
Sycophant: An API for Research in Context-Aware
User Interfaces

Anil Shankar, Juan Quiroz, Sergiu M. Dascalu, Sushil J. Louis, Monica N. Nicolescu
Department of Computer Science and Engineering

University of Nevada
Reno, Nevada 89557

{anilk, quiroz, dascalus, sushil, monica}@cse.unr.edu

Abstract—Research in context-aware user interfaces aims to
improve human-computer interaction by providing more effec-
tive, smarter and user-friendlier solutions for computer applica-
tions. Currently, software available for performing such research
and developing context-aware interfaces is very limited both in
scope and possibilities of extension. Sycophant was designed with
two objectives in mind: first, to allow easy insertion of new
features and capabilities needed for conducting research and,
second, to provide a reusable, readily available programming
resource for developing new context-aware interactive software
applications. Available as open source software, Sycophant’s
API and the calendaring application we created using it are
presented in this paper in terms of functional capabilities, high
level architecture, detailed design, and results of use. Procedural
steps for developing new context-aware user interfaces using our
API are also described in the paper.

I. INTRODUCTION

Present day computer applications rely on the activity of an
internal clock, keyboard and mouse to provide input or context
to interact with a user. Applications that rely on such meager
contextual information are only partially aware of a user and
her environment. For example, consider the scenario of Jill
listening to music on her media player. Jill pauses her media
player if the phone rings in her office, and turns the volume
down if she is talking with someone in her office. In a similar
situation, Jack prefers to turn down the volume on his media
player if the phone rings in his office; he pauses the media
player while talking with someone in his office. Application
action preferences not only vary with the context in which the
application is used, but they are also different from user to user.
Jill’s interaction with her media player could be a lot more
effective if her media player harnessed additional contextual
information from her environment and adapt its behavior to
turn the music volume down whenever she is talking with
someone in her office.
There are no currently available Application Programming

Interfaces (APIs) to access such contextual information from
a user’s environment. For example, if one wanted an API to
harness speech-related contextual information from Jill’s envi-
ronment and use this information to enable her media player to
learn Jill’s preferences for turning the volume down or pausing
the music, there are no readily available API’s for one’s use.
There is a necessity for a software environment that gives
researchers in context-aware user interfaces access to APIs

for extracting contextual information from different sensors.
A user’s environment is a rich source for simple contextual
information such as the existence of motion or speech, in
addition to the activity of an internal clock, keyboard and
mouse. If such APIs were available, then one could use a
speech sensor and, for example, detect speech in the last ten
minutes or record the quantity of speech activity in the last
five minutes. Jill’s media player could potentially use speech
sensor data to learn her context-based preferences for different
situations.
In this paper, we give details about using our Sycophant API

to extract user-related contextual information from different
sensors and develop context-aware user interfaces. To be more
precise, we use the name Sycophant for both the API we
have developed and the context-aware software environment
(centered on a calendaring application) that we have built
using the API. However, because the API is more generic
in scope and provides the framework on which other, new
context-aware user interfaces can be built, this paper is focused
primarily on the Sycophant API rather than on Sycophant
calendar-centered software environment.
Sycophant API allows developers to create different user-

related features and employs these features to build a user
model for individual users. We can harness this user model
to learn preferences for different applications. For the work
presented here, we provide results from using our API in a
calendaring application to learn alarm preferences for different
users. Sycophant API allows access to simple sensor infor-
mation from a user’s environment such as motion, speech,
keyboard activity, and mouse usage. We extract different
contextual features from these sensors to check, for example, if
there was any activity in the last five minutes and, if there was,
the amount of sensor activity in this period of time. Sycophant
API is reused to extract similar features for the last minute
before which our calendar generates an alarm. Related work
by Shankar et. al [1], [2] and Fogarty et. al [3], [4] gives
more details about the construction of such features for context
aware interfaces. In this paper we focus on highlighting the
utility of Sycophant API for such tasks.
Our goal is to provide researchers in context-aware user

