capabilities of the robot (Kuniyoshi

et al. 1994) or as sequences of events that the robots aim to reproduce at the time of the execution. Via-point

representations of robot trajectories have also been used in humanoid learning of playing a tennis forehand

(Miyamoto & Kawato 1998), or the game of kendama (Miyamoto, Schaal, Gandolfo, Gomi, Koike, Osu,

Nakano, Wada & Kawato 1996). In these approaches, the use of a bi-directional theory for robot control

employs a flow of information between the motor command and the trajectory planning levels, which helps

to coordinate the high-level decisions with the reactive motor responses.

Pook & Ballard (1993) use Hidden Markov Models (HMM) to learn an egg-flipping task, built from

the robot’s grasp, carry, press and slide skills. The demonstrations, provided through teleoperation, allow

the robot to learn the task sequence from a small number of demonstrations of the task. Another example

that uses HMMs demonstrates learning of a peg-in-the-hole skill (Hovland, Sikka & McCarragher 1996),

in which the states of the model are represented by the possible configurations of the assembly and the

transitions correspond to moving the peg with various velocities in up to eight possible directions.

In the mobile robot domain, Hugues & Drogoul (2002) present a mechanism for learning a slalom

task. The robot learns by creating a mapping between features in its visual field and wheel velocities.

However, this solution is highly dependent on the particulars of the environment in which the task is being

demonstrated. Since it relies on features detected on walls or doors, the robot would fail to reproduce the

task in a different environment, even if the positions of the slalom poles and their relations to each other

would be identical to those that are obtained during training.

Task learning from demonstration has also been addressed for authoring Intelligent Tutoring Systems

(ITS) (Munro, Johnson, Pizzini, Surmon, Towne & Wogulis 1997). Since it is difficult to design au-

tonomous tutors by manually encoding the knowledge of experts in a particular domain, systems for au-

thoring ITS focus on learning this complex procedural knowledge and plans from demonstrations provided
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by the experts. This is a very challenging problem, as the tutor needs a lot of information in addition to

just being able to demonstrate a procedure to students (e.g., monitoring the students, recognizing valid

sequences of actions and answering student’s questions). The approach presented by Angros (2000) uses

both training examples and autonomous experimentation to learn hierarchical task knowledge, while in the

same time acquiring general-purpose operators that contain reusable domain knowledge. The advantage

of using experimentation is that it provides the learning agent with more data for learning, thus helping

refine operator preconditions, and reducing the instructor’s effort in providing the demonstrations.

2.3 Robot Learning by Demonstration

This section presents the most representative approaches to teaching robots by demonstration with re-

spect to the various means they employ for providing the demonstrations. It also includes a discussion of

methods that integrate demonstration with other learning techniques.

2.3.1 Segmentation and Identification of Demonstration Traces

The main difficulty of any learning by demonstration approach is the interpretation of the long sequences

of observations gathered from the instruction, as the robot has to segment the continuous stream of data

coming from its sensors, then translate them into appropriate skills or tasks.

If the robot already has a basic set of capabilities, interpreting the demonstration becomes a problem of

creating a mapping between the perceived action of the teacher to a set of existing primitives (Schaal 1999).

Alternatively, the robot may also build a set of elementary operations by segmenting the demonstration

trace, and then learn from them a general program structure (Friedrich & Dillmann 1995).

The method for skill identification proposed in this dissertation relates the observations made during

the demonstration to the known goals of each of the robot’s skills. This approach for identification takes

inspiration from psychology: Meltzoff & Moore (1997) argue that for imitation, in early infancy, matching
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is based on goal states for the motor system, and that at later developmental stages matching may be based

on a temporal sequence of goal states, or on a transition between goal states.

Similar to the work proposed in this dissertation, Voyles & Khosla (2001) assume the existence of

a set of elementary skills, and employ collections of gesture recognition agents (such as touch, force,

etc.), and gesture interpretation agents (such as guard-move, rotate, etc.) to identify the component skills

from the demonstration. The resulting task has the form of a finite state machine, in which each node

incorporates multiple agents executing in parallel to achieve a desired action. However, this representation

is not robust for dynamic domains, as the nodes themselves do not have any ability to detect changes in

the environment. The architecture proposed in this dissertation relies on behaviors, which continuously

receive sensory information and thus are able to react to unexpected situations.

Another approach for identifying instances of known primitives in new demonstration data is pre-

sented in Voyles, Morrow & Khosla (1997). Using Principal Component Analysis (PCA), primitives such

as guarded moves and edge-to-surface alignment for a robotic arm can be learned and subsequently recog-

nized during further demonstrations. The method is however limited by the condition that the operations

should be decoupled (such as a zguard and a yroll movement of a PUMA robot arm), and is restricted to

learning very simple and short sequences or combinations of movements.

Pook & Ballard (1993) use Learning Vector Quantization (LVQ) to identify patterns corresponding to

existing robot operators in the sensory data obtained during teleoperation of those skills. A window sliding

approach identifies the patterns in the overall sensory stream of a task demonstrated through teleoperation.

The sequences of identified patterns are next passed to an HMM to segment the task into a sequence of

primitives. However, the structure of the HMM is designed a priori, which limits the generality of the

approach in learning arbitrary tasks.

Within the domain of learning assembly tasks from observation, various approaches proposed a seg-

mentation of the demonstration trace based on contact relations between the objects involved in the task

(Tominaga et al. 2000, Ikeuchi et al. 1993) or by the relation between the manipulated objects and the
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teacher’s hand (Kuniyoshi & Inoue 1993). The robots then use predefined skills to generate the same

contact transitions as observed during the demonstration.

2.3.2 Learning by Observation

In the area of task learning by observation the most representative approaches to learning symbolic, hi-

erarchical representations of assembly tasks have been proposed by Kuniyoshi et al. (1994) and Ikeuchi

& Suehiro (1992). To interpret the demonstrations, these systems rely on complex computer vision tech-

niques that segment the input data and allow for the recognition of the actions performed by a human

demonstrator. However, due to the limitations of the vision systems, testing is performed in constrained

environments with simple geometric blocks, and relying on accurate a priori information about the scene.

Brand (1997) developed a system that does not require a priori knowledge about the scene to build a sum-

mary of object manipulation activities from continuous video. In it, visual events (such as varying spatial

relations between hands, tools, and objects) are linked to causal events represented in an action grammar,

thus maintaining a consistent causal structure over time. The method has been used to interpret a video

of a disassembly task, performed using real tools and objects, but was restricted to a limited number of

gestures of a human arm (e.g., touch, put, grab, etc.).

The difficulties encountered in the above examples are to be expected, as the methods completely rely

on understanding image sequences of uninstrumented tasks. To address these issues, researchers have

developed marker-based observation systems that can be used for the demonstration. By instrumenting the

body of the agent performing the demonstration or the objects (Maeda, Ishido, Kikuchi & Arai 2002) with

markers, the system can easily compute the Cartesian coordinates of manipulated parts, or the arm joint

angle coordinates of the teacher.

2.3.2.1 Learning by Imitation

A particular case of learning by observation is imitation. This phenomenon, well studied in biology,

developmental psychology, neuroscience and linguistics, is considered by Thorpe (1963) to be the act of
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“copying of a novel otherwise improbable act or utterance, or some act for which there is clearly no

instinctive tendency”. A more formal definition of imitation is given by Mitchell (1987): “... imitation

occurs when something C (the copy) is produced by an organism and/or machine, where: C is similar to

something else M (the model); registration of M is necessary for the production of C; and C is designed to

be similar to M.”

Beside the functional role of learning new behaviors, imitation has an important role in developing

social capabilities necessary to form interpersonal relationships (Dauthenhahn 1994). In robotics, Daut-

enhahn (1995) developed a “Huegellandschaft” habitat in which robots follow each other by maintaining

body contact, to learn about each other’s internal models or to detect if continuing the interaction is bene-

ficial for the robot’s current internal state. The interaction allows robots with different sensory capabilities

to learn how to combine their abilities, and the social relationships they develop help them perform actions

that they could not be able to do by themselves.

In the robotics domain, imitation usually takes the form of passive observations of the teacher’s activ-

ities (Brand 1996). However, active approaches to imitation have also been developed. Demiris & Hayes

(1999) rely on the use of forward models which, given a current state of the controlled object and the

command to be applied to it, predict the object’s next state. These models allow a robot to detect if the

movements of the teacher match with any of its existing skills by testing the predictions of the models

associated with those skills against the teacher’s trajectory. If the teacher performs a movement that is not

in the robot’s repertoire, the passive imitation approach is employed to acquire the newly demonstrated

behavior.

Imitation learning also allows robots to learn from each other a vocabulary of “words” representing

properties of objects in the environment or actions shared between the teacher and the learner. The con-

nectionist approach presented in Billard & Dautenhahn (1998), and Billard & Hayes (1998) also enables

the robots to build sequences of such “words.”
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2.3.3 Learning by Experience

Another approach for providing demonstrations for robots is by actively involving them in the demonstra-

tion process. Using methods such as teleoperation, virtual reality environments, or teacher following, a

teacher makes a robot perform and experience the tasks to be learned through its own sensors. The ad-

vantage of using such techniques is that the robot is freed from interpreting and relating the actions of a

different body to its own. The acquired sensory information is in terms of the robot’s own structure and

sensory-motor skills. Below we discuss several representative approaches to learning through experienced

demonstrations.

2.3.3.1 Teleoperation

Teleoperation is a very direct approach for teaching a robot by demonstration. Using data gloves (Voyles &

Khosla 2001) or multiple DOFs trackballs (Kaiser & Dillmann 1996), a skilled operator controls the robot

to perform a given task. Sensory information is typically gathered through sensors placed on the robot,

which record the relevant parameters (such as position, pressure or forces applied) during the demonstra-

tion. These techniques enable robots to learn motion trajectories (Delson & West 1996) or manipulation

tasks (e.g., Yang, Xu & Chen (1993)).

Using such “lead-through” teaching approaches (Todd 1986) requires that the demonstration be per-

formed by a skilled teacher, as the performance of the teacher in demonstrating the task has a great in-

fluence on the learned capabilities. Another difficulty that may arise is that the teleoperation may be

performed through instruments that are different than what the human operator would use in accomplish-

ing the task. Also, the actual manipulation of the robot may influence the accuracy of the demonstration.

These problems can be solved by training the robot in virtual environments, as discussed next.

2.3.3.2 Virtual Reality

The transfer of skill/task knowledge through experience does not necessarily require that the operator

control a real, physical robot (Onda et al. 2002).
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Ogata & Takahashi (1994) demonstrate a system for teaching an object manipulation task, in which

the teacher performs an assembly task in a simulated, virtual environment. The demonstration is converted

into a high-level, symbolic task representation, which is further translated into robot commands.

In another approach, Friedrich, Hofmann & Dillmann (1997) use a data glove to manipulate objects

in a virtual environment. The task is represented as sequences of states defined as relations between the

manipulated objects. At execution time, the sequence is mapped onto a set of symbolic operators that

would produce the same sequence of effects as recorded during the demonstration.

2.3.3.3 Teacher Following

In the mobile robot domain, the approach that has been generally used for teaching by demonstration

relies on following of a human or another robot teacher. The existing methods, however, have focused on

learning reactive policies (Hayes & Demiris 1994), trajectories (Gaussier, Moga, Banquet & Quoy 1998)

or properties of objects in the environment (Billard & Dautenhahn 1998).

The task demonstration technique presented in this dissertation also employs a teacher-following method

for providing the demonstration (Nicolescu & Matarić 2001a). However, the learning approach we pro-

pose enables learning of high-level representations of sequential tasks, built from a set of skills (behaviors)

available to the robot.

2.3.4 Combining Demonstration with Other Learning Techniques

Mixed approaches to learning by demonstration, which use the observations of an instructor in conjunction

with other learning techniques, have also been proposed. This section presents the most representative of

these methods and discusses how they improve upon methods relying on a single learning approach.

2.3.4.1 Demonstration and Reinforcement Learning

The most common approach used in conjunction with teacher demonstration is reinforcement learning

(RL). In this context, demonstration is used in order to speed up the learning process of a standard RL

system.
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Lin (1991) proposed experience replay as a method to speed up reinforcement learning. In this ap-

proach an agent uses a given demonstration by repeatedly presenting the steps of that lesson in chrono-

logically backward order. With this, a simulated robot is able to learn three different behaviors: docking,

wall-following and door-passing, and the results presented demonstrate a significant increase in learning

speed over traditional reinforcement learning approaches. Schaal (1997) used model-based reinforcement

learning to speed up a system in which a 7 DOF robot arm learned the task of balancing a pole from a

brief human demonstration. Price & Boutilier (1999) and Price & Boutilier (2001) proposed an implicit

imitation framework, which uses reinforcement learning techniques that allow an agent to incorporate

knowledge extracted from the observation of other agents. The observations of such skilled teachers can

speed up learning by providing a RL agent information about situations not previously experienced. Com-

pared with the standard approaches for imitation and teaching, the approach has the advantage that it allows

the transfer of information between agents that do not necessarily have the same objectives and/or set of

actions. The learning agent uses the knowledge implicit in observations of other agents to adapt it to its

own needs: the observations focus the learner’s attention to states of high interest for the mentors and thus

help the learner find novel and better solutions for its own policy. Since the learner’s and the mentors’

policies may be different, the implicit imitation approach allows the learner to discard the influence of

the teacher if it is considered irrelevant. In addition, the expert agent does not have to play the role of a

teacher explicitly, and thus the method allows knowledge to be transfered even in the case of an unwilling

teacher or from a teacher unable to change its behavior for this purpose. Another key aspect is that the

implicit imitation framework allows for natural integration of multiple agents’ expertise and thus enables

learning from multiple skilled mentors, in contrast with standard approaches that rely on the experience

of only one teacher. The approach produces excellent results in the the grid worlds with various sizes and

structures. However, in real-world domains the number of an agent’s possible states is much larger, and

the observability of those states becomes an important issue. Dynamic domains may also pose problems,

as a learner would continuously be forced to update its policy based on the new state of the environment:
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previous high-rewarding states may now become blocked, and the learner would have to reassess its state

values.

2.3.4.2 Demonstration and Conditioning

For robot teaching, researchers have also drawn inspiration from behaviorist psychology and animal train-

ing, which use rewards to stimulate the activation of a desired behavior under certain conditions.

Farrell, Maglio & Campbell (2001) introduce the notion of programming by conditioning which merges

examples with conditioning through rewards to teach an animated fish how to swim. Users can interact

with the fish by tapping on a sensitive screen, and demonstrate behaviors such as following or fleeing from

another fish, by dragging it in the desired direction. The fish record the initial state of the tank and the

actions for each given demonstration, and will further perform those actions each time they come across the

same situations. The reward mechanism allows a user to interact with a fish at a high level of abstraction:

rewards are given after several events when the fish behaved in a desired manner. Thus the rewards do not

relate specifically to a certain action, but rather to a sequence of actions that the fish will learn to correlate.

Kaplan, Oudeyer, Kubinyi & Miklûsi (2002) propose the use of clicker training to teach a Sony Aibo

robotic dog to perform sequences of actions such as spinning in place. The approach is inspired from

dolphin and dog training and is based on the idea of operant conditioning: initially a clicker sound is

associated with a primary reinforcer by giving the dog a reward. After making this association, the clicker

becomes a secondary reinforcer and can act as a positive cue, meaning that a reward will be coming. For

training, the animal is guided to perform the desired action through the use of the clicker. When the dog

performs the desired behavior the teacher gives the actual reward. Word commands are associated with the

behavior after the actions have been learned and then the behavior is tested and refined by rewarding the

animal only when the exact behavior is performed.
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2.3.4.3 Demonstration and User Intent

Incorporating information about user intentions regarding various aspects of a demonstration has also been

considered for improving the quality of learning by demonstration.

Friedrich & Dillmann (1995) consider fusing user intention with demonstration information as addi-

tional means for instruction. The approach enables the robot to learn the correct task successfuly, but may

become burdensome for the teacher as he or she needs to provide (at each step) information on what goals

she/he had in mind, and what actions/used objects were relevant. In contrast, the method for task refine-

ment presented in this dissertation relies solely on the teacher’s observation of the robot’s execution during

practice (Nicolescu & Matarić 2003b).

User intent may also be inferred from the teacher’s gestures during a demonstration (Yang, Xu &

Chen 1997). Zollner, Rogalla, Dillmann & Zollner (2002) present an approach for distinguishing among

multiple types of pick & place operations. In this approach, information from a camera head, and a data

glove equipped with tactile sensors, a magnetic tracker, and force sensors, is incorporated to detect fine

manipulations. Finger movements and forces on the fingertips are used by a Support Vector Machine

(SVM) classifier to detect various types of grasping manipulations.

2.4 Learning from Multiple Demonstrations

The majority of approaches that rely on learning from multiple demonstrations are focused on performing

function approximations for trajectory or movement primitive learning. Only a few methods to date have

addressed this issue at the task level.

Ogawara, Takamatsu, Kimura & Ikeuchi (2002b) use a Hidden Markov Model (HMM) representation

of robot arm trajectories in order to group them into independent clusters representing separate movement

primitives. HMMs have also been applied for recognition of hand-written digits (Yang et al. 1997), among

other tasks.
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A connectionist approach for learning wall-following and corridor-centering skills for a Nomad Super

Scout robot is presented in Larson & Voyles (2001). However, since the method relies on continuous con-

sistency in the training sensory data, characteristic of goal-maintenance type of skills, the approach is not

able to learn goal-achievement capabilities. Gaussier et al. (1998) designed a neural network architecture

for learning to imitate sequences of movements, inspired from the memory processes in the brain. The

method allows a KOALA mobile robot to learn to perform motion zigzag, square and star trajectories by

following another robot teacher, but is dependent on very accurate teacher following techniques.

Another representative connectionist example is ALVINN (Pomerleau 1991). This system trained an

artificial neural network to map camera images to steering directions taken by a human driver, in order

to design an autonomous land vehicle. ALVINN learned a significant level of skill in driving on various

roads and under different conditions after only 10 minutes of training.

In task-level learning, Pook & Ballard (1993) use HMMs to learn a task sequence from multiple

demonstrations. Ogawara, Takamatsu, Kimura & Ikeuchi (2002a) present an approach to learning grasp-

ing manipulations, based on a small number of demonstrations. In their method, tasks are represented as

sequences of interactions between a robot hand and source and target objects. Multiple demonstrations of

the same task (i.e., sequences of hand-object interactions) are generalized using a dynamic programming

approach for multiple sequence alignment (Fuellen 1997). This approach processes in batch all the exam-

ples given, and returns the sequence of task interactions that are present in all the examples. The common

sequence of “essential interactions” constitutes the generalized representation for the task. This method

is similar to the generalization approach proposed in this dissertation, in that it looks for the demonstrated

task steps that have been present across all demonstrations. However, their approach relies on the fact

that the steps essential for the task are always detected (i.e., they appear in all task models), which may

not always be true due to the limited sensing capabilities of the robots and to the partial observability of

the environment. By considering as part of the generalized task only the steps belonging to the common

sequence, the alternate paths of execution that may be detected as a result of the generalization are ignored.

The generalization method presented in this dissertation is incremental, allowing the incorporation of each
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new demonstration after it was provided (Nicolescu & Matarić 2003b). This allows the teacher to stop

giving new demonstrations immediately after observing that the robot had learned the important steps of

the task.

2.5 Approaches to Skill/Task Refinement

Generalization from multiple examples is an essential means for refinement of skills or tasks learned from

a teacher’s demonstration. However, generalization alone is not sufficient if inconsistencies or repeated

erroneous observations are perceived. To allow for increased learning accuracy, methods for revising the

skills after the initial learning step are needed. Very few methods in learning by demonstration address

this problem and the majority do not allow for further improvement or adaptation if the task is not learned

correctly in the first set of trials.

One technique for refinement of skills after learning has been proposed by Kaiser (1997) and Kaiser

& Dillmann (1997). Within this approach good/not good feedback was given at the end of a run in which

the robot performed the demonstrated skill. This method also considered the refinement of learned skills

through practice, by using an exploration element that alters the skill during execution. The good/not good

feedback was used to assess the quality of the exploration. However, giving such delayed reward generates

problems of credit assignment, reducing the accuracy of the task refinement process.

In this dissertation we propose a similar approach for refining of skills through practice under the

teacher’s supervision. However, by allowing the teacher to provide feedback during or right after an

incorrect task step occurred, the approach enables the robot to identify the irrelevant actions precisely. In

addition, the teacher may also intervene in situations when the robot had skipped essential parts of the task,

and allow the robot to incorporate them into its task representation.
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2.6 Other Approaches to Task Learning

2.6.1 Reinforcement Learning

One of the most widely used approaches to learning is reinforcement learning. What makes the method

appealing is that the system learns on its own, through trial and error, relying only on its own experiences

and the received reward. However, in order to provably converge to an optimal policy, the system requires

a very large number of trials, such that the entire state/action space is covered. For physical robots, this is

an extremely important problem, since due to time and power capacity limitations it is impossible to run

an infinite number of trials.

Based on the principle of learning from reinforcement, several algorithms have been developed, along

with proofs of optimity. Among the most important are the method of temporal differences, introduced by

Sutton (1988) (proof in Dayan (1992)) and Q-learning (Watkins 1989, Watkins & Dayan 1992).

Examples of representations employed to encode skills learned from reinforcement include lookup

tables (Watkins 1989), logic expressions (Kaelbling 1990b), (Kaelbling 1990a), classifier systems (Dorigo

& Colombetti 1994), (Booker 1988), U-Trees (McCallum 1996), and neural networks (del R. Millan &

Torras 1992). However, the majority of these approaches address the problem of skill learning, or learning

reactive policies. With respect to sequence representation and learning, they are restricted to sequencing

through the environment. Explicit sequences, such as the ones triggered through some form of internal

state, are not represented or learned.

An approach for representing and learning hierarchical decompositions of tasks, and for sequencing

the sub-task modules was introduced by Singh (1991), in the form of compositional Q-learning. Similarly,

Colombetti & Dorigo (1994) present a classifier-based system that coordinates a hierarchy of behaviors.

Sun & Peterson (1998), Sun, Peterson & Merrill (1998), and Sun & Sessions (2000) describe a hybrid

model that integrates connectionist reinforcement and symbolic learning methods, to acquire procedural

and declarative knowledge (in neural and symbolic representations respectively) for solving sequential
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tasks. These systems are mostly applied to simple navigation domains, achieving sequencing of low-level

actions, rather than of higher-level skills.

In the context of behavior-based robot learning, the majority of the reinforcement learning approaches

have been at the level of learning skills, in the form of situation-behavior mappings. The method, in various

forms, has been successfully applied to single-robot learning of various tasks, most commonly navigation

(Dorigo & Colombetti 1997, del R. Millan 1996), hexapod walking (Maes & Brooks 1990), box-pushing

(Mahadevan & Connell 1991), juggling in humanoid robots (Schaal & Atkeson 1994), and has also been

successfully applied to multi-robot learning (Matarić 1997b), (Matarić 1994).

A more comprehensive review of reinforcement learning methods can be found in Kaelbling, Littman

& Moore (1996).

There are many situations in which the use of reinforcement learning techniques is not appropriate,

due to learning time limitations or simply because learning by trial anderror might not be a feasible option

for the given task.

2.6.2 Methods for Learning from Examples

Along with the widely used methods for task learning previously discussed, other learning strategies have

also been applied or have the potential for use in the robotic domain.

Inductive learning is a learning method that uses multiple examples in order to make predictions about

future examples. A representative approach is presented by Sammut, Hurst, Kedzier & Michie (1992),

who demonstrate the learning of a complex flying skill. Their approach builds one separate decision tree

representation for the elevator, rollers, thrust and flaps of an aircraft from the observation of human teacher

performances.

Case-based learning is an instance-based learning method based on storing and generalizing over

given training examples. It is also called a lazy learning technique, since generalization is deferred until a

new instance arrives, which has to be classified according to the existing knowledge. Cases similar to the

new instance are used to construct a new solution, which, together with the results of applying it, is also
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added to the existing knowledge. A particularity of case-base learning among the general instance-based

learning techniques is that the instances are typically represented with richer, symbolic representations

(instead of real-valued points), and therefore the mechanisms for retrieving similar instances are more

elaborate.

Examples of case-based learning approaches have been applied to robot control (Thrun & O’Sullivan

1996), tracking and catching a ball (Aha & Salzberg 1993), and learning robot kinematics (van der Smagt,

Groen & van het Groenewoud 1994). Atkeson, Moore & Schaal (1997) present a comprehensive review

of case-base learning techniques for robot control.

Memory-based learning is a special form of case-based learning, in which details of all the expe-

riences are memorized and stored. In the robotic domain, the method has been successfully applied for

learning pole balancing, juggling and billiards (Moore, Atkeson & Schaal 1995, Schaal & Atkeson 1994).

Explanation-based learning is an analytical method for concept learning that relies on an already

existing (usually symbolic) model of the domain, which is refined with each new observed example. Prior

knowledge about the domain is used to explain how the observed training example satisfies the domain

theory, then used to analyze the explanation in order to determine the conditions under which it holds. In

the end, these conditions are also incorporated into the domain model.

In robotics, explanation-based learning techniques have been applied to learning sequences of opera-

tions in manipulation tasks (DeJong & Mooney 1986, Segre & DeJong 1985), recognition of environmental

features (O’Sullivan, Mitchell & Thrun 1997), and navigation (Mitchell & Thrun 1993).

2.7 Learning to Improve Performance

An important issue related to the challenge of task learning is learning models that allow the improvement

of a robot’s performance.

Within the behavior-based framework, Matarić (1992) presents an example of learning a model of

the environment, Michaud & Matarić (1998a) and Michaud & Matarić (1998b) describe an approach for
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learning models of behavior dynamics from behavior history, and Goldberg & Matarić (1999), Goldberg

& Matarić (2000a), Goldberg & Matarić (2000b) address the problem of learning models of interaction

dynamics of behavior based systems.

Although such learning approaches do not address the specific problem of task learning, they deal with

a gradual modification of the existing skills and policies, in order to maintain or increase the performance

of the system and to adapt to dynamic, changing environments (Goldberg 2001).

2.8 Summary

This chapter presented a review of selected related work in the areas of Robotics, Machine Learning and

Artificial Intelligence. It made an analysis of existing robotic control architectures, and described the most

representative approaches to learning by demonstration from the perspective of the challenges set in this

dissertation.
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Chapter 3

Hierarchical Abstract Behavior Architecture

This chapter presents the Hierachical Abstract Behavior Architecture, an extension of stan-

dard behavior-based control, that allows for the representation and execution of complex,

sequential, hierarchically structured tasks. It introduces the notion of abstract and primitive

behaviors and their use in forming hierarchical robot task representation. The chapter also

provides a presentation of the behavior network construct as the basis for task representation

used in this work, and gives illustrative examples of behavior networks use.

3.1 Adapting Behaviors for Representation

In behavior-based control (BBC) behaviors typically consist of a collection of rules, taking inputs from

sensors or other behaviors in the system, and sending outputs to the effectors, or other behaviors. The

inputs determine the activation level of a behavior: whether it is on or not, and in some systems by how

much. These are the activation conditions for behavior execution. For the purposes of the representation,

we distinguish the following two types of activation conditions (behavior preconditions):

� world preconditions - conditions that activate the behaviors based on a particular state of the environ-

ment;
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� sequential preconditions - task-dependent conditions that must be met before activating the behavior.

These are often postconditions of other existing behaviors, which allow for the description of complex

temporal sequences.

In standard behavior-based control, both types of preconditions are encoded and tested together, with-

out discrimination, thus hard-coding a particular solution. To change tasks and goals, one often makes

the most changes to these preconditions, while much of the rest of the behavior remains unchanged. We

achieve the ability to manipulate and change these conditions at an abstract representation level, separate

from the behavior repertoire/library, by introducing abstract behaviors.

With those, behaviors are treated as high-level operators, and without loss of robustness can be em-

ployed to generate various strategies or plans for specific tasks. While classical planning requires a specific

initial state, BBC provides general controllers that can handle a variety of initial conditions. With the use

of abstract behaviors, we generate networks that are BBS, being triggered by whatever condition the envi-

ronment presents.

In their operation, behaviors individually or as a group achieve and/or maintain the goals of the system,

thus accomplishing the task. This methodology lends itself to the construction of highly effective special-

purpose systems. This is thus both a strength and a weakness of the BBS approach. In order to lend

generality to a given system, we first looked for a way to make the behaviors themselves more general,

while still assuring that they would achieve and/or maintain the goals for which they are designed.

The key step in adapting specialized behaviors to more general use is in the separation of the activation

conditions from the outputs or actions. By separating those conditions from the actions, we allow for a

more general set of activation conditions for the behavior’s actions (Figure 3.1). While this is not necessary

for any single task, it is what provides generality to the system for handling multiple tasks. The pairing

of a behavior’s activation conditions and its effects, without the specification of its inner workings, consti-

tutes an abstract behavior. Intuitively, this is simply an explicit specification of the behavior’s execution

conditions (i.e., preconditions), and its effects (i.e., postconditions). The result is an abstract and general

operator much like those used in classical deliberative systems (Fikes & Nilsson 1971). The behaviors that
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do the work that achieves the specified effects under the given conditions are called primitive behaviors,

and may involve one or an entire collection of sequential or concurrently executing behaviors, again as is

typical for BBS.

Figure 3.1: Adaptation of typical behaviors for abstract representations

Abstract and primitive behaviors can both be quite complex, just as they are within any system em-

bedded in a physical environment. The abstract behavior conditions, as in any BBS, are typically far from

low-granularity states, but are instead abstracted, either by hand or through a generalization process. If they

were not, the benefits of using behaviors as a high-level representation would be lost. Similarly, the prim-

itive behaviors are no lower level than standard BBS behaviors, meaning they are typically time-extended

sequences of actions (e.g., go-home), not low-granularity single actions (e.g., turn-left-by-10-degrees).

Behavior networks are a means of specifying strategies or general “plans” in a way that merges the

advantages of both abstract representations and behavior-based systems. The nodes in the networks are

abstract behaviors, and the links between them represent precondition and postcondition dependencies.

The task plan or strategy is represented as a network of such behaviors.

As in any BBS, when the conditions of a behavior are met, the behavior is activated. Similarly here,

when the conditions of an abstract behavior are met, the behavior activates one or more primitive behaviors

which achieve the effects specified in its postconditions. The network topology at the abstract behavior

level encodes any task-specific behavior sequences, freeing up the primitive behaviors to be reused for a

variety of tasks. Thus, since abstract behavior networks are computationally light-weight, solutions for

50



multiple tasks can be encoded within a single system, and dynamically switched, as we demonstrate in our

implementation.

In the next sections we present the structure and functionality of abstract and primitive behaviors, then

the construction of networks and their use.

3.2 Behavior Representation

3.2.1 Abstract Behaviors

Adapting specialized behaviors to general use requires a separation between the execution conditions and

actions. We group these execution conditions and the behavior effects into abstract behaviors which have

the role of activating the primitive behavior(s) that achieve the specified effects. In order to include behav-

ior effects into the abstract representation we provide abstract behaviors information about the behavior’s

goals and a means of signaling their achievement to other behaviors that may utilize (and in fact rely on)

these effects.

An important characteristic of our behaviors that makes our architecture very well suited for high-

level, complex tasks, is that they are parameterizable. The behavior goals are represented as “predicate-

like” structures in terms of the behavior parameters. The quotes above are used to stress that the effects

are abstracted environmental states (continuously computed from the sensors) and not high-level symbols

that are not grounded in perceptions. Thus, our behaviors become even closer, in terms of functionality,

to the abstract operators used in symbolic architectures, allowing for multiple parameter bindings and

therefore multiple and different goals for only one behavior, while still maintaining the real-time properties

of behaviors.

The binary state of a behavior’s goals (achieved or not) is fed into a behavior output connected to

all the behaviors that require that condition to be true before they can become active. In this way, the

information about the task-specific preconditions can be automatically obtained from the behavior network

precondition-postcondition dependencies and dynamically changed (by simply rearranging the links) if

51



networks need to be switched at run-time. This allows for obtaining multiple solutions while using the

same behaviors and maintaining the goals for which they have been designed.

As with operators in a plan, behaviors can undo each other’s actions while trying to achieve their own

goals (Chapman 1987). In BBS, such undesirable competition is typically handled either by mutually-

exclusive behavior execution conditions, or by the behavior coordination mechanism (Pirjanian 1999). In

this work, we take the former approach, and use explicit inhibition between behaviors to prevent destruc-

tive competition. This methodology directly fits into the behavior network representations: the network

topology also includes inhibitory links between competitive behaviors.

Structurally, behaviors are composed of a set of processes, running continuously and concurrently with

other behaviors, and an interface of input and output ports with which they can communicate with other

behaviors. The implementation presented here utilizes the Port-Arbitrated Behavior paradigm presented

by Werger (2000).

An abstract behavior has the following Input Ports:

� UseBehavior (binary input): signals if the behavior is used in the current network controller. The

behavior is enabled if the port has a value of 1, and disabled otherwise.

� ActivLevel: sums the activation messages received from other behaviors; its value represents the

behavior’s activation level.

� Inhibit (binary input): a value of
�

signals that the behavior is inhibited by another behavior, a value

of � signals that it is not.

� Sensory Input: a set of inputs from the environment, required to compute the status of the behavior’s

goals and world preconditions continuously.

���������
	����������	������������ � : inputs from predecessor behaviors, whose execution influence the activation of

the current behavior.

� Continue (binary input): coming from the corresponding primitive behavior(s) (discussed below).
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The Output Ports of an abstract behavior are:

� Active (binary output): activates/deactivates the corresponding primitive behavior(s).

� Effects (binary output): signals the current status of the behavior’s postconditions as computed from

the sensory data.

A disabled or inhibited behavior does not perform any type of computation for the task. If enabled

or non-inhibited, a behavior runs at a predefined rate at which it continuously checks or sends its inputs

and outputs. However, only if active is the behavior allowed to send its action commands to the robot’s

actuator. In a discrete implementation, single activation and deactivation messages could be used per

behavior, but this would not be as robust. Our system, as most BBS, uses continual messaging, in order to

remain reactive to any changes that may occur (in the environment, the preconditions, etc.).

The abstract behavior activation mechanism is presented in the Section 3.3, which also presents the

methods for encoding and executing tasks, in the form of behavior networks.

Figure 3.2: Structure of the inputs/outputs of an abstract and primitive behavior.

3.2.2 Primitive Behaviors

Primitive behaviors (see Figure 3.2) are activated by abstract behaviors via the � ������� � input; they are the

behaviors that actually achieve the goals represented by the abstract behaviors.
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Primitive behaviors use sensory information in order to compute the actions sent to the system’s effec-

tors via the � ������	���� output. The � 	�� ��� ��� � output is used to notify the corresponding abstract behavior

that the execution of the primitive behavior is not yet finished, so that the abstract behavior continues to

send activation. This output is used only in situations in which it is important that the execution of the

primitive behavior not be interrupted, such as those caused by transience of sensory data. In these cases, it

is necessary to extend the execution of the behavior until its completion. In all other situations, the abstract

behavior can stop sending its activation at any time, according to its current conditions, thus deactivating

the primitive behavior.

3.3 Behavior Networks

3.3.1 Components and Structure

The purpose of our abstract representation is to allow behavior-based systems to benefit from two important

characteristics of symbolic systems.

First, in order to allow BBS to perform complex temporal sequences, we have embedded in the abstract

behaviors the representation of the behavior’s goals and the ability to signal their achievement through

output links to the behaviors that are waiting for the completition of those goals. The connection of an

����� ����� � output to the precondition inputs of other abstract behaviors thus enforces the order of behavior

execution. The advantage of using behaviors can be seen again when the environment state changes either

favorably (achieving the goals of some of the behaviors, without their being actually executed) or unfavor-

ably (undoing some of the already achieved goals): since the conditions are continuously monitored, the

system continues with execution of the behavior that should be active according to the environmental state

(either jumps forward or goes back to a behavior that should be re-executed).

Second, we want to enable the automatic generation of behavior networks. As we described above,

abstract behaviors specify the goals in a “predicate-like” form on the behavior’s parameters, which makes

them suitable for use with a general purpose planner in order to obtain a solution for a given task. Our
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behavior networks, since they rely on real behaviors, also have the advantage that they could handle a

variety of initial conditions within a single task representation, in contrast with typical plan-representations

which are different for distinct initial conditions.

We distinguish among three types of sequential preconditions, which determine the activation of be-

haviors during the behavior network execution.

� Permanent preconditions: preconditions that must be met during the entire execution of the be-

havior. A change from met to not met in the state of these preconditions automatically deactivates

the behavior. These preconditions enable the representation of sequences of the following type: the

effects of some actions must be permanently true during the execution of this behavior.

� Enabling preconditions: preconditions that must be met immediately before the activation of a

behavior. Their state can change during the behavior execution, without influencing the activation

of the behavior. These preconditions enable the representation of sequences of the following type:

the achievement of some effects is sufficient to trigger the execution of this behavior.