interfaces access to APIs such that they can specify sen-
sors to be used and features to be extracted, and use the
information collected to enhance the adaptive behavior of

different applications. We believe that such context-enabled
applications capable of learning user preferences have a very
high potential for improving the quality of human-computer
interaction (HCI).
To summarize, the main contributions of this paper are the

following: first, it provides an account of a unique, operational
context-aware calendar-centered software environment used
both for research and actual office work and, second, offers
details on an API that can be readily used for developing new
context-aware applications (for example, a media player or an
email browser able to learn user preferences and behave to
their satisfaction).
This rest of this paper is organized as follows. Section II

provides background on currently available open source APIs
and their applicability for research in context-aware user
interfaces. We also talk about leveraging the Sycophant API to
enable Google Calendar to adaptively generate alarms for dif-
ferent users [5] . Section III describes the Sycophant context-
aware learning environment and the components of its layered
architecture. Details of functionality and user interface design
are also provided in this section. Class diagrams presenting
the organization of our API and procedural steps for using
the API in developing a particular software application are
given in Section IV. Results from using the Sycophant API and
environment in our research are given in Section V. Finally, in
Section VI we present our conclusions and outline directions
of future work.

II. BACKGROUND AND RELATED WORK

We are not aware of any readily available APIs that allow
researchers in context aware user interfaces to extract context
features from different sensors. Our survey revealed two
APIs/software packages that come the closest to our Sycophant
API. The first is a software package provided by Carolina
Computer Assistive Technology group at the University of
North Carolina-Chapel Hill [6]. Their approach focuses mostly
on the development of applications for people with disabilities.
The pyHook library included in the packages wraps low-level
mouse and keyboard events in MicroSoft’s Windows Hooking
API. This API cannot be used on Linux platforms and there
is no facility to directly extract sensor features. The second,
Fogarty’s Subtle, is a software package that collects data from
a note-book computer’s closing, opening, mouse-click, audio
analyses, and WiFi sensing activities [3]. Subtle can create new
features and operators based on a context feature’s type and
history of usage. However, Subtle is currently not available for
use on Linux platforms. Our Sycophant-API is transparent to
the operating system and is currently usable on both Windows
and Linux [7].
The next section gives a brief description of Sycophant’s

architecture. We used Sycophant in a study involving three
users for a period of four to six weeks. Sycophant enabled a
calendaring application to adaptively generate alarms for these
three users [1]. Results of this study showed that our API
successfully extracted user-related contextual features to en-
able the calendaring application to adaptively generate alarms

for these three users. In a second short-term study involv-
ing ten users, Sycophant was again successful in adaptively
generating hints (reminders) to study subjects participating in
four article-reading sessions [2]. The results of these studies
have demonstrated Sycophant utility for research in context-
aware user interfaces and environments. Encouraged by these
results, we are currently investigating generalizing Sycophant
by using it for Google Calendar (a web-based calendar) and
XMMS (media player on Linux) [8]. We intend to deploy the
user-context software on at least ten users’ PCs and collect
long term data from these users for investigating the usage
of contextual information from a user’s environment to help
desktop applications personalize their behavior to individual
users.

III. OVERVIEW OF SYCOPHANT SOFTWARE
ENVIRONMENT

We have used the Sycophant API to build the Sycophant
context-aware interactive software environment. The target
application for which we wanted to learn user preferences
and adapt application behavior to these preferences has been
a calendar. Nevertheless, the principles of building a context-
aware environment such as Sycophant are largely independent
of the target application.
Thus, in this section we first describe use cases that specify

functionality provided by the Sycophant environment. Next,
we detail the components (sub-APIs) of its layered software
architecture. We finally conclude the overview of the envi-
ronment with details of the interface designed to capture user
feedback.