� Ordering constraints: preconditions that must have been met at some point before the behavior

is activated. They enable the representation of sequences of the following type: some actions must

have been executed before this behavior can be executed.

Figure 3.3: Example of a behavior network

From the perspective of a behavior whose goals are Permanent preconditions or Enabling precon-

ditions for other behaviors, these goals are what the planning literature calls goals of maintenance and of

achievement, respectively (Russell & Norvig 1995). In a network, a behavior can have any combination
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of the above preconditions. The goals of a given behavior can be of maintenance for some successor be-

haviors and of achievement for others. Thus, since in our architecture there is no unique and consistent

way of describing the conditions representing a behavior’s goals, we distinguish them by the role they play

as preconditions for the successor behaviors. Figure 3.3 shows a behavior network for a possible object

transport task, using all three types of precondition-postcondition links.

3.3.2 Behavior-Network Execution

The behavior networks allow for two different modes of execution within the same representation, depend-

ing on the constraints on various parts of the task:

� Sequential execution, for the task segments containing temporal ordering contraints,

� Opportunistic execution, for the task segments for which the order of execution does not matter.

Sequentiality is enforced by the existence of precondition-postcondition dependencies between behav-

iors whose execution needs to be ordered. Opportunistic execution is achieved by not placing temporal

dependencies between the behaviors which do not require a particular ordering. The ability to encode

both these modes of execution within the same behavior network increases the expressive power of the

architecture, through the embedding of multiple paths of execution within the same representation.

In a network requiring only sequential execution, since all behaviors are connected with ordering con-

straints, only a single behavior can be active at a given time. By introducing the opportunistic mode of

execution, we allow multiple behaviors to be “suitable” for activation at the same time, if their own activa-

tion conditions are met. This raises the problem of concurrent access to the robot’s actuators. To deal with

this issue we choose the solution of locking the actuators that are used by a given behavior for the entire

duration while that behavior is active. This provides a natural way of preventing multiple behaviors to have

access to the same actuators, while still enabling the simultaneous execution of behaviors that control sets

of actuators that are disjunct.
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All the behaviors that are used in a network (i.e., have their UseBehavior port set) are continuously

running (i.e., performing the computation described below), but only the behaviors that are active are

sending commands to the actuators at a given time. A default Init behavior initiates the network links and

detects the completion of the task.

Similar to Maes (1990b), we employ a continuous mechanism of activation spreading, from the behav-

iors that achieve the final goal to their predecessors (and so on), as follows: each behavior has an Activation

level that represents the number of successor behaviors in the network that require the achievement of its

postconditions. Any behavior with activation level greater than zero sends activation messages to all pre-

decessor behaviors that do not have (or have not yet had) their postconditions met. The activation level is

set to zero after each execution step, so it can be properly re-evaluated at each time, in order to respond to

any environmental changes that might have occurred.

The activation spreading mechanism works together with precondition checking to determine whether

a behavior should be active, and thus able to execute its actions. A behavior is activated iff:

( It is used in the current controller ) AND

( It is not inhibited ) AND

( Its controlled actuators are not locked ) AND

( The Activation level ��� � ) AND

( All ordering constraints ������� � ) AND

( All permanent preconditions �	����� � ) AND

(( All enabling preconditions ������� � ) OR

( the behavior was active in the previous step ))

In the current implementation, checking precondition status is performed serially, but the process could

also be implemented in parallel hardware. In the next section we introduce the concept of hierarchical

behavior networks which allows for a hierarchical representation of a robot’s task.
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3.4 Hierarchical Behavior Networks

As robot tasks become more complex and begin to rely on previously developed skills, it is useful to have

a hierarchical task representation that can encapsulate the complex dependencies.

The behavior network representation described so far allows only for flat representations, in which all

the components are abstract behaviors. While the architecture is expressive and flexible, it does not have

the modularity needed when new, more complex tasks would have to be created from already existing

ones. The best solution is to specify the new task using abstractions of these existing modules, rather

than combining their underlying behaviors into a bigger, flat network. In this way, only the precondition-

postcondition dependencies at the higher level (between the two sub-networks) would have to be specified,

reducing the connectivity of the network.

We enable this higher-level representation by introducing the notion of a Network Abstract Behav-

ior (NAB), which abstracts away an entire behavior network into a single component. This allows the

construction of hierarchical representations of robot tasks, whose components can be either Abstract Be-

haviors (ABs) or NABs, which can be further decomposed into lower level representations. An example

of a generic hierarchical network representation is presented in Figure 3.4.

Figure 3.4: A generic hierarchical task representation
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Functionally, a NAB is equivalent to a regular abstract behavior, in that it performs the same computa-

tion and plays the same role in the network. The postconditions of a NAB will be true when the execution

of the subnetwork it represents is finished. The only difference between a NAB and an AB is in the con-

nection of their Active output. For an abstract behavior, the Active output is connected to the Active input

of the corresponding primitive behavior(s). For a NAB, the Active output is connected to the UseBehavior

input of the corresponding component ABs or NABs. Thus, when a NAB is not active, all behaviors (ABs

or NABs) which are a part of the subnetwork it represents are disabled, and therefore can be regarded as

nonexistent for the task. When a NAB becomes active, all its underlying behaviors are enabled, and the

subnetwork becomes the current “network” that is being executed. When the execution of the subnetwork

finishes, the NAB signals to the successor behaviors the achievement of its goals, just as regular ABs do,

and execution continues at the level of the network containing the NAB.

Formally, a behavior network is described as follows:

NETWORK-DESCRIPTION =

� Number of components (N), Component-Description, Topology-Description �

where,

Component-Description = AB-Description � ABN-Description �

AB-Description = � Component-ID, BehaviorID, Number of Parameters (P),

�
Parameter-Name, Parameter-Value �����

NAB-Description = � Component-ID, NETWORK-DESCRIPTION �

Topology-Description = � Number of Links (L),
�
FromComp-ID, ToComp-ID, Link-Type �	�
�

Link-Type = � Ordering � Enabling � Permanent �

This formalism describes a behavior network by the number N of its components (ABs or NABs),

their descriptions, and the topological links between them. The Component-ID is a unique identifier of
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the component within the network and the FromComp-ID and ToComp-ID are the IDs of the start and

respectively end-points of a network link.

The next section presents an experimental validation of the architecture described above.

3.5 Experimental Validation

3.5.1 The Robot Testbed

The robot used to implement and test the described concepts is an ActivMedia Pioneer 2-DX mobile

robot ( � �����������	�
�
���  ������� ��	��
	�� ��� �
		� ), equipped with two rings of sonars (8 front and 8 rear), a SICK

Figure 3.5: A Pioneer 2DX robot

laser range-finder, a pan-tilt-zoom color camera, a gripper, and on-board computation on a PC104 stack

(Figure 3.5).

The behaviors were implemented using AYLLU (Werger 2000), an extension of the C language for

development of distributed control systems for mobile robot teams.

3.5.2 Sequence Representation and Behavior Reusability

3.5.2.1 The Environment

To validate the proposed concepts, they were implemented on the described mobile robot given an object

delivery task. The environment consisted of two sections, separated by a swinging door (Figure 3.6). The

robot had to find a box, which could be in either section, and push it to the delivery point (or its Home).
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Figure 3.6: The environment for the delivery task

3.5.2.2 The Behavior Set

The networks for this task were constructed from the following repertoire of behaviors:

� Localize - the robot wanders around in order to localize itself with respect to its Home, represented

by a colored beacon. Achieves SideRoom(Home)=TRUE or SideRoom(OtherSide)=TRUE.

� GetBox - the robot wanders in search of a colored box. Achieves HaveBox = True or signals Timeout

in case the box cannot be found within a predetermined period of time in the current room.

� GoTo(Door) - the robot goes to the door. Achieves AtPlace(Door) = True.

� OpenDoor - the robot opens the closed door. Achieves DoorOpened = True and HaveBox = False

(since the robot cannot carry anything in order to be able to open the door). Dealing with this type

of conflicting goals is described in the next section.

� GoThroughDoor - the robot goes through the door to the next room. Achieves SideRoom(RoomX)

= True; where RoomX can be either the room where Home is, or the other side.

� GoTo(Home) - the robot goes to its Home location. Achieves AtPlace(Home) = True.

3.5.2.3 Task Encoding with Behavior Networks

The BBS controller must accommodate various initial conditions: the robot may be in the same section

as either the box and/or the delivery point, and the box may or may not be in the same section as the
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Figure 3.7: Structure of the behavior networks for the delivery task

delivery point. Note that this is not a large state space, which is why it lends itself to BBS solutions, but

it is sufficiently versatile that it would require several different plans if pursued in a deliberative fashion.

Our approach uses two networks which, together, account for all possibilities, and, as any BBS, adapts to

uncertainty and changes that may occur (i.e., the robot or the box or both can be moved at any point).

Two different task plans were developed by hand for the delivery task and translated into behavior

networks (Figure 3.7) that use the behavior set above. The robot automatically switched between the two
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networks at run-time, according to predefined changes in the robot’s internal state. This is the only built-

in specific information in our system; it could have been avoided if external cues that could be sensed

directly were available. In that case, we could have directly informed the robot when a network switch

should occur.

It is important to note that since our networks rely on physically embedded behaviors which can handle

a variety of initial conditions, we do not need to have a “plan” and thus a behavior network for each initial

condition. Our solution makes use of only two alternate “plans” for the four possible initial conditions.

This, of course, is not the only solution for the task, but we have chosen it because it captures the important

aspects of the representation that we want to validate: 1) reuse of behaviors for different (sub)tasks without

behavior redesign and 2) recompilation and dynamic switching between behavior networks.

The robot begins with the localization behavior (the only one for which all the execution conditions

are met at that point) in order to determine in which room it is. Its goal of knowing the current location is

a task precondition for all other behaviors (as can be seen by the network links from Localize to all other

behaviors). Once localized, the robot starts looking for the box. If it finds it within a predetermined time,

it continues to execute the current behavior network. If it fails to find the box, timeout is signaled, and

the robot switches to another “plan”, represented by the second behavior network. The alternate solution

is to go to the other room, and look for the box there. The same GoToDoor, OpenDoor, GoThroughDoor

behaviors are used in both networks. Even if the task-specific conditions that they are testing are different,

no change has to be done to the behaviors themselves; they continue to run as before, only they check

the
� ��� � �
� � outputs of a different set of behaviors. For example, the second network need not test the

status of GetBox in order to go to the door and through it, as it would if the box had been found. At the

completition of the alternate “plan” represented by the second behavior network, the robot switches again

to the initial network and starts looking for the box in the room it is now in.

Each of the two behavior networks that we employed represents a solution to a different problem by

itself: the first one is a solution for the delivery problem when both the robot and the box are in the same

room and the second one is a solution for the task of going from one room to another. They both rely on
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the same set of behaviors and the specifics of each tasks requires the behaviors to check different activation

conditions in each case. However, due to the fact that those preconditions are embedded in the network

topology (in the Effects-Precondition links), the behaviors can be reused without changes for different

tasks and the tasks can be switched dynamically by simply rearranging those links.

3.5.2.4 Competitive Behaviors

In the delivery task, behavior competition arises between the GetBox and OpenDoor behaviors. While

the former drives the robot to the box if it does not have it yet, the latter requires pushing the box aside

in order to open the door. After getting the box, the GetBox behavior is no longer active and no longer

inhibits OpenDoor. When OpenDoor becomes active, it inhibits GetBox until the door is opened. At that

point it deactivates and in turns stops inhibiting GetBox, allowing the robot to again find the box and take

it home through the opened door.

3.5.2.5 Results

To demonstrate the validity of the representation, and the ability to dynamically switch between behavior

networks, we tested the delivery task from all four different initial conditions. For each of them we ran

the robot four times, once with the door opened, in others with it closed. We found that irrespective of the

initial conditions, the robot adapted itself to the state of the environment, activated the correct behavior

network for that state, and executed its actions accordingly.

3.5.3 Hierarchical Representations

3.5.3.1 The Environment

The experimental setup for these experiments consists of a small Orange box and six cylindrical targets

of the following colors: Light Green, Yellow, Light Orange, Green, Pink and Orange (Figure 3.8).
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Figure 3.8: The environmental setup

3.5.3.2 The Behavior Set

For the experiments using hierarchical representations, the robot had a behavior set that allowed it to track

colored targets and to pick up and drop colored objects:

� PickUp(ColorOfObject) - the robot picks up an object of the color ColorOfObject. Achieves

HaveObject = TRUE.

� Drop - the robot drops what it has between the grippers. Achieves HaveObject = FALSE.

� Track(ColorOfTarget, GoalDistance, GoalAngle) - the robot tracks a target of the color Col-

orOfTarget until it gets at GoalDistance and GoalAngle to the target. Achieves DistToTarget =

GoalDistance AND AngleToTarget = GoalAngle.

(a) Space coverage using laser
rangefinder and camera

(b) Principle for target tracking by merg-
ing vision and laser data

Figure 3.9: Merging laser and visual information for tracking
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The Track behavior enabled the robot to follow colored targets at any distance in the [30, 200] cm

range and any angle in the [0, 180] degree range. The information from the camera was merged with data

from the laser range-finder in order to allow the robot to track targets that are outside of its visual field (see

Figure 3.9). The robot used the camera to first detect the target and then to track it after it goes out of the

visual field. As long as the target was visible to the camera, the robot used its position in the visual field

( ����������	 ) to infer an approximate angle to the target 
������������	 (the “approximation” in the angle comes from

the fact that we are not using precise calibrated data from the camera and we compute it without taking

into consideration the distance to the target). We get the real distance to the target ����� ��� ������	 ��� �����������	 from

the laser reading in a small neighborhood of the 
 �����������	 angle. When the target disappears from the visual

field, we continued to track it by looking in the neighborhood of the previous position in terms of angle

and distance which are now computed as 
 � ����� � 	�� and ��� � � � ������	 � � � ����� � 	�� . Thus, the behavior gives the

robot the ability to keep track of positions of objects around it, even if they are not currently visible, akin

to working memory. This is extremely useful during the learning process, as discussed in the next section.

3.5.3.3 Task Encoding with Hierarchical Behavior Networks

The goal of the validation experiments is to demonstrate the key features of the presented architecture:

hierarchical task representation, behavior reusability, and the ability for both sequential and opportunistic

execution.

Toward this end, we considered a task consisting of sequencing of two subtasks: an Object transport

task and a Visit targets task (Figure 3.10). The Object transport task required the sequential execution of

its steps: go to the light green target, pick up the orange box, go through the gate formed by the yellow and

light orange targets, go to the green target and drop the box there. As the figure shows, GoThroughGate

itself had a subtask representation. The Visit targets task did not enforce the ordering of the target visits,

thus allowing the robot to perform the task according to the particularities of the environment (i.e., visit

the Pink, Light-Green, Yellow and Orange targets in the order in which they are encountered).
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ObjectDelivery1

VisitTargets2

INIT17

                             Object Delivery

Drop3

Track4(LGreen,179,268)

PickUp5(OrangeBox)

Track7(Green,0,440)

Drop8

GoThroughGate6

INIT15

            Go Through Gate

Track9(Yellow,0,540)

Track10(LOrange,179,534)

INIT14

                                                                                    Visit Targets

Track11(Orange,90,750)

INIT16

Track12(Yellow,90,750)Track13(LGreen,90,750)Track18(Pink,90,750)

Figure 3.10: The hierarchical network representation. The subtasks (NABs) have 3-line borders, and the
ABs have one-line borders. The numbers in the behaviors’ names are their unique IDs.

3.5.3.4 Results

We performed 5 experiments; in all five, the robot correctly executed the task. The order in which the

robot visited the targets during the Visit targets subtask is presented in Table 3.1. Since the robot’s paths

are different from one experiment to another, due to limited sensing and to uncertainty while searching for

the colored targets, the robot opportunistically visited the targets as it encountered them.

Table 3.1: Order of target visits

Trial 1 Orange Pink Light-Green Yellow
Trial 2 Pink Yellow Orange Light-Green
Trial 3 Light-Green Yellow Orange Pink
Trial 4 Yellow Light-Green Orange Pink
Trial 5 Yellow Orange Pink Light-Green

We thus show that we can enforce sequential execution and that we can allow opportunistic execution,

both within a behavior-based framework.
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3.6 Expressive Power of Task Representations

The expressiveness of the proposed architecture can be analyzed within the formal framework of finite

state automata and regular languages.

The behavior networks provide a directed acyclic graph (DAG) task representation. The behavior se-

quence that can be obtained by executing such a network is given by the graph’s topological representation.

This topology is obtained by applying a topological sort on the behavior network graph and constitutes

a Finite State Automaton (FSA) representation of the task. Since the behavior network construct allows

for alternate paths of execution, for certain FSA states there can be more than one possible transition, and

therefore this FSA is nondeterministic. An FSA can only recognize regular languages, and thus the set

of “strings” it accepts belong to a regular language over a given alphabet
�

. In our case, the “strings”

constitute the set of behavior sequences that can be performed (i.e, the the tasks that can be encoded by

the proposed representations) and the alphabet corresponds to the robot’s set of skills.

The regular grammar that generates the language accepted by the proposed architecture has the follow-

ing components:

� A finite set N of nonterminal symbols. Each symbol in this set corresponds to one of the robot’s

existing capabilities. Since the experiments presented throughout the following chapters rely on

the behavior set described in Section 3.5.3.2, we consider the following set of nonterminal sym-

bols: � �
� ��� ��� � � , where � , � and � correspond to the Track, Drop and PickUp behaviors,

respectively.

� A finite set
�

of terminal symbols (disjoint from N). We consider the following set of terminal

symbols:
� �

��� � � � , where
�

is the start symbol.

� A finite set P of production rules. The following are the production rules that generate the complete

set of “strings” (i.e, tasks) that can be built from the given alphabet of nonterminal symbols:
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1.
� � �

, where
�

is the empty symbol.

2.
� � � �

3.
� � � �

4.
� � � �

5. �
� � �

Rules 3, 4 and 5 encode the fact that a PickUp behavior could only be performed if a Drop behavior

has been previously executed. There is no restriction as to how many Drop behaviors could be performed

in a row: although their execution would be redundant, it does not impose any applicability constraints.

Based on the proposed task representation and the current set of robot skills, the tasks that can be

encoded are given by any regular expression on the existing vocabulary, with the constraint that for a

current � (PickUp) in the task sequence there always has to be a � (Drop) somewhere in the sequence

preceding it, but following the previous � or the start of the sequence.

In terms of semantic expressiveness, based on the definition of tasks given in Chapter 2, the architecture

provides support for the following types of control structures:

� encoding of sequences that require a particular ordering of the task steps.

� encoding of unordered tasks, by allowing the robot to opportunistically choose among the task’s

steps based on the current state of the environments.

� execution of entire tasks or subtasks in a loop, as the control architecture supports the “reinstantia-

tion” of networks after their completion and thus the ability to perform repetitive tasks.

Conditional branches, periodic skills, and skill activation based on external conditions are not currently

supported, and they constitute subject for future work.
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3.7 Discussion

The experiments presented in this chapter demonstated the advantages of the proposed architecture. They

demonstrate the ability to encode tasks of increasing levels of abstraction, which facilitates the modular

representation of higher-complexity tasks in the behavior-based framework. Also, by “abstracting” already

known tasks into NABs, the complexity (connectivity) of the networks that might include those NABs as

subtasks is greatly reduced. The abstraction eliminates unnecessary network links that would have to be

specified to and from all the behaviors of a subtask in order to ensure proper execution and sequencing.

For the experiment presented above, the number of network links would be increased from 31 to 60 if a

flat representation had been used instead of the hierarchical one.

In the task representation presented above, based on a given set of behaviors, multiple instantiations

of the same behaviors were used within the same NAB or in separate NABs, without customization or

redesign, although in each case they had different activation conditions. Due to the fact that those pre-

conditions were embedded in the network topology, the behaviors could be reused without changes in

circumstances requiring different activation conditions.

3.8 Summary

This chapter presented a Hierarchical Abstract Behavior Representation, which extends the typical behavior-

based architectures and addresses several of their limitations: the lack of abstract representation, which

makes them unnatural for complex problems containing temporal sequences, and the lack of generality,

which requires system redesign from a task to another. The architecture also allows for hierarchical task

decomposition and both sequential and opportunistic task execution methods. In the next chapter we

present an algorithm for learning such task representations from demonstrations by human and/or robot

teachers.
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Chapter 4

Learning from Experienced Demonstrations

This chapter presents an algorithm for learning behavior network representations of sequen-

tial tasks from a robot’s own experiences of interacting with a human or a robot teacher. It

presents the process of mapping the robot’s observations to task representations and demon-

strates the approach in various experiments, using human and robot teachers in clean or clut-

tered environments.

Teaching robots to perform various tasks by means of demonstration is a very natural approach to task-

level learning. In this chapter we present a mechanism for learning representations of high-level tasks,

based on a set of underlying skills already available to a robot. The approach allows the automation of

robot controller design from the experience of a robot following a teacher’s demonstration.

In our particular approach to learning, we use learning by experienced demonstrations. This implies

that the robot actively participates in the demonstration provided by the teacher, and experiences the task

through its own sensors. This is an essential characteristic of our approach, and is what provides the robot

the data necessary for learning. In the mobile robot domain the demonstrations are achieved by following

and interacting with the teacher. We assume that the teacher knows what skills the robot has, and also by

what means (sensors) the robot can detect their achievement. The ability to learn from the observations

gathered during the demonstration is based on the robot’s ability to relate the observed states of the environ-

ment to the known effects of its own skills. The advantage of putting the robot through the task during the
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demonstration is that the robot is able to adjust its behaviors (through their parameters) using the informa-

tion gathered through its own sensors. In addition to experiencing parameter values directly, executing the

task during the demonstration provides observations that contain temporal information for proper behavior

sequencing, which would be tedious to design by hand for tasks with long temporal sequences.

The general idea of the learning algorithm is to relate the robot’s observations during the demonstra-

tions to its own skills. The fact that the abstract behaviors embed representations of their goals enables

the robot to create a mapping between what it observes with what it can perform.

To validate the learning method, we focused on two types of domains (clean and cluttered) and we

experiment with the robot’s capability to learn from both human and robot teachers.

To describe the proposed approach for learning by demonstration we first describe the demonstra-

tion process, along with considerations about the observations gathered during this experience within the

behavior-based framework. The following sections present the algorithm for constructing task representa-

tions from the experienced interaction with human or robot teachers and the experimental results.

4.1 The Demonstration Process

In its learning mode, during a demonstration, the robot physically follows the teacher, while all its available

behaviors are continuously monitoring the status of their postconditions (without executing any of their

actions). Whenever the observations match a primitive behavior’s goals, this represents an example of the

robot having seen something it is also able to do, and the corresponding abstract behaviors fires, allowing

the robot to identify during its experience the behaviors that are relevant for the task being learned. The fact

that the behavior postconditions are typically abstracted environmental states allows the robot to interpret

high-level effects (such as approaching a target or being given an object). Thus, as mentioned before,

embedding the goals of each behavior into its own representation enables the robot to perform a mapping

between what it observes and what it can perform. This stands in contrast with traditional behavior-based
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systems, which do not involve explicit goal representation and thus do not allow for any computational

reflection.

If the robot is shown actions for which it does not have any representation, it will not be able to observe

or learn from those experiences. For the purposes of our research, it is reasonable to accept this constraint;

we are not aiming at teaching a robot new behaviors, but at showing the robot how to use its existing

capabilities in order to perform more complicated tasks.

In our work, we are interested in the ability to use the proposed mechanism to learn from both human

and robot teachers. It is desired that robots be able to use information learned from a human teacher

to teach other robots in turn, thus allowing for an effective transfer of task knowledge from humans to

robots and between robots themselves. With respect to the demonstration, a learner does not differentiate

between a human or a robot teacher demonstration, both experiences being interpreted in the same way,

but we expect that the performance of learning from a human is superior to that of learning from another

robot. A human teacher facilitates the observations of the learner and waits for the robot so that it does not

fall behind. A robot teacher demonstrates the task by simply executing it in front of the learner robot that

follows it around, and in this sense the teacher plays only a naive role. Also, a robot teacher has to wonder

around searching, due to its own limited sensing capabilities, thus affecting the observations of the robot

learner.

4.2 Giving Instructions

Irrespective of the demonstration strategy being used, an important challenge for any method for learning

by demonstration is to distinguish between the relevant and irrelevant information being perceived. Putting

the entire responsibility on the learner to decide between relevant and irrelevant observations, such as when

learning solely by observation, increases the complexity of the problem and leads to more complex, some-

times ineffective solutions. During demonstrations humans almost always make use of additional simple

cues and instructions that facilitate the learning process and bias the learner’s attention to the important
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aspects of the demonstration (e.g., “watch this”, “lift that”, etc.). Although simple, these cues have a

significant impact on the robot’s learning performance: by relating them to the state of the environment

at the moment when they are received, the learner is provided with information that may otherwise be

impossible or extremely difficult to obtain only from the observed data. For example, while learning to go

and pick up the mail, the robot can detect numerous other aspects along its path (e.g., passing by a chair,

meeting another robot, etc.). These observations are irrelevant for getting the mail, and simple cues from

the teacher could indicate that.

Therefore, in order for a robot to learn a task effectively, the teacher also needs to provide it with

additional information beyond the perceived demonstration experience. To achieve this, we add verbal

instruction to the existing demonstration capabilities of our system. With this, the teacher can provide the

following types of information:

� “HERE” - indicates points in time during the demonstration when the environment presents aspects

that are relevant for the task1. These indications are general (simple hints meaning “pay attention now”)

and by no means spell out for the robot the representation of the presented task. While such indications

allow the robot to distinguish some of the irrelevant observations, they may still not help it to learn the task

perfectly. For this, generalization techniques (Chapter 5) and feedback-practice runs (Chapter 6) will be

applied.

A robot teacher simply broadcasts a simple one-bit message when it has just accomplished execution of

one of the behaviors in the task being demonstrated. The teacher’s cue and the binary message carry the

same information, that of considering the observations of the environment as relevant to the demonstrated

task.

� “TAKE”, “DROP” - instructions that induce the robot to perform certain actions during the demon-

stration (in this case Pick Up and Drop small objects), actions that would be otherwise impossible to

1The speech recognition system has been implemented after performing the experiments presented in this chapter. For these,
instead of speaking the “HERE” command, the human teacher points out the saliencies by showing a bright color marker that can be
detected by the robot’s vision system.
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trigger in a teacher-following-only learning approach2. In our case, we instruct the robot to open and close

its gripper, when the task to be learned involves moving certain objects around.

� “START”, “DONE” - instructions that signal the beginning and the end of a demonstration, respec-

tively.

To demonstrate the benefit of using informative feedback cues, we used two different types of experi-

mental validation setups: clean environments, in which only the objects relevant to the task are present, and

environments with distractor objects that could hinder the learning process. The robot uses the teacher’s

indications to eliminate irrelevant observations, as described in Section 4.4.1.

Before presenting the algorithm for learning task representations, we discuss some key issues related

to the nature of the observations gathered during a demonstration.

4.3 Key Issues for Task Observations

Due to the fact that our architecture is based on a behavior-based substrate, it is important to discuss the

influence of BBS on the nature of the observations made by a robot during an experienced task demonstra-

tion.

Behaviors are time-extended processes, designed to achieve or maintain goals. In contrast with “op-

erators” employed in classical symbolic architectures, whose execution is either instantaneous or has a

well-defined, known duration, and always has the desired effects, behaviors operate in real-world, uncer-

tain domains; it is typically not possible to determine a priori how long it will take a behavior to perform its

actions before achieving the goals. The changes in the environment may cause a deactivation of a behavior

before its goals are met, and a restart of the execution at a later point in time. Thus, unless the system is

started in a state in which the goals of a behavior are already achieved, there will always exist an interval of

time during which the behavior is active and performing its actions, prior to reaching the goal state. This

2At the time when the experimented presented in this chapter were performed, these commands were not yet implemented. In
order to teach a robot that it had to pick up a box, the teacher would place it within the robot’s open gripper. A reactive response to
the presence of the object determined the robot to close the gripper and pick up the object. To teach a robot that it has to drop an
object, the teacher would simply take it from the robot’s closed gripper.

75



is an essential consideration that will be used later, to show how observations relate to and are mapped

to representation. The possible evolution of a behavior’s execution is represented by the state-transition

diagram in Figure 4.1.

Figure 4.1: Evolution of a behavior’s execution

The behavior evolution diagram captures another property of a behavior’s goals, related to the types

of conditions that behaviors can achieve. We distinguish between two types of goals (similar to those of

operators in classical AI):

� Maintenance goals: conditions that have to be maintained for a time interval, as specified in the

task description. This interval can either be a pre-determined amount of time, or be event-driven.

� Achievement goals: conditions that, once achieved, do not have to continue being maintained.

A behavior with a maintenance goal should continue to be active even after the achievement of its goal

(transition from
� � to

���
), while a behavior with an achievement goal is deactivated after attaining its goal

(transition from
� � to

���
or from

� � to
���

). For example, the goal of a wall-following behavior needs to

be continuously maintained for the entire duration for which it is required to follow the wall, and therefore

the behavior should remain active for that time interval. A pick-up behavior, however, is deactivated after

grasping the object, as the condition it achieves (i.e., carrying an object) is persistent and does not have to

be maintained through its actions.

In our architecture, the behaviors’ goals are abstracted environmental states that are continuously eval-

uated based on the sensory information. During a demonstration of a task, a robot gathers observations

of these states and records the time intervals during which the goals that they represent were detected as
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being achieved. Depending on the particulars of the environment, or the style of the teacher, these intervals

can take different amounts of time. In consequence, simply from these observations, a learner could not

deduce if the duration of these intervals is important or even relevant for the demonstration.

Relying solely on the information provided by observation (i.e., time intervals during which conditions

representing behavior goals have been detected as true), the learning process would only be able to cap-

ture the ordering aspect of the various stages of a demonstrated task, without the specifics about precise

durations. Within the behavior-based framework it is also reasonable to assume that capturing the exact

duration of the observed time intervals is not particularly relevant for the task representation because, as

discussed above, the time required for a behavior to achieve its goals cannot be precisely determined.

Different demonstrations (of different teachers, in different environments) of the same task might yield

different observations, and something like “Do X for time T” might not even be relevant information. The

relations between time intervals corresponding to two behaviors, however, help capture more powerful

representations related to the notion of maintenance, such as Do X while performing Y. Details about this

process are presented later in Section 4.4.2.

Thus, the class of tasks that we are interested in learning includes tasks for which the ordering of the

steps is essential, but not their duration. For example, the robot can learn that it has to pick up an object

and then go home, but not that it has to follow a wall for 10 seconds. Within this class of learnable tasks,

relevant maintenance constraints can be learned from temporal relations between observations.

Another aspect of behavior goals is also important to address. As described in the previous chapter

(Section 3.2.1), goals are abstracted environmental states, which are continuously computed and repre-

sented in a “predicate-like” form, which may or may not be dependent on the behavior’s parameters. For

example, for a PickUp behavior ,the goal would be represented as HaveObject = TRUE, whereas for

a Track(Color, Distance, Angle) behavior, having as parameters the color of a target and the desired

distance and angle to it, the goal is represented as the conjunction (DistToTarget = GoalDist and Angle-

ToTarget = GoalAngle).

77



Figure 4.2: Observation of parametric and non-parametric behavior’s goals

During a demonstration, since all behaviors are monitoring the status of their goals, the robot is able

to detect when the postconditions of its behaviors became true. For a behavior with non-parameterizable

goals, the observation of its goals being achieved is represented by a time interval (as discussed above)

during which the conditions were met (Figure 4.2(left)). For a behavior with parameterizable goals the

observation is also a time interval, representing moments in time when the conditions constituting the

goals can be evaluated from the sensory data. This means that there exists a set of parameter values

(computed from the sensory information for the conditions representing the goal), which, if being assigned

as parameter values for that behavior, would be equivalent to the achievement of the behavior’s goal in the

same environmental configuration. Thus, for a behavior with parameterizable goals, the observation is a

time interval with a different set of parameter values for each moment of that interval (Figure 4.2(right)).

For the purpose of our work we consider that the last observed values for a behavior’s parameters are

the ones considered as the goal values for that behavior. Also, for all behaviors, we consider that the

last observed moment is the one representing the true achievement of the behaviors’ goals. We take this

approach since we consider that the last moment when a behavior’s postconditions were observed as being

true is the most representative for the values that its parameters should take. While this may not hold true

in all cases, it gives proper results for our behavior set and the class of tasks previously described.
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4.4 Building Task Representation From Observations

This section presents the algorithm for constructing task representations from a teacher’s demonstration.

4.4.1 The Learning Algorithm

Each node in a learned behavior network representation maintains the following information: behavior

type, a unique ID (to differentiate between possible multiple instances of the same behavior), observed

values of the behavior’s parameters, interval of time
�

during which the behavior’s postconditions were

true, and a flag that shows whether the teacher has indicated any saliencies within
�
.

The general idea of the algorithm is to add to the network task representation an instance of all behav-

iors whose postconditions have been true during the demonstration, in the order of their occurrence. At

the end of the teaching experience, the intervals of time when the effects of each of the behaviors have

been true are known, and are used to determine if these effects have been active in overlapping intervals

or in sequence. Based on the above information the algorithm generates the proper network links (i.e.,

precondition-postcondition dependencies), as described in the next section.

Behavior network construction

��� On-line processing (during the demonstration) ���

1. At each time step, for each behavior:

� If the behavior’s postconditions have just become true:

� Add to the behavior network an instance of the behavior it corresponds to. (Along with it, save the

time step as the start of behavior activation.)

� Else, if the behavior’s postconditions are true and have previously been true:

� Update the corresponding behavior in the network with its current parameter values, computed from

observations, and any teacher-indicated saliency.

� Else, if the behavior’s postconditions have just become false:
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� If in the network there is any previous behavior of the same type with an ending time within some
�

from the starting time of the current behavior, merge the two behaviors (updating the information carried

with the network nodes accordingly).

��� Off-line processing (after the demonstration) ���

3. Filter the network in order to eliminate false indications of some behavior’s effects. These are nodes with

very small durations (determined experimentally as less than 2sec.) or unreasonable values of behavior

parameters (detected distances to an object greater than 2 meters).

4. For each node representing a behavior instance � :

For each node representing a behavior instance � added to the network at a later time:

Compare the end-points of the interval
���

(corresponding to behavior � ) with those of interval
� �

(corresponding to behavior � ):

� If ��� ��� ��� � , then postconditions of � are permanent preconditions for � . Add this permanent link

to behavior � in the network.

� If ��� � � ��� � and � � � � ��� � , then postconditions of � are enabling preconditions for � . Add this

enabling link to behavior � in the network.

� If ��� � � � � � , then postconditions of � are ordering preconditions for � . Add this ordering link to

behavior � in the network.

The complexity of the learning algorithm is �
	 �
���

in the number of behaviors in the learned network.

This complexity is determined by the off-line stage of the algorithm, which requires a comparison of each

behavior node with all its successors, in order to compute the proper behavior links between them.

4.4.2 Correctness of the Observation-Representation Mapping

In this section we demonstrate that the algorithm presented above produces a correct task representation.

We start by stating the criteria for what we consider to be a correctly learned representation:
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A learned representation of a task is correct if it enforces that all the stages of the real

task be achieved in the same order shown during the demonstration.

The first aspect of the correctness criteria (that all stages of the demonstrated task be achieved) is

addressed by the on-line processing segment of the learning algorithm. This process relates the observation

of an interval � � � � � ��� , corresponding to observing the goals of behavior � � � � as being met, to having an

instance of that behavior be a part of the task representation. Intuitively, this ensures that all the necessary

behaviors needed to perform all the observed stages of the task are included in the representation.

The second aspect of the correctness criteria, related to the order in which the intermediary steps of

the task are executed, is addressed by the off-line processing of the algorithm and requires a more detailed

explanation.

At the end of the teacher-led demonstration the robot has a “back-bone” of the network, in the form

of an ordered list of behaviors, inserted in the order in which their goals were detected as being achieved.

From this, using the information about the specific time intervals corresponding to the time when the goals

of each behavior have been true, the algorithm determines, for each pair of behaviors in that list, the type

of precondition-postcondition relationships. Determining the dependence between two behaviors � and

� is thus equivalent to determining the type of overlap between the interval when the goals of behavior �

were observed as true, and the interval during which behavior � was active, prior to achieving its own

goals (as described in Section 3.3), since this is what would describe the goals of � be preconditions for

behavior � .

However, a demonstration provides only time intervals during which the goals of the behaviors were

observed to be met, not when the behaviors should have been active. In Section 4.3 we concluded that

a behavior should go through an active stage prior to achieving its goals and that the last moment of an

observed interval is the one representative of achieving the goals. These considerations are represented

in Figure 4.3. For a generic behavior � , the time the behavior should have been active (if the observed

interval was � � � � � � � ) is � � � � � � � , with the goals considered to be achieved at � � (the thick line). Thus,
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the problem becomes finding how the interval relations between �  �  � � and � � � � � � map onto the existing

precondition-postcondition dependencies (ordering, enabling, or permanent).

Figure 4.3: Interpretation of observation for two generic behaviors

Similar to the interval-based time representation of Allen (1983), we consider that between any two

intervals there may be seven possible relations (Figure 4.4). Figure 4.5 shows how all the possible observa-

tions between two behaviors translate into precondition-postcondition dependencies: they follow directly

from the the type of overlap between the time when the postconditions of a behavior � are true and the

time when behavior � should have been active, based on the description of the behavior network links

presented in Section 3.3.

Figure 4.4: Allen’s temporal relations

It is important to notice that for the observations A starts B and A equals B there is no associated

relation. This is due to the fact that the goals of behavior � start to be true after the moment when behavior

� is activated, thus not constituting pre-conditions for behavior � .

82



A before B

Ordering

constraints

A meets B A overlaps B

Enabling

preconditions

A ends B A includes B

Permanent

preconditions

A starts B A equals B

No relation

Figure 4.5: Mapping from observations to relations

Also, for all cases there exists another possible situation in which behavior � starts to be active before

the goals of � are met, but in that case � would not be a predecessor of � . We do not consider those

cases, since we assume that there will always be a predecessor-successor dependency between behaviors

detected earlier in the demonstration and the ones detected later.

The mappings between the observations and the temporal relations are summarized in Table 4.1. Thus

we conclude that the presented network construction algorithm is correct.
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Table 4.1: Observation-Relation Mappings

Observation Relation
A before B Ordering constraint
A meets B Enabling precondition

A overlaps B Enabling precondition
A starts B No relation

A includes B Permanent precondition
A ends B Permanent precondition

A equals B No relation

4.5 Experimental Validation

We designed several different experiments that rely on navigation and object manipulation skills of the

robots. First, we report on the performance of learning from human teachers in clean environments, fol-

lowed by learning in cluttered environments. In the latter experimental setup we also address the issue of

knowledge transfer between robots, in robot(teacher)-robot(learner) demonstration experiments.

4.5.1 The Robot Testbed

To implement and test our concepts we used the same testbed as in the previous chapter. The robot is a

Pioneer 2-DX mobile robot, equipped with two rings of sonars (8 front and 8 rear), a SICK laser range-

finder, a pan-tilt-zoom color camera, a gripper, and on-board computation on a PC104 stack.

4.5.2 The Behavior Set

The robot uses the behavior set described in Chapter 3 (Section 3.5.2.2) that contains the PickUp, Drop

and Track behaviors.

4.5.3 Evaluation Criteria

Before presenting the experimental results we describe the evaluations criteria we used in order to analyze

the results of our experiments, specifically the notions of success and failure.
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The challenge we address is to enable a robot to learn high-level task representations from human

demonstrations, relying on a behavior set already available to the robot. Within this framework, we define

an experiment as successful iff all of the following properties hold true:

� the robot learns the correct task representation from the demonstration;

� the robot correctly reproduces the demonstration;

� the task performance finishes within a certain period of time (in the same and also in changed

environments);

� the robot’s reports on its reproduced demonstration (sequence and characteristics of demonstrated

actions) and user observation of the robot’s performance match and represent the demonstrated task.

Conversely, we characterize an experiment as having failed if either of the properties below holds true:

� the robot learns an incorrect representation of the demonstration;

� the time limit allocated for the task was exceeded;

4.5.4 Learning in Clean Environments

We performed three different experiments in a 4m x 6m arena, in which only the objects relevant to the

tasks were present. During the demonstration phase a human teacher led the robot through the environment

while the robot recorded its observations relative to the postconditions of its behaviors. The demonstrations

included:

� teaching a robot to visit a number of cylindrical colored targets in a particular order;

� teaching a robot to slalom around cylindrical colored objects;

� teaching a robot to transport objects between a source and a destination location (marked by cylin-

drical colored objects).
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We repeated these teaching experiments more than five times for each of the demonstrated tasks, to

validate that the behavior network construction algorithm reliably constructs the same task representa-

tion for the same demonstrated task. Next, using the behavior networks constructed during the robot’s

observations, we performed experiments in which the robot reliably repeated the task it had been shown.

We tested the robot in executing the task five times in the same environment as the one in the learning

phase, and also five times in a changed environment. We present the details and the results for each of the

tasks in the following sections.

4.5.4.1 Learning to Visit Targets in a Particular Order

The goal of this experiment was to teach the robot to reach a set of colored targets in the order indicated

by the arrows in Figure 4.6(a). The robot’s behavior set contains a Tracking behavior, parameterizable

in terms of the colors of targets that are known to the robot. Therefore, during the demonstration phase,

different instances of the same behavior produced output according to their parameters.

(a) Experimental
setup (1)

(b) Experimental
setup (2)

(c) Approximate
robot trajectory

Figure 4.6: Experimental setup for the target visiting task

Figure 4.7 shows the behavior network the robot constructed as a result of the above demonstration. As

expected, all the precondition-postcondition dependencies between behaviors in the network are ordering

type constraints; this is evident in the robot’s observation data presented in Figure 4.8. The intervals during

which different behaviors have their postconditions met did not overlap and therefore the ordering is the

only constraint that has to be imposed for this task representation. Five trials of the same demonstration
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Track(Orange, 121, 590)

Track(Blue, 179, 531)

Track(Yellow, 179, 814)

Track(Orange, 55, 769)

Track(Green, 0, 370)

INIT

Figure 4.7: Task representation learned from the demonstration of the Visit targets task

were performed in order to verify the reliability of the network generation mechanism. All of the produced

controllers were identical and validated that the robot learned the correct representation for this task.

To demonstrate the robustness of the control architecture and to demonstrate the advantage of learning

high-level task representations, we performed the learned task in a different environment (Figure 4.6(b)).

The robot correctly performed the task in this changed environment.
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Figure 4.8: Observation data gathered during the demonstration of the Visit targets task
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Figure 4.9 shows the time (averaged over five trials) at which the robot reached each of the targets it

was supposed to visit (according to the demonstrations) in an environment identical to the one used in the

demonstration phase. As can be seen from the behavior network controller, the precondition links enforce

the correct order of behavior execution. Therefore, the robot will visit a target only after it knows that

it has visited the ones that are predecessors to it. However, during execution the robot might pass by a
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Figure 4.9: Averaged time of the robot’s progress while performing the Visit targets task

target that it was not supposed to visit at a given time. This is due to the fact that the physical targets are

sufficiently distant from each other such that the robot could not see them directly from each other. Thus,

the robot has to wander in search of the next target while incidentally passing by others. The robot does

not consider the incidental visits as achievements of parts of its task, since it is not interested in them at

that point of task execution. The robot performs the correct task as it is able to discern between an intended

and an incidental visit to a target. All the intended visits occur in the same order as demonstrated by a

human. Unintended visits, on the other hand, vary from trial to trial as a result of different paths the robot

takes as it wanders in search of targets, and are not recorded by the robot in the task achievement process.

The robot’s wandering in search of the next target is also the cause behind the large variance in traversal

times. As is evident from the data, due to the randomness introduced by the robot’s wandering behavior, it

may take less time to visit all six targets in one trial than it does to visit just the first two in another trial.

In all experiments the robot met the time constraint, finishing the execution within 5 minutes, the

allocated amount of time for this task.
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4.5.4.2 Learning to Slalom

In this experiment, the goal was to teach a robot to slalom through four targets placed in a line, as shown

in Figure 4.10(a). We changed the size of the arena to 2m x 6m for this task.

(a) Experimental
setup

(b) Approximate
robot trajectory

Figure 4.10: The Slalom task

During 8 different trials the robot learned the correct task representation as shown in the behavior

network from Figure 4.11. For this case, we can observe that the relation between behaviors that track

consecutive targets is of the enabling precondition type. This correctly represents the demonstration,

since, due to the nature of the experiment and of the environment setup, the robot began to track a new

target while still near the previous one.

Track(Yellow, 0, 364)

Track(Orange, 178, 378)

Track(Blue, 10, 350)

Track(Green, 179, 486)

Initialize

Figure 4.11: Task representation learned from the demonstration of the Slalom task
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We performed 20 experiments, in which the robot correctly executed the slalom task in 85% of the

cases. The failures were due to the robot’s limited sensing capabilities and consisted of two types: 1) the

robot, after passing one “gate,” could not find the next one due to the limitations of its vision system; and 2)

the robot, while searching for a gate, turned back towards the already visited gates. Figure 4.10(b) shows

the approximate trajectory of the robot succesfully executing the slalom task on its own.

4.5.4.3 Learning to Traverse “Gates” and Transport Objects

The goal of this experiment was to extend the complexity and thus the challenge of learning the demon-

strated tasks by adding object manipulation to the tasks and use the the robot’s ability to pick up and drop

objects.

(a) Traversing gates and
moving objects

(b) Approximate trajectory
of the robot

Figure 4.12: The Object manipulation task

The setup for this experiment is presented in Figure 4.12(a). Close to the green target there is a small

orange box. In order to teach the robot that the task is to pick up the orange box placed near the green target

(the source), the human led the robot to the box, and when sufficiently near it, placed the box between the

robot’s grippers. After leading the robot through the “gate” formed by the blue and yellow targets, when

reaching the orange target (the destination), the human took the box from the robot’s gripper. The learned

behavior network representation is shown in Figure 4.13. Since the robot started the demonstration with
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nothing in the gripper, the effects of the Drop behavior were met, and thus an instance of that behavior

was added to the network. This ensures correct execution for the case when the robot might start the task

while holding something: the first step would be to drop the object being carried.

During this experiment, all three types of behavior preconditions were detected: during the demon-

stration the robot is carrying an object for the entire time while going through the gate and tracking the

destination target, the links between PickUp and the behavior corresponding to the actions above are

permanent preconditions. Enabling precondition links appear between behaviors for which the postcon-

ditions are met during intervals that only temporarily overlap, and finally the ordering constraints enforce

a topological order between behaviors, as it results from the demonstration process.

The ability to track targets within a [0, 180] degree range allows the robot to learn to execute the part of

the task involving going through a gate naturally. This experience is mapped onto the robot’s representation

as follows: “track the yellow target until it is at 180 degrees (and 50cm) with respect to you, then track

the blue target until it is at 0 degrees (and 40cm).” At execution time, since the robot is able to track

both targets even after they disappeared from its visual field, the goals of the above Track behaviors were

achieved with a smooth, natural trajectory of the robot passing through the gate. This demonstrates that

the algorithm allows for learning higher-level behaviors, such as going through a door/gate using simpler

behaviors already available to the robot.

Due to the increased complexity of the task demonstration, in 10% of the cases (out of more than 10

trials) the behavior network representations built by the robot were not completely accurate. The errors

represented specialized versions of the correct representation, such as: Track the green target from a

certain angle and distance, followed by the same Track behavior but with different parameters - when

only the latter was in fact relevant.

Out of 10 trials, the robot correctly executed the task in 90% of the cases. The failures were all of

the type involving exceeding the allocated amount of time for the task. This happened when the robot

failed to pick up the box because it was too close to it and thus ended up pushing it without being able to

perceive it. This failure results from the undesirable arrangement and range of the robot’s sensors, not to
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Figure 4.13: Task representation learned from the demonstration of the Object manipulation task

any algorithmic issues. Figure 4.14 shows the robot’s progress during the execution of a successful task,

specifically the intervals of time during which the postconditions of the behaviors in the network were true:

the robot started by going to the green target (the source), then picked up the box, traversed the gate, and

followed the orange target (the destination) where it finally dropped the box.

The results obtained from the above experiments demonstrate the effectiveness of using human demon-

stration combined with our behavior architecture as a mechanism for learning task representations. The
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Figure 4.14: The robot’s progress (achievement of behavior postconditions) while performing the Object
manipulation task
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approach we presented allows a robot to construct such representations from a single demonstration auto-

matically. The summary of the experimental results is presented in Table 4.2. Furthermore, the tasks the

robot is able to learn can embed arbitrarily long sequences of behaviors, which become encoded within

the behavior network representation. Also, as is seen in the third experiment set, in the absence of a

GoThroughGate behavior, the robot is able to represent that part of the task in a more concise manner then

if the controller were to be designed by hand.

Table 4.2: Summary of the experimental results for learning in clean environments

SuccessesExperiment name Trials
Nr. Percent

Six targets (learning) 5 5 100 %
Six targets (execution) 5 5 100 %
Slalom (learning) 8 8 100 %
Slalom (execution) 20 17 85 %
Object move (learning) 10 9 90 %
Object move (execution) 10 9 90 %

Analyzing the task representations the robot built during the experiments above, we observe the ten-

dency toward over-specialization. The behavior networks the robot learned require that the execution go

through all demonstrated steps of the task, even if some of them might not be relevant. Since, during the

demonstration, there is no direct information from the human about what is or is not relevant, and since

the robot learns the task representation from even a single demonstration, it assumes that everything that it

notices about the environment is important and represents it accordingly.

As any one-shot learning system, our system learned a correct, but potentially overly specialized repre-

sentation of the demonstrated task. Additional demonstrations of the same task would allow it to generalize

at the level of the constructed behavior network, as presented in the next chapter. In the next section we

address the problem of overspecialization by experimenting in cluttered environments and allowing the

teacher to signal to the robot the saliency of particular events, or even objects. While this does not elimi-

nate irrelevant environment state from being observed, it biases the robot to notice and (if capable) capture

the key elements.
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4.5.5 Learning in Environments With Distractors

The goal of the experiments presented in this section is to show the ability of the robots to learn from

both human and robot teachers, in environments with distractor objects which are not relevant for the

demonstrated tasks.

4.5.5.1 Learning from Human Teachers

The task to be learned by the robot is similar to the moving objects task from above (Figure 4.15(a)):

pick up the orange box placed near the light green target (the source), go through the “gate” formed by the

yellow and light orange target, drop the box at the dark green target (the destination) and then come back to

the source target. The orange and the yellow targets at the left are distractors that should not be considered

as part of the task. In order to teach the robot that it has to pick up the box, the human led the robot to

it and then, when sufficiently near it, placed it between the robot’s grippers. At the destination target, the

teacher took the box from the robot’s grippers. Moments in time signaled by the teacher as being relevant

to the task are: giving the robot the box while close to the light green target, teacher reaching the yellow

and light orange target, taking the box from the robot while at the green target, and teacher reaching the

light green target in the end. Thus, although the robot observed that it had passed the orange and distant

yellow targets during the demonstration, it did not include them in its task representation, since the teacher

did not signal any relevance while being at them.

We performed 10 human-robot demonstration experiments to validate the performance of the behavior

network construction algorithm. We then evaluated each learned representation both by inspecting it

structurally and by having the robot perform it, to get physical validation that the robot learned the correct

task. In 9 of the 10 experiments the robot learned a structurally correct representation (sequencing of the

relevant behaviors) and also performed it correctly. In one case, although the structure of the behavior

network was correct, the learned values of one of the behavior’s parameters caused the robot to perform an
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incorrect task (instead of going between two of the targets the robot went to them and then around). The

learned behavior network representation of this task is presented in Figure 4.16.

For the 9 out of 10 successes we have recorded, the 95% confidence interval for the binomial distri-

bution of the learning rate is [0.5552 0.9975], obtained using a Paulson-Camp-Pratt approximation (Blyth

1986) of the confidence limits.

As a base-case scenario, to demonstrate the reliability of the learned representation, we performed 10

trials, in which a robot repeatedly executed one of the learned representations of the above task. In 9 of the

10 cases the robot correctly completed the execution of the task. The only failure was due to a time-out in

tracking the green target.

In Figure 4.15(b) we show the robot’s progress during the execution of the task, more specifically the

instants of time or the intervals during which the postconditions of the behaviors in the network were true.
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(b) Achievement of behavior postconditions

Figure 4.15: The Object manipulation task in environments with distractors

During this experiment, all three types of behavior preconditions were detected: during the demon-

stration the robot is carrying an object for the entire time while going through the “gate” and tracking the

destination target, and thus the links between PickUp and the behavior corresponding to the actions above

are permanent preconditions. Enabling precondition links appear between behaviors for which the post-

conditions are met during intervals that only temporarily overlap, and the ordering preconditions enforce

a topological order between behaviors, as it results from the demonstration.
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Figure 4.16: Task representation learned from human demonstration for the Object manipulation task

4.5.5.2 Learning from Robot Teachers

In this section we extend the problem of learning task representations to the case of learning from robot

teachers. We are interested in determining the reliability of the information that is passed from robots to

robots by means of teaching by demonstration.

We examine the performance of learning a correct task representation transmitted from human to robot

and then, in subsequent trials, from robot to another robot, in order to determine statistically (for our setup)

the number of times the robots could correctly transfer the representations among themselves.

We define the task transfer limit (TTL) to be the number of successful transmissions of the same task

from a teacher to a learner. A TTL of � means that the task was transmitted from the original demon-

strator (usually a human) � times, until the failure point. This variable is expected to follow a geometric

distribution, for which we determine the expected mean value and the confidence interval (Clemans 1959).

The task selected for the experiments is to go through a “gate” formed by the yellow and light-orange

targets (Figure 4.17(a)), visit the light-green target, and come back through the pink and orange targets.
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Two distractor targets (green at the top and yellow at the right bottom corner) were present in the envi-

ronment, which the robots had to ignore during the learning and the execution process. Moments in time

signaled by the teacher as being relevant to the task are reaching the yellow, light-orange, light-green, pink

and orange targets.

We performed three human-led demonstrations, from which a learner robot correctly built the task

representation each time. As a base case, to show that the performance of the robot does not degrade over

time for the same task representation, we performed 10 trials in which a robot repeatedly executed the

above task. In all 10 trials the robot correctly executed the task.

(a) Environment

MTLOrange0

MTYellow1

MTLGreen2

MTOrange3

MTPink4

INIT

(b) Learned task representation

Figure 4.17: The Visiting targets experiment

Next, we performed 10 trials in which two robots, starting from a correctly learned task, switched

roles in teaching each other the same task, each time using the information acquired at the previous step.

Figure 4.17(b) presents the correct learned behavior network for this task. For each of the above trials we

recorded the number of successful teaching experiences until the learning broke down. The maximum and

minimum number of teaching experiments before learning failed were 6 and 2 respectively. The observed

mean for the TTL obtained from the experiments is 2.5, with a 98% confidence interval of [1.4 8]. As

the statistical evaluation shows, any information learned from a human can be further transfered to other
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robots at least one more time in the worst case, despite the naive approach we have employed for the robot

teacher.

We attribute the difference between the performance obtained in the case of a human versus a robot

teacher to the quality of the demonstration: the human facilitates the learner’s observations, whereas the

robot teacher has to wonder around searching, due to its own limited sensing capabilities.

4.5.6 Learning from Non-Expert Users

We also performed experiments with non-expert users with different levels of expertise in robotics and

computer science in general. Extended studies would be needed to compute statistically the performance

of the proposed learning approach among naive users. Since for this work we were mainly interested in

analyzing the type and amount of information necessary to train the robots for someone not familiar with

the approach, we limited the experiments to two users.

The first user had a background in literature, science, and technology, but no computer programming

or robotics experience. The second user had a background in computer science and robotics, but had not

previously interacted with the robot.

Appendix A presents the manual that was provided to these non-expert users prior to their experiments

with training the robot. The document is written in non-technical terms, in order to make the teaching

approach accessible to various categories of users. By looking at the information described in the manual,

we conclude that knowledge of the following key aspects is essential to enable non-expert users to teach a

robot by demonstration:

� Robot sensors

� Robot actuators

� Features the robot can detect

� Robot skills (their description, sensors and actuators used, and how the robot performs them)
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� Method for teaching the robot (following the teacher, responding to spoken instructions, and a de-

scription of all possible instructions along with their applicability conditions)

� A step-by-step description of a sample task.

To test the user’s ability to teach the robot by demonstration, we selected the following task (performed

in the environment presented in Figure 4.18): visit the Light Green target, pick up the Orange box, visit

the Yellow target, visit the Pink target, drop the box near the pink target, and then visit the LightOrange

and Light Green targets.

Figure 4.18: The Object manipulation task

With each of the users we performed 5 trials in which they demonstrated the above task to the robot.

Table 4.3 presents the number of successes for each user. By examining the results obtained from these

experiences, we observed that the erroneous trials were determined by the following factors:

Limitations of the vision-based, color blob detection mechanism:

� the robot perceives false positives, such as the presence of a target of a color that was not even

present in the environment.

� the robot misidentifies targets, and assigns different colors to them.

Limitations of the user’s demonstration:
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� difficulty in having the robot continuously follow the teacher during the demonstration. The envi-

ronment contained numerous distractors (in particular, a wall-sized curtain that has a color similar to

the one assigned for recognizing the teacher). For an experimented teacher, already aware of these

distractors, it is easier to lead the robot such that they would not interfere with the learning process.

However, the naive users also learned to guide the robot away from that wall and also to capture the

robot’s “attention” and have it follow them again.

� inaccurate estimation of when and from what directions the robot is able to detect the colored targets

from the environment. As a result, during some demonstrations the robot did not observe the visits

to some of the targets.

Table 4.3: Experimental results for learning from non-expert users

Users Trials Successes
User 1 5 1
User 2 5 3

Although the performance of learning from non-experienced users is lower than that of a user that has

been working with the robot for a longer time, the experiments showed that it is possible for these users

to learn how to guide the robot through the task even in a small number of trials, and with no other prior

training.

4.6 Discussion

Based on the current set of behaviors available to the robot and the current vocabulary for instruction, the

robot is able to learn any task belonging to the set described in Chapter 3 (Section 3.6).

The expressiveness of the learned tasks could be further increased by introducing new words in the

robot instruction vocabulary. For example, commands such as repeat-until could allow the robot to learn
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repetitive tasks, or repetitive fragments of a more elaborate task. This capability could be easily incorpo-

rated in the learning algorithm, as the control architecture supports the “reinstantiation” of networks after

their completion and thus the ability to perform repetitive tasks.

In addition, if a robot is provided with skills that measure translational and rotational velocities (e.g.,

Turn(Angle), MoveForward(Distance)), the proposed framework would also allow learning of trajecto-

ries. Behaviors considering time taken during the demonstration, in conjunction with instructions such as

do-until, would enable learning of tasks such as Do X for T time, discussed in Section 4.3.

4.7 Summary

This chapter presented an application of the Hierarchical Abstract Behavior Based Architecture described

in Chapter 3 to the problem of robot teaching by demonstration. It described an on-line approach that

allows a robot to learn task representations from its own experiences of interacting both with a human and

a robot teacher. The robot relates the observed changes in the environment with its own internal behaviors

and learns from only one trial, even in the presence of distractor objects. The chapter also demonstrated

the correctness of the algorithm formally, and then validated its effectiveness experimentally.
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Chapter 5

Learning through Generalization from Multiple Examples

This chapter describes a method for generalization of task representations from a small num-

ber of teacher-provided demonstrations. It starts by presenting the generalization problem

in the context of graph-like task representations and then it presents the approach for con-

structing a generalized task representation from several demonstrations, by using a dynamic

programming approach. Next it provides a discussion regarding behavior preconditions and

task execution in the presence of alternate paths of execution, which are introduced through

the generalization process. Finally, experiments validating the approach are presented.

One of the capabilities that allows humans to learn effectively is the ability to generalize over multiple

observed demonstrations. For a teaching by demonstration approach to be efficient, it is essential that the

robot learn from as few demonstrations as possible. A robot house keeper is of little use if the owner must

show it hundreds of times how to bring in the mail. Therefore, statistical learning techniques, which rely

on a large number of training examples, are not appropriate for our desired approach. Also, in robotics,

the existing methods for generalization from demonstrated examples are largely based on function ap-

proximation (Kaiser 1997). However, in our case, the problem consists of generalizing across graph-like

representations of the tasks encoded as behavior networks.

The important aspect of the task that needs to be considered across the multiple experiences is the

ordering in which behaviors are present (and therefore executed) in the acyclic graph representation of a
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behavior network. Therefore, we choose to solve this problem at the level of the topological task structure.

Given the directed acyclic graph (DAG)-like structure of the behavior network representation of the robot

tasks, we consider the topological representation of such a network to be a linked list of behaviors, obtained

by applying a topological sort on the behavior network graph. By using the topological form of the

networks as training examples for our domain, the problem of generalization from multiple demonstrations

is equivalent to inferring a regular expression (Finite State Automaton (FSA) representation) from a set

of given sample words (Figure 5.1(a)). In this analogy, each symbol in a given word corresponds to a

behavior in a topological representation.

Unfortunately, applying standard methods for regular expression inference, such as the K-TSI Infer-

ence Algorithm (Garcia & Vidal 1990) or Morphic Generator Grammatical Inference (MGGI) (P. Garcia

& Casacuberta 1987), to this generalization problem yields results that are too complex (in terms of the

obtained FSA representations) even for very simple examples. This is due to the fact that these methods

assume that all the training examples are correct and they try to fit them as well as possible. For our robot

domain, in which the inaccuracies in the training examples (learning irrelevant steps or omission of steps

that are relevant) are exactly the problem we need to solve, these methods are therefore not a good choice.

5.1 Constructing the Generalized Task Representation

5.1.1 Computing the Similarity Across Tasks

The reason we are interesting in giving a robot the ability to generalize over multiple teaching experiences

is that its limited sensing capabilities, the quality of the teacher’s demonstration, and the particulars of the

environment generally prevent the robot from correctly learning a task from only one trial. The two main

inaccuracies that occur in the learning process are learning irrelevant steps (false positives) and omission

of steps that are relevant (false negatives).

Our approach for generalization is to build a task representation that encodes the specifics of each

input example, but most importantly that points out the parts that are common. As a measure of similarity
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we consider the longest list of common nodes between the topological forms of the sample tasks. Based

on this information we further construct a generalized topology in which nodes that are common to both

tasks will be merged, while the others will appear as alternate paths in the graph. For example, for the

examples presented in Figure 5.1(a), behaviors � , � and � constitute the longest subsequence of common

nodes. The representation resulted after “merging” the initial graphs at their common nodes is shown in

Figure 5.1(c).

(a) (b) (c)

Figure 5.1: Generalization across multiple demonstrations. (a) Training examples; (b) Longest common
sequence table; (c) Generalized topology

In order to find the similarity between the two inputs we rely on a standard dynamic programming

approach for computing the longest common subsequence (LCS) (Cormen, Leiserson & Rivest 1990) be-

tween two sequences of symbols. If � = � � � � � � � � � � � � � � and � = ��� � � � � � � � � � ��� � are two sequences

of symbols, and the prefix of a sequence is defined as � � = � � � � � � � � � � � � � � , the algorithm computes a

longest common subsequence table (Figure 5.1(b)) that encodes in each element � ��� � � �
	 � : i) the length of

the longest common subsequence of the sequences � � and � � , and ii) a pointer to the table entry corre-

sponding to the optimal subproblem solution chosen when computing � ��� � � ��	 � . The right bottom element

of the table contains the length of the LCS for the entire sequences � and � . The running time of the

algorithm is �
	 � � � , with � and � being the lengths of the two sequences � and � , typically small for

our domain.

104



We obtain the generalized topology by traversing the LCS table starting in the right bottom corner and

following the arrows: an “ � ” arrow indicates nodes that are common to both training examples and that

are merged, while “ � ” and “ � ” arrows indicate nodes that belong to only one sequence. These latter cases

are added as alternate paths of execution (Figure 5.1(c)).

(a) (b)
Figure 5.2: Incorporating new demonstrations: (a) Efficient computation of a generalized topology; (b)
Generalized topology

The generalization process is incremental, meaning that each newly acquired experience is incorpo-

rated into the existing topological task representation. If this topology is already the result of a previous

generalization, and has the form of a DAG with alternate paths of execution (Figure 5.1(c)), in a simple

approach, incorporating a new demonstration into the existing structure would amount to running the same

algorithm described above between the new example and all the possible paths of that graph. Since a LCS

table encodes the common subsequences for all possible subproblems ( � � � 	 � � � � �
�
, with � � � � � � � and

	 � � � � � � ), we can efficiently apply this algorithm without having to compute a different table for each

path of the graph. For this, we construct a structure that contains the LCS table in the form of a linked

list of rows computed as the ones above. Within this structure, each node has an associated row for each

different possible path from the root(s) to that node (Figure 5.2(a)). Each of these rows points to the row

associated to the parent node on the corresponding path. As a result, each path in the graph has associated

a linked list of rows that encodes the measure of similarity between that path and the new given example.
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To compute the generalized topology from this structure, we traverse the list that embeds the longest of

the possible subsequences, similarly with traversing the LCS table above. This process is efficient in terms

of both computational time and space, as different paths “share” the parts of the table that are common.

For our example, the obtained generalized topology is not changed by incorporating the new example, as

shown in Figure 5.2(b).

The generalization between multiple learned tasks (encoded as behavior networks) is performed at the

level of their topological representations and provides a generalized topology. The generalized behavior

network associated with this topology, is constructed from the underlying temporal dependencies between

behaviors in the networks that participated in the generalization. This process is described in the next

section.

5.1.2 Updating the Generalized Network Dependencies

In order to ensure proper behavior sequencing we need to transfer the temporal dependencies between

behaviors to the generalized behavior network.

While computing the behavior network dependencies between any two behaviors � and � belonging

to the generalized topology, there are three possible situations that may occur:

� � and � do not belong to the LCS, but are both part of the same task, such as behaviors � and � in

the left network in Figure 5.3(b). In this case the link between behaviors � and � is only present in one

of the networks (the one on the left), and therefore the same link will be used in the generalized network.

� � and � are each part of a different underlying task, and � is a predecessor of � in the generalized

topological representation, such as behaviors � (left network) and � (right network) in Figure 5.4(b). In

this case, since there is no dependency between these behaviors in any of the existing networks, but since

the precedence of � over � needs to be enforced, in the generalized network, an ordering constraint from

� to � will be added.
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(a) Topology (b) Component Networks (c) Generalized Behavior Network

Figure 5.3: Computing dependencies between behaviors: case 1.

(a) Topology (b) Component Networks (c) Generalized Behavior Network

Figure 5.4: Computing dependencies between behaviors: case 2.

� Both � and � are part of the LCS, such as behaviors � and � in Figure 5.5(b). In this case, there is

a dependency between the behaviors in both behavior networks, and if these dependencies have different

types, a decision needs to be made on which one to consider. The solution chosen for this case is to take

the type that represent the least restrictive constraint, as shown in Figure 5.6.

5.2 Alternate Paths of Execution

During generalization, the topological representation of each new demonstration is compared with the

existing topological structure, while computing their similarity in the form of their longest common se-

quence, as described above. To build the generalized topology, common nodes are merged while the rest
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(a) Topology (b) Component Networks (c) Generalized Behavior Network

Figure 5.5: Computing dependencies between behaviors: case 3.

Figure 5.6: Updating temporal dependencies between behaviors

appear as alternate execution paths. Due to the generalization, the following types of alternative paths can

be obtained:

� both paths contain actual behavior(s). For example, Figure 5.7 encodes the fact that performing be-

haviors � or � after behavior � is acceptable for the task. For such alternate paths the robot chooses

opportunistically between them, as induced by the state of the environment.

� one path is a direct link to the end of the other alternate sequence. In Figure 5.7, there is a direct link

from � to � , bypassing the behavior � . For such paths, the robot will automatically chose the direct path,

shortcutting the alternate sequence. These unattainable paths could be removed from the graph, but we are

keeping them as we can envision extensions in which teacher feedback could eliminate such direct links

(“marking” as wrong certain transitions from one step to another).
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5.3 Computing Behavior Preconditions in Generalized Representations

In a simple behavior network (whose topology is a chain of behaviors and not a DAG), the task-dependent

preconditions for a given behavior (the ones that depend on the execution of its predecessors) have the

form of a conjunction of the status of all its predecessor behaviors.

In a generalized topology, since multiple alternate paths to a particular behavior can exist, the precondi-

tions are encoded as combinations of conjunctions and disjunctions of the different paths. Thus, computing

the preconditions for each behavior becomes equivalent to computing the regular expression from a FSA

representation (Figure 5.7).

Figure 5.7: Computing behavior preconditions in a topological representation

For example, evaluating the preconditions for behavior � means checking that either the goals of �

and � and � or those of just � and � are or have been true in accordance with the types of dependencies

between them and behavior � , as given by the generalized behavior network computed above.

To summarize, the generalization process between two behavior networks is performed at the level of

their topological representations, resulting in a generalized topological structure. The temporal depen-

dencies between behaviors in the generalized task representation, which are encoded in a corresponding

behavior network, are computed from the information contained in the underlying behavior networks in-

volved in the generalization.
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5.4 Experimental Validation

5.4.1 The Robot Testbed

To implement and test our concepts we used the same testbed as in the previous chapters. The robot

is a Pioneer 2-DX mobile robot, equipped with two rings of sonars (8 front and 8 rear), a SICK laser

range-finder, a pan-tilt-zoom color camera, a gripper, and on-board computation on a PC104 stack.

5.4.2 The Behavior Set

The robot used the behavior set described in Chapter 3 (Section 3.5.2.2), that contains the PickUp, Drop

and Track behaviors.

5.4.3 Generalization from Three Given Examples

We validated the generalization abilities of the robot by teaching it an object transport task in three consec-

utive demonstrations, performed in different environmental setups (Figure 5.8), and purposely designed to

contain incorrect steps and inconsistencies. The next chapter shows how already learned/generalized tasks

can be further refined through practice and feedback. As discussed above, giving “HERE” cues during the

demonstrations does not help the robot detect the relevant parts of the task perfectly. In these three training

experiments we included all of the robot’s observations into the learned task representations, solely for the

purpose of demonstrating the generalization technique, to simulate that the robot was not able to discern

the relevant aspects despite the teacher’s instructions. The importance of such messages, however, will be

shown in the practice-feedback experiments presented in the next chapter.

The environment consisted of a set of cylindrical targets, in colors that the robot is able to perceive.

The teacher led the robot around these targets, while also instructing it when it had to pick up or drop a

small orange box. The task to be learned was as follows: go to either the Green (G) or the Light Green

(LG) targets, then pick up an Orange (O) box, go between the Yellow (Y) and Red (R) targets, go to the
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(a) First demonstration (b) Second demonstration (c) Third demonstration

Figure 5.8: Structure of the environment and course of demonstration

Pink (P) target, drop the box there, then go to the Light Orange (LO) target and come back to the target

Light Green.

The courses of the three demonstrations above show that none of them corresponds exactly to the target

task. Besides containing unnecessary steps (such as a final visit to a Green target in the first trial), these

training runs also contain inconsistencies, such as the visits to the Light Orange target, which happened

at various stages during the demonstrations. Figures 5.9 and 5.10 present the task representations obtained

after each “learning
�

generalization” process. For all these experiments, in order to validate the correct-

ness of the learned/generalized representations, we had the robot execute them in the same environment in

which they had been demonstrated after each teaching experience. In all cases the robot performed the task

correctly for the particular stage of the generalization process. Also, in order to demonstrate the robustness

of our architecture to changing environments and the advantages of learning high-level representations of

tasks, we had the robot execute the last generalized network (Figure 5.10(b)) in a different environment

than the three presented before (Figure 5.10(c)). The robot correctly executed that task in the new setup.

The representation that the robot has about the task at the end of these experiments contains most of the

steps that would be required for a correct performance. More specifically, the robot captured all the steps

that have been consistently observed throughout all three demonstrations. Considering the interpretation

that the robot gives to the alternate paths of execution, from the topology obtained after the last step of
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DROP7
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INIT10

(a) First demonstration

DROP0

MT1(LGreen,179,490)

PICKUP2(Orange)

MT3(Yellow,0,439)

MT4(Red,179,581)

MT5(Pink,179,410)

DROP6

MT7(LOrange,179,396)

MT8(Green,0,485)

MT9(LGreen,0,444)

INIT10

(b) Second demonstration

DROP0

MT1(LGreen,179,490) MT2(Green,179,655)

PICKUP3(Orange)

MT4(Yellow,0,439)

MT5(Red,179,581)

MT6(LOrange,179,893)

MT7(Pink,179,410)

DROP8

MT9(LOrange,179,396)

MT11(LGreen,0,444)

MT10(Green,0,485)

MT12(Green,19,642)

INIT13

(c) Generalized task

Figure 5.9: Evolution of the task representation over two successive demonstrations

generalization, the robot learned to perform the following task: go to either the Green (G) or the Light

Green (LG) targets, then pick up an Orange (O) box, go between the Yellow (Y) and Red (R) targets,

go to the Pink (P) target, drop the box there, and then come back to the Light Green target. The step of

visiting the Light Orange target is missing: although captured correctly during the second demonstration,

the visit to this target has been demonstrated inconsistently throughout the sequence of demonstrations.
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(a) Third demonstration

DROP0
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MT11(LOrange,179,396)

MT13(LGreen,9,437)

MT12(Green,0,485)

MT14(Green,19,642)

INIT15

(b) Generalized task (c) New environment

Figure 5.10: Evolution of the task representation after the third demonstrations

5.5 Discussion

The generalization method uses an acyclic graph to compactly encode the actual “rules” from the multiple

demonstrations. The resulting generalized task representation captures the main structure of the task while

at the same time dealing with the irrelevant and inconsistent parts of the demonstrations: both of these

situations are captured as becoming a part of bypassed alternate paths which will never be executed. While

it is desired that the irrelevant actions are thus pruned, the steps demonstrated inconsistently which are still

necessary would have to be included by different means. These results are to be expected: generalization
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alone, when provided with inconsistent examples, is not enough for learning a correct representation. The

next chapter shows how practice and teacher feedback can be used for solving this problem.

5.6 Summary

The ability to generalize from multiple experiences or examples is essential for any learning by demonstra-

tion approach, as the robot’s limited sensing capabilities and the correctness of the teacher’s performance

may negatively influence the learning process. Existing generalization methods have mostly employed

statistical approaches that rely on a large number of examples, and that have focused on non-symbolic

representations, such as movement trajectories. This chapter presented an iterative approach to general-

ization that uses a small number of examples to construct a symbolic, graph-like task representation. The

described experiments validate the proposed approach.
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Chapter 6

Improving Learning through Practice and Teacher Feedback

This chapter presents an approach that allows a robot to improve the accuracy of a learned

task, by practicing it under a teacher’s supervision. The chapter describes the two main types

of inaccuracies that can occur during a process of teaching by demonstration: learning of

non-relevant steps, and failure to include steps that are pertinent to the task. For each of

these situations it describes how are the problems be detected, and also by what means a

teacher provides the robot with corrective feedback. Finally, the chapter describes two sets of

experiments in which robots refine previously learned tasks using the feedback given by the

teacher.

Generalization over several training examples helps in identifying the steps that were observed most

often and are thus most likely a part of the task. However, repeated observations of irrelevant steps may

inadvertently bias the learner toward including them in the representation. Also, limitations in the sensing

capabilities of robots and particular structures in the environment may prevent the robot from observing

steps that are relevant.

To enable a robot to learn correctly a task in these conditions, we take an approach similar to what

people do when teaching each other. After one, or several, demonstrations of a particular task, the robot is

allowed to practice the task it had learned under the teacher’s supervision. During this step, the robot per-

forms the task, while the teacher observes it and detects any errors in execution. These errors are signaled
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by the user at the moment when they occur, through appropriate feedback cues, in our implementation

given as spoken commands. The robot uses these messages to update and correct its representation of the

task. This is a natural and accessible approach for refining the robot’s learned task representation, which

does not require expertise or knowledge regarding the robot’s internal model of the task. As a result, the

practice runs allow the teacher to observe the execution of the robot and to point more accurately to where

problems occurred.

6.1 Removing Unnecessary Learned Steps

One of the problems that may occur during a teaching by demonstration process is that the robot may gather

irrelevant observations, and include them as pertinent aspects for the task at hand. These are false positives.

For example, while teaching the robot to visit a particular target the robot may pass close to another one

and infer that it should also be visited. The robot considers these irrelevant steps as valid and therefore

performs them during its practice experience. Since the teacher is aware of the robot’s capabilities and also

of how it performs them, having the robot practice what it had learned allows for easy identification of the

steps that are not relevant for the task.

There are two types of irrelevant observations:

1. task steps that are not a part of the task at all. An example is the learned sequence � � � � � ��� � � for

an intended task � � � ��� � � . In this case � is irrelevant, and there is no other occurrence of � in

the correct task.

2. task steps that are not a part of the task, but for which there exist identical steps which are a part of

the task. An example is the task sequence � � � � � � � � � , for an intended task � � � � � � � . In this

case the first occurrence of � is irrelevant, and the second is a relevant step.

To correct the first type of error, the teacher communicates to the robot within a short time after de-

tecting the problem, by giving a “BAD” command. The teacher may also signal before allowing the robot
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to finish the execution of the unnecessary step, if from the robot’s exhibited behavior it is clear what the

robot’s intention is. “BAD” indicates that the behavior that the robot is currently executing, or the one that

has just been finished (assuming a response time of 10 seconds) is irrelevant for the task. If the cue from

the teacher comes within 10 seconds after the completion of a behavior, the message is considered to relate

to this behavior, even if, at the moment of receiving the feedback, another behavior was active. This is

based on the assumption that the teacher could not have reacted so quickly to the activation and execution

of the second behavior. The robot labels the indicated behavior as irrelevant and removes it from the task

representation using standard graph manipulation techniques. This process is represented in Figure 6.1

below.

Figure 6.1: Using feedback to eliminate unnecessary steps

To detect and correct the second type of error, the teacher should allow the robot to complete the task,

and provide feedback in a subsequent practice run. By looking at the robot’s performance only as far as

the occurrence of the incorrect step, the cause of the problem cannot be decided precisely. This is due

to the fact that the same sequence of observed events can be generated by two different types of errors

in the robot’s task representation: either the robot learned an irrelevant step (the case analyzed here), or

the robot failed to learn a sequence of steps preceding a relevant step similar in type to the irrelevant one

(Section 6.2).

For example, if a correct task is � � � � � � � , and the robot performs � after � , this problem may

have been generated by two causes: either the robot learned the sequence � � � � � � � � � , where the first
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occurrence of � is not relevant, or the robot learned � � � � � , where the relevant step � is missing. To

clear this ambiguity and to identify the correct cause of the problem, it is good for the teacher to wait until

the end of the robot’s task performance and to provide feedback in a subsequent practice run, using the

same command (“BAD”) and approach as described above.

However, the teacher may still provide feedback during the first performance of the task. In this case,

making the wrong assumption on the cause of the observed error results in a more complex process for

refining a robot’s learned task representation through feedback.

6.2 Incorporating Missing Steps

Another error that may occur during teaching a robot by demonstration is that, due to limited sensing

capabilities, the robot may miss steps that are relevant for the task. These are false negatives. These steps

are detected during a robot’s practice experience, by observing that the robot skips performing them. As

discussed in the previous section, this problem is detected by allowing the robot to perform a complete

practice run, to eliminate ambiguities related to irrelevant task steps.

To correct this error, the teacher can intervene using a “COME” and a “GO” command. “COME”

makes the robot enter into the learning mode described in Chapter 4; it starts following the teacher who

demonstrates again the missing part of the task. When these parts have been demonstrated, the teacher

ends the demonstration with “GO,” after which the robot continues executing the remaining part of the

task. The robot incorporates the newly learned steps into the task representation and includes the newly

demonstrated steps in its next execution (Figure 6.2). The arrow next to behavior � means that the “NEW”

message was received while the behavior was active, or shortly after the behavior finished its execution

(in our case this time interval is of 10 seconds). By providing feedback at this particular time, the teacher

implies that the steps to be added should have happened before � ’s execution, as represented in the final

task structure.
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Figure 6.2: Using feedback to incorporate missing observations

Both types of instructions (for correcting missing or unnecessary steps) can be applied at any time,

during the same practice runs, and as many times as the teacher considers it necessary. The ability to use

these cues to refine previously learned tasks by a robot is validated experimentally in the next section.

6.3 Experimental Validation

To validate the key features of our proposed approach we performed two sets of robot experiments, which

are described next.

6.3.1 The Robot Testbed

To implement and test our concepts we used the same testbed as in the previous chapters. The robot

is a Pioneer 2-DX mobile robot, equipped with two rings of sonars (8 front and 8 rear), a SICK laser

range-finder, a pan-tilt-zoom color camera, a gripper, and on-board computation on a PC104 stack.

6.3.2 The Behavior Set

The robot uses the behavior set described in Chapter 3 (Section 3.5.2.2), that contains the PickUp, Drop

and Track behaviors.
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6.3.3 Task Refinement after Demonstration and Generalization

In the first experiment the experienced user employed the practice-feedback approach after having given

multiple demonstrations (in our case 3) of the same task. This example is based on the same task presented

in the previous chapter, in Section 5.4 and follows on its results. The task to be learned was as follows: go

to either the Green (G) or the Light Green (LG) targets, then pick up an Orange (O) box, go between the

Yellow (Y) and Red (R) targets, go to the Pink (P) target, drop the box there, then go to the Light Orange

(LO) target and come back to the target Light Green. The teacher performed three demonstrations of this

task in three different environments consisting of a set of cylindrical targets, in colors that the robot is able

to perceive.

Figure 6.3: Environment for feedback given after three demonstrations

Generalization over the several given examples, allowed the robot to build an improved representa-

tion of the learned task. However, as discussed in the previous chapter, the generalized network did not

represent the target task intended by the user. The missing part was a visit to the Light Orange target,

which should have happened right after dropping the box and before going to the Light Green target.

Since the generalization process already built the remaining of the task structure, simple feedback during

a robot practice run was enough for refining it to the desired structure. We performed the practice run

in the environment presented in Figure 6.3. The figure also shows the robot’s trajectory and (dotted) the

teacher’s intervention. After dropping the box at the destination Pink target, the robot started going toward
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the Light Green target, which was a sign that the robot skipped the visit to the Light Orange target. Ob-

serving this tendency, the teacher intervened by using the “COME” command: the robot switched to the

learning mode, and followed the teacher, who lead it to the Light Orange target it had previously failed to

observe. The use of the “HERE” feedback cues during this learning stage was essential, as the robot also

passed by and detected other targets (Pink and Yellow) while following the teacher, and which were thus

ignored. After demonstrating the missing step, the teacher signaled the end of the “learning” intervention

using the “GO” command, and the robot continued and finished the task by going to the remaining Light

Green target. Figure 6.5(a) shows the structure of the task after this practice run. The newly added steps

are marked on the graph: they also include a Drop behavior, as the robot had nothing in the gripper at the

point of the demonstration and therefore the goals of this behavior were also detected as true. At the time

of the execution, the existence of this behavior had no influence, since the robot had already dropped the

object at that point.

6.3.4 Task Refinement after Demonstration Only

The second experiment demonstrates how a similar transport task can be learned and refined by providing

feedback directly after the initial demonstration. In this case, since the robot does not have the opportunity

to improve its task representation through additional examples, to correct the potential inaccuracies during

practice involves more complex teacher feedback.

This example is based on the task and the results obtained after the first demonstration presented in the

previous chapter. The experiment was performed in the environment presented in Figure 6.4(a). At the end

of the demonstration, the robot learned the representation shown in Figure 5.10(c) (in Chapter 5), which

can be summarized as: visit the Green target, pick up the Orange box, visit the Yellow, Red and Light

Orange targets, visit the Pink target, drop the box there, then visit the Light Green and the Green targets.

To show how the approach for giving feedback during demonstrations can refine previously learned,

incorrect task representations, let us assume that the actual task the robot should learn is as follows: visit

the Light Green target, pick up the Orange box, visit the Yellow and Red targets, visit the Pink target,
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(a) Demonstration environment (b) Practice environment

Figure 6.4: Environment for feedback after one demonstration

drop the box there, then visit the Light Green target. During the practice run, the teacher observed the

following errors in the robot’s performance:

� The initial visit to a Green target is wrong; a Light Green target should be visited instead.

� The visit to the Light Orange target is wrong, and not a part of the task.

� The end visit to the Green target is wrong, and not a part of the task as well.

Figure 6.4(b) shows the trajectory of the robot and (dotted) the intervention and messages of the teacher

during the robot’s practice run. The effects of this feedback are that: the visit to the Green target was

replaced by a visit to the Light Green target, and the visits to the Light Orange and Green have been

removed. Figure 6.5(b) presents the structure of the task after this practice run.

To validate the correctness of the learned representations, we had the robot execute the tasks learned

after both of the practice runs described above: in each case the execution proved that the robot cor-

rectly adapted its task representations according to the teacher’s feedback, which matched the target tasks

intended by the user.
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(a) After the 3rd
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(b) After the first
demonstration

Figure 6.5: Topologies obtained after practice and feedback

6.4 Discussion

We observe that the practice-feedback runs are a more precise method for refining previously learned tasks.

Since feedback can be given at any step during the robot’s practice, incorrect steps can be marked either

directly upon observation during execution, or, as in the case of correcting missing steps, in a subsequent

practice run.

Another important feature of the practice-feedback approach that we need to stress is the naturalness of

this process. In order to give the robot appropriate feedback, the teacher does not need to know the structure
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of the task being learned, and thus is shielded from having to know any details about the robot’s control

architecture. Instead, he simply relies on observing the actions performed by the robot: if they comply

with the desired representation, no feedback is given, and if they do not, the corresponding situations are

treated with appropriate feedback as described in our experiments.

6.5 Summary

This chapter presented an interactive approach for providing a robot with information necessary to refine

previously learned, but incorrect tasks. It showed how giving direct feedback during a robot’s task perfor-

mance helps solving the two main problems that can occur during teaching by demonstration that may also

persist after generalization. The experiments demonstrate that both learning of irrelevant steps and failing

to capture task-relevant aspects can be solved through teacher intervention.
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Chapter 7

Conclusions

This dissertation presented a framework that incorporates novel approaches to robot learning, autonomous

control and human-robot interaction. The framework extends the capabilities of autonomous robots and

their ability to function in dynamic, unpredictable environments. Robots that can effectively operate in

such environments require robust and flexible real-time control and the ability to perform complex tasks.

In addition, for efficient interaction with humans or other robots in their environment, robots need to be

endowed with capabilities for learning such tasks from other agents.

The framework presented in this dissertation provides an approach for learning and refining high-level

task representations of robotic tasks from instructive demonstrations, generalization over multiple demon-

strations, and practice under a teacher’s supervision, based on a set of underlying capabilities (behaviors)

available to the robot. For robot control, the method uses a flexible Hierarchical Abstract Behavior-Based

Architecture, developed to extend the capabilities of standard behavior-based systems with AI-level con-

cepts.

The developed task learning technique is based on experienced demonstrations, during which the robot

actively participates in the demonstration along with the teacher and experiences the task through its own

sensors. The robot learns by creating a mapping between the observations and its own skills that achieve

the effects perceived during the teacher’s demonstration.
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Due to inherent challenges of the learning process, it is important that robots be able to improve their

capabilities by receiving additional training and feedback, similarly with the approach humans use when

teaching each other by demonstration. The solution developed in this dissertation allows a teacher to use

relevant cues during training, thus providing the robot with essential information regarding the relevant and

irrelevant aspects of a demonstration. In addition, concise instructions allow for a richer demonstration,

by actively involving the robot in the process. Through generalization, the robot can incorporate several

demonstrations of the same task into a single graph-like representation. Feedback cues provided by the

teacher allow the robot to further refine this representation during practice experiences.

The Hierarchical Abstract Behavior-Based Architecture presented in this dissertation uses an action-

embedded approach for task representation and has the following key features: 1) ability to encode and exe-

cute sequential, hierarchically structured tasks within a behavior-based framework; 2) behavior reusability

across different tasks; 3) means for sequential and opportunistic task execution; and 4) support for auto-

matic generation of a behavior-based system. With this architecture robot tasks are encoded as hierarchical

behavior networks, which represent the sequential and hierarchical task dependencies.

The proposed concepts were implemented and validated on a Pioneer 2DX mobile robot. The key

features of the control architecture were demonstrated in numerous examples that showed the use of hier-

archical design, sequential and opportunistic task execution. The experimental results also validated the

ability of our approach to incorporate multiple means for instruction and learning in order to teach robots

various tasks through demonstration, generalization, and practice. In addition, the experiments performed

show that generalization and feedback can be used interchangeably in various combinations, providing the

teacher the flexibility to instruct the robot in the manner considered most suited for each case.

126



Reference List

Agre, P. A. & Chapman, D. (1990), ‘What Are Plans For?’, Journal of Robotics and Autonomous Systems
6(1-2), 17–34.

Aha, D. W. & Salzberg, S. L. (1993), Learning to Catch: Applying Nearest Neighbor Algorithms to
Dynamic Control Tasks, in ‘Fourth International Workshop on Artificial Intelligence and Statistics’,
pp. 363–368.

Allen, J. F. (1983), ‘Maintaining Knowledge about Temporal Intervals’, Communications of the ACM
26(11), 832–843.

Angros, R. H. (2000), Learning What to Instruct: Acquiring Knowledge from Demonstrations and foc-
cused experimentation, PhD thesis, University of Southern California.

Arbib, M. (1992), Schema Theory, in S.Shapiro, ed., ‘The Encyclopedia of Artificial Intelligence’, Wiley-
Interscience, pp. 1427–1443.

Arkin, R. C. (1987), Motor Schema Based Navigation for a Mobile Robot: An Approach to Programming
by Behavior, pp. 264–271.

Arkin, R. C. (1998), Behavior-Based Robotics, MIT Press, CA.

Arkin, R. C. & Balch, T. (1997), ‘AuRA: Principles and Practice in Review’, Journal of Experimental and
Theoretical AI 2-3, 175–189.

Atkeson, C. G., Moore, A. W. & Schaal, S. (1997), ‘Locally Weighted Learning for Control’, Artificial
Intelligence Review 11(1-5), 75–113.

Atkin, M. S., King, G. W., Westbrook, D. L., Heeringa, B., Hannon, A. & Cohen, P. (2001), SPT: Hierarchi-
cal Agent Control: a Framework for Defining Agent Behavior, in ‘Proc., Intl. Conf. on Autonomous
Agents’, pp. 425–432.

Benson, S. & Nilsson, N. J. (1994), Reacting, Planning and Learning in an Autonomous Agent, in K. Fu-
rukawa, S. Muggleton & D. Michie, eds, ‘Machine Intelligence’, Vol. 14, Oxford University Press,.

Billard, A. & Dautenhahn, K. (1998), ‘Grounding Communication in Autonomous Robots: an Experimen-
tal Study’, Robotics and Autonomous Systems, Special Issue on Scientific methods in mobile robotics
24:1-2, 71–79.

Billard, A. & Hayes, G. (1998), ‘DRAMA, a Connectionist Architecture for Control and Learning in
Autonomous Robots’, Adaptive Behaviour Journal 7:2, 35–64.

Bindiganavale, R., Schuler, W., Allbeck, J. M., Badler, N. I., Joshi, A. K. & Palmer, M. (2000), Dy-
namically Altering Agent Behaviors Using Natural Language Instructions, in ‘Proc., Intl. Conf. on
Autonomous Agents’, pp. 293–300.

127



Blyth, C. R. (1986), ‘Approximate Binomial Confidence Limits’, Journal of the American Statistical As-
sociation 81(395), 843–855.

Bonasso, R. P., Firby, R. J., Gat, E., Miller, D. K. D. & Slack, M. (1997), ‘Experiences with an Architecture
for Intelligent, Reactive Systems’, Journal of Experimental and Theoretical Artificial Intelligence
9(2–3), 237–256.

Booker, L. B. (1988), ‘Classifier Systems that Learn Internal World Models’, Machine Learning 3, 161–
192.

Brand, M. (1996), Understanding Manipulation in Video, in ‘Proc., the 2nd Intl. Conf. on Face and Gesture
Recognition’, Killington, VT, pp. 94–99.

Brand, M. (1997), The ”Inverse Hollywood Problem”: From Video to Scripts and Storyboards via Causal
Analysis, in ‘Proceedings of the 14th National Conference on Artificial Intelligence and 9th Inno-
vative Applications of Artificial Intelligence Conference (AAAI-97/IAAI-97)’, AAAI Press, Menlo
Park, pp. 132–137.

Brooks, R. A. (1986), ‘A Robust Layered Control System for a Mobile Robot’, IEEE Journal of Robotics
and Automation 2(1), 14–23.

Brooks, R. A. (1990a), The Behavior Language: User’s Guide, Technical Report AIM 1227, MIT AI Lab,
Cambridge, MA.

Brooks, R. A. (1990b), ‘Elephants Don’t Play Chess’, Journal of robotics and autonomous systems 6(1-
2), 3–15.

Brooks, R. A., Connell, J. H. & Ning, P. (1988), HERBERT: A Second Generation Mobile Robot, Techni-
cal Report AIM 1016, MIT AI Lab, Cambridge, MA.

Carbonell, J. G. (1983), Learning by Analogy: Formulating and Generalizing Plans from Past Experience,
in J. C. R.S. Michalsky & T. Mitchell, eds, ‘Machine Learning: An Artificial Intelligence Approach’,
Tioga Publ., pp. 371–392.

Carbonell, J. G. & Gil, Y. (1990), Learning by Experimentation: the Operator Refinement Method, in
Y. Kodratoff & R. S. Michalski, eds, ‘Machine Learning: An Artificial Intelligence Approach’, Vol. 3,
Morgan Kaufmann, pp. 191–213.

Chapman, D. (1987), ‘Planning for Conjunctive Goals’, Aritifical Intelligence 32, 333–377.

Clemans, K. G. (1959), ‘Confidence Limits in the Case of the Geometric Distribution’, Biometrika
46(1/2), 260–264.

Colombetti, M. & Dorigo, M. (1994), ‘Training Agents to Perform Sequential Behavior’, Adaptive Behav-
ior 2(3), 247–275.

Connell, J. H. (1990), Minimalist Mobile Robotics: A Colony-style Architecture for a Mobile Robot, Aca-
demic Press.

Connell, J. H. (1992), SSS: A Hybrid Architecture Applied to Robot Navigation, in ‘Proc. of the IEEE Int.
Conf. on Robotics and Automation’, Nice, France, pp. 2719–2724.

Cormen, T. H., Leiserson, C. E. & Rivest, R. L. (1990), Introduction to Algorithms, MIT Press.

Dautenhahn, K. (1995), ‘Getting to Know Each Other - Artificial Social Intelligence for Autonomous
Robots’, Robotics and Autonomous systems 16, 333–356.

128



Dauthenhahn, K. (1994), Trying to Imitate - a Step Towards Releasing Robots From Social Isolation, in
‘Proc., From Perception to Actions Conference’, IEEE Computer Society Press, Lausanne, Switzer-
land, pp. 290–301.

Dayan, P. (1992), ‘The Convergence of TD( � ) for General � ’, Machine Learning 8, 341–362.

DeJong, G. & Mooney, R. J. (1986), ‘Explanation-Based Learning: An Alternate View’, Machine Learning
1(2), 145–176.

del R. Millan, J. (1996), ‘Rapid, Safe, and iIcremental Learning of Navigation Strategies’, IEEE Trans-
actions on Systems, Man and Cybernetics. Special issue on Learning Approaches to Autonomous
Robots Control 26(6), 408–420.

del R. Millan, J. & Torras, C. (1992), ‘A Reinforcement Connectionist Approach to Robot Path Finding in
Non-Maze Like Environments’, Machine Learning 8(3–4), 363–395.

Delson, N. & West, H. (1996), Robot Programming by Human Demonstration: Adaptation and Inconsis-
tency in Constrained Motion, in ‘Proc., IEEE Intl. Conf. on Robotics and Automation’, Minneapolis,
MN, pp. 30–36.

Demiris, J. & Hayes, G. (1999), Active and Passive Routes to Imitation, in ‘Proc., the AISB Symposium
on Imitation in Animals and Artifacts’, Edinburgh.

Demiris, Y. & Hayes, G. (2002), Imitation as a Dual-Route Process Featuring Predictive and Learning
Components: a Biologically-Plausible Computational Model, in K. Dautenhahn & C. Nehaniv, eds,
‘Imitation in Animals and Artifacts’, MIT Press, pp. 321–361.

Dorigo, M. & Colombetti, M. (1994), ‘Robot Shaping: Developing Autonomous Agents Through Learn-
ing’, Artificial Intelligence 2, 321–370.

Dorigo, M. & Colombetti, M. (1997), Robot Shaping: An Experiment in Behavior Engineering, MIT Press,
Cambridge.

Farrell, S., Maglio, P. P. & Campbell, C. S. (2001), How to Teach a Fish to Swim, in ‘Proc., IEEE Symp.
on Human-Centric Computing Languages and Environments’, IEEE Computer Society, Stresa, Italy,
pp. 158–164.

Fikes, R. E. & Nilsson, N. J. (1971), ‘STRIPS: A New Approach to the Application of Theorem Proving
to Problem Solving’, Artificial Intelligence 2, 189–208.

Firby, J. R. (1989), Adaptive Execution in Complex Dynamic Worlds, PhD thesis, Yale University, Com-
puter Science Department.

Friedrich, H. & Dillmann, R. (1995), Robot Programming Based On A Single Demonstration And User
Intentions, in ‘Proc., 3rd European Workshop on Learning Robots’, Crete, Grece.

Friedrich, H. & Kaiser, M. (1995), What Can Robots Learn from Humans?, in ‘Proc., IFAC Workshop on
Human-Oriented Design of Advanced Robotic Systems’, Vienna, Austria.

Friedrich, H., Hofmann, H. & Dillmann, R. (1997), 3D-icon Based User Interaction for Robot Program-
ming by Demonstration, in ‘Proc., IEEE Intl. Symp. on Computational Intelligence in Robotics and
Automation’, Monterey, CA, pp. 240–245.

Fuellen, G. (1997), ‘Multiple Alignment’, Complexity International
4, http://www.csu.edu.au/ci/vol04/mulali/mulali.htm.

129



Garcia, P. & Vidal, E. (1990), ‘Inference of K-Testable Languages in the Strict Sense and Application
to Syntactic Pattern Recognition’, IEEE Transactions on Pattern Analysis and Machine Intelligence
12(9), 920–925.

Gat, E. (1998), On Three-Layer Architectures, in D. Kortenkamp, R. P. Bonnasso & R. Murphy, eds,
‘Artificial Intelligence and Mobile Robotics’, AAAI Press, pp. 195–210.

Gaussier, P., Moga, S., Banquet, J. & Quoy, M. (1998), ‘From Perception-Action Loops to Imitation
Processes: A Bottom-up Approach of Learning by Imitation’, Applied Artificial Intelligence Journal
12(78), 701–729.

Georgeff, M. P. & Lansky, A. L. (1987), Reactive Reasoning and Planning, in ‘Proc., Intl. Conf. of the
American Association of Artificial Intelligence’, Seattle, WA, pp. 677–682.

Goldberg, D. (2001), Evaluating the Dynamics of Agent-Environment Interaction, PhD thesis, University
of Southern California.
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Nicolescu, M. N. & Matarić, M. J. (2001a), Experience-Based Representation Construction: Learning
from Human and Robot Teachers, in ‘Proc., IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems’,
Maui, Hawaii, USA, pp. 740–745.
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Appendix A

Teaching Your Robot

The role of this appendix is to describe the information necessary to teach a robot by demonstration,

using the approach presented in this dissertation. The goal of this work is to allow non-specialist users to

program a robot, through demonstration, to perform a particular task, constructed from a set of underlying

capabilities already available to the robot.

This appendix describes the essential information regarding the sensors, actuators, perceptions and

skills of the robot and the mechanism for teaching by demonstration, that a non-specialist user would need

to know.

A.1 How Does the Robot Perceive the Environment?

The robot perceives its environment using its sensors. The Pioneer 2-DX mobile robot used in these

experiments is equipped with the following sensors:

� A laser range-finder that gives the robot information about its distance from objects in front of it.

The rangefinder can only detect objects placed in a plane at the level of the laser. The field of view

of the laser is 180 degrees, meaning that it detects all obstacles placed within 90 degrees to the left

and 90 degrees to the right of the center of its field of detection.
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� A pan-tilt-zoom color camera that allows the robot to detect up to 8 different, previously trained

colors.

� Infrared sensors (IR), located on the inside of the gripper’s paddles that allow the robot to detect the

presence of an object within the gripper.

� A sound-detection ability that enables the robot to receive spoken commands from the teacher. The

commands are given through the microphone of a cordless headset.

Figure A.1: A Pioneer 2DX robot

A.2 How Does the Robot Act On Its Environment?

The robot acts upon its environment using its actuators, which are mechanical devices for moving or

controlling the robot or some of its parts. Following are the Pioneer’s actuators:

� left and right wheels, which allow the robot to move forward and to rotate;

� a small mechanical hand called a gripper, allowing grasping and releasing of small objects placed

within its reach.

A.3 What Can the Robot Perceive?

Using its available sensors the robot can detect the following features:
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� the presence of small objects in any of the eight previously trained colors. Using its camera the

robot detects objects as colored blobs in its visual field. The robot knows the size and position of

each blob in the visual field.

� the presence of tall cylindrical objects in any of the eight previously trained colors. As with the

features above, by using its camera, the robot detects the objects as colored blobs in its visual field.

For these objects, the robot also measures the distance and angle to the objects using its laser range-

finder.

� the teacher. The robot perceives the teacher as a tall, blue colored, cylindrical object. The robot has

been previously trained to identify tall, blue targets as the teacher, and can detect the teacher up to a

distance of approximately 2 meters.

� gripper status. If the robot’s gripper is closed and the state of the IR sensors indicate the presence

of an object, the robot detects that it is carrying an object. If the IR sensors of the robot do not

indicate the presence of an object, the robot infers that its gripper is empty and available.

A.4 Robot Skills

The robot is equipped with the following three capabilities, which it can use to perform more complex

tasks:

� PickUp: Using this skill the robot picks up a small object of a particular color from the pre-

programmed color set. The color of the object indicates which type of object has to be picked

up. In order to perform this skill, the robot wanders around in search for an object of the specified

color. After detecting the object using its camera, the robot moves toward it and opens its gripper

in order to pick the object up. When the IR sensors in the gripper detect the presence of the tracked

object the gripper closes and lifts, grasping the object.
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� Drop: The robot uses this skill to drop whatever it has in the gripper. To perform this skill, the robot

opens the gripper and backs off while turning, in order to release the object, and avoid grabbing it

again. When the IR sensors detect that there is no object present, the gripper closes and lifts.

� Track: Using this skill the robot can visit a tall object in one of the pre-programmed colors. To

perform this skill, the robot wanders around in search of a tall object of a particular color. The robot

first detects the target using the camera, then the robot combines the information from the camera

and the laser range-finder to track the object and to position itself at a specific angle to and distance

from it. Merging the information from the laser range-finder and the camera allows the robot to track

targets within a 180 degree range, even after they go out of the visual field. The robot beeps when it

reaches the target.

The robot also has two implicit skills that it uses in the following conditions:

� Wander: If the robot does not have a particular task to perform, or if none of the skills of a task are

currently in execution, the robot wanders around.

� Avoidance: If the robot detects obstacles at distances smaller than a safe range for navigation, it

automatically avoids those obstacles, even if other robot skills were being executed until that point.

A.5 Teaching the Robot

The robot is able to learn any particular task that uses its skills by performing the task along with the

teacher. In order to train the robot, the teacher relies on two main methods: leading the robot and giving

spoken instructions.

Following the teacher: during the entire demonstration the robot follows the teacher, maintaining a 50cm

distance from him/her, using its camera and laser range-finder. The robot uses the known color assigned

to the teacher, and uses its Track skill for following. During the demonstration, the teacher should stay
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in the 180degree visual field of the robot’s camera and laser-rangefinder, and should not go farther than

150cm away from the robot. The teacher should try to walk with a smooth, continuous movement and

should try to walk with the legs close together to make a large and uniform target for the robot. If the robot

gets distracted the teacher should move in front of it and take small steps to turn the robot away from the

distraction.

Instructions: to give verbal instructions, the teacher speaks the commands into the microphone of the

cordless headset. It is good practice to keep the headset turned off when not speaking to the robot, in order

to eliminate undesired noise from the environment. The headset can be easily turned ON/OFF at the touch

of a button. The teacher may give the following spoken commands (more details regarding the use of these

instruction are given later in this and the next sections):

� “START” - signals the beginning of a demonstration; the robot starts moving toward the teacher.

� “DONE” - signals the end of a demonstration; robot stops moving: this is the end of the demonstra-

tion.

� “TAKE” - tells the robot to pick up a small object shown by the teacher and placed in its sensory

range.

� “DROP” - tells the robot to drop anything that it might have in the gripper.

� “HERE” - tells the robot that it should pay attention to what is present in the environment, and to

consider these observations as being relevant for the demonstrated task.

� “BAD” - signals to the robot that the currently executing skill, or the skill that was just finished, is

not relevant for the task.

� “COME” - signals to the robot that it missed important steps of the task and that it should start

following the teacher in order to learn these steps again.
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� “GO” - signals to the robot that the demonstration started by the command “COME” has ended.

Here is how the teacher can use the above spoken commands to instruct the robot to perform a task:

� PickUp: To teach a robot that it has to pick up a small object of a particular color, the teacher: 1)

shows the object to the robot, making sure that the object is in the robot’s visual field, no more than

one meter away, 2) says the command “TAKE”, and then 3) puts the object down. The robot will

pick up the object on its own. (Note: when teaching the robot to perform this behavior, make sure

to hold the box above the robot’s laser rangefinder, so that the robot will not confuse the box with a

tall cylinder.)

� Drop: To teach a robot that it has to drop what it is carrying, the teacher only has to say the command

“DROP.” The robot will drop any object it is carrying at that time.

� Track: To teach a robot to visit a particular target (such as a tall colored cylinder), the teacher walks

toward the target, making sure that the object is in the robot’s visual field and laser range. For this

behavior, to minimize the possibility that the robot will perceive targets other than the one that is

relevant, the teacher should say “HERE” when it knows that the robot has moved within 1.5m of

the correct target. More specifically, the teacher should give this command when it approximates

that the target is visible for the robot.

A.6 What if Something Goes Wrong?

If, after teaching, the robot does not perform the task correctly, it means that some problems may have

occurred during the demonstrations. There are two possible errors that could cause the robot to perform

the task incorrectly:

� The robot learned some steps that are not relevant for the demonstrated task. For example, while the

user is teaching the robot to visit a particular target, the robot may pass close to another target and

erroneously infer that this target should also be visited.
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� The robot missed relevant steps of the task. The limitations of the sensory capabilities of the robot

could make it fail to detect particular targets.

The teacher can detect these situations by observing the robot performing the learned task. If errors

occur, the user may correct the robot by giving it appropriate feedback. Here is how the teacher detects

and corrects the problems mentioned above:

� Irrelevant steps: These are steps that the robot should not be performing as a part of the task. The

teacher can detect these incorrect steps by observing the performance of the robot. For example, if

the robot gets close to a colored object and it beeps, it means that it went there on purpose. If that

visit was not supposed to happen, this is a sign that the robot is performing an irrelevant step.

To correct this problem, the teacher needs to signal the error to the robot within 10 seconds of

detecting the problem. The teacher may also signal before allowing the robot to finish the execution

of the wrong step, if from its behavior it is clear enough that this is in fact the robot’s intention. The

feedback signal is given by speaking the command “BAD.” The robot will not execute this step in

future performances.

� Missing steps: These are steps that the robot failed to perceive during the demonstration, and so it

skips them while performing the task. The teacher detects this situation by observing that the robot

skips steps and that it is instead trying to execute a step that should have been performed at a later

stage.

For example, let’s assume that a correct task would be to visit a green, yellow, and then an orange

target. If the teacher sees that after visiting the green target the robots starts going toward the orange

target, this is an indication that during demonstration the robot failed to detect the visit to the green

target. This is an example of a missing step.

To correct this error, when seeing that the robot is trying to perform a step that should have been per-

formed later in the task, the teacher may intervene by calling the robot with a “COME” command.
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At that point, the robot starts searching for and following the teacher (similarly as during a normal

demonstration, so the teacher should go in the front of the robot). The teacher can now demonstrate

again the parts of the task that the robot had missed, as during a regular demonstration. The teacher

ends the demonstration by speaking a “GO” command. The robot will continue executing the task

from the point where it left off before the interruption. At the next task performance, the robot will

include the newly demonstrated steps in its execution.

A.7 Putting it All Together

This section presents an example of teaching the robot a task, performed in the environment such as in

Figure A.2. The task that the robot should learn is as follows: visit the Light Green target, pick up an

Orange box, visit the Light Orange and Yellow targets, visit the Pink target, and then drop the box near

the Pink target.

Here is the sequence of steps that the user should carry out to teach the robot this task (assuming that

the robot is already turned on and ready):

1. Put on the headset (turn it ON only when giving commands).

2. Stand in front of the robot, so that you are within its visual field. Try to stay in the robot’s visual

field at all times during training.

3. Say “START”. The robot will start coming toward you.

4. Move toward the the light green target. When you perceive that the robot can see the target (i.e, the

target is within the robot’s visual field) say “HERE”.

5. When you get close to the box, pick it up, show it to the robot, say “TAKE”, then put the box back

down. The robot will pick it up on its own.

6. Move toward the light orange and yellow targets. The robot will keep following you. When you

perceive that the robot can see the targets say “HERE”.
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7. Move toward the pink target. When you perceive that the robot can see the target say “HERE”.

8. After you reach the pink target say “DROP”. The robot will drop the object.

9. Say “DONE”. The robot will stop. This is the end of the demonstration.

Figure A.2: The Object transport task
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