A. Functionality
The major actors that interact with a context-aware learning

environment such as Sycophant are the following: the user of
the environment (an environment that embeds a target user
application such as a calendaring program or a media player),
the sensors used to collect data relevant to user behavior (sen-
sors such as motion, keyboard, mouse, and speech sensors),
and the time, which basically provides timestamps needed in
analyzing research data.
In Sycophant’s case these actors, together with the use cases

in which they are involved, are shown in Figure 1. Actors
and use cases are elements of the Unified Modeling Language
(UML) that capture system behavior as seen from outside the
system [9] and [10]. They are powerful model elements that
can cover the entire system behavior in a similar way pieces
of a puzzle, when all put correctly together, make clear and
complete the image hidden in the puzzle.
Due to space limitations, only the main functionality of the

Sycophant environment is shown in Figure 1. Nevertheless, it
serves us to outline from an operational perspective the orga-
nization of a context-aware interactive software environment.
Note that all use cases are triggered by actors and, at this
level of representation, the system can be seen as a black
box (i.e., the way use cases are implemented in the system
is irrelevant to the actors) [11]. Note also that in Figure 1 all

Fig. 1. Use case diagram of the Sycophant user-centered context-aware learning environment

sensor actors inherit from an abstract actor, denoted Sensor.
The GenerateTimeStamp use case indicates that the Time actor
interacts with the system by associating timestamps with data
items collected from sensors. The sensors themselves interact
with the system by notifying changes, e.g., when a web-camera
detects motion in the vicinity of the computer (this is captured
in the NotifyChange use case). When requested (by the User)
the sensors also provide sensor data, fact indicated by their
involvement in the GetSensorData use case. The User of the
system initiates most use cases. These are as follows:

• DefineServiceSet allows the user to specify the types and
the number of sensors available in the system;

• CustomizeServiceSet is invoked for selecting a subset of
available sensors to be used in an actual operation of
the system (e.g., in a research experiment, or over of a
specified period of time of using the application);

• GetSensorData allows the user to specify the parameters
of data collection, including sampling intervals;

• BuildUserModel provides the creation of the user model
(i.e., a model of user behavior) based on data collected;

• UseApplication is the actual use of the target application
embedded in the context-aware environment (e.g., of
the calendar, with all its alarm types that take into
consideration user preferences);

• ProvideFeedback solicits feedback from the user during
the use of the application on various aspects of use
that help the system learn user preferences (more details
are given in subsection III-C, which presents the user
interface used for this purpose).

B. Architecture
Figure 2 shows the architecture of our Sycophant user-

context aware learning environment, built using the Syco-
phant API. Sycophant API consists of four components (sub-
APIs): Sensors API, Context API, Learning Services API,
and Application-Level API. Sensors API interfaces different
sensors (motion, speech, keyboard, mouse) with a user’s en-
vironment. For example, we can interface with a web-camera

(motion sensor) and create a motion detection service at the
sensor’s level. We can similarly interface with a microphone, a
keyboard, or a mouse. Different sensors store their data in the

Fig. 2. Four-layer architecture of the Sycophant software environment

User-Context layer. We can extract user-context features from
this data using the Context-API. For example, if we want to
count the number of times the motion detector was active in
the last 10 minutes we can use the Context-API to extract a
Count-10 feature that accomplishes this task. Using the User
Context API, we can similarly extract different sets of features
from all the sensors. Section IV provides more details on how
to create a user-context data set extracting different features
from various sensors.
We can use the Learning Services API to select a machine

learning algorithm for generating an application-specific user

model based on user-context data collected in the User Context
layer. A user model maps user-related contextual features to
applications. We can use this API to select a decision-tree
learning algorithm for learning Jill’s music volume preferences
based on speech activity detected in her environment. Learning
Services API allows use to plug-in any other machine-learning
algorithm for generating user models that reflect their appli-
cation action preferences.
The Application API provides access to the user-model

(generated at the Learning Services layer) for predicting a
user preferred application action. We can use this API to
enable Jill’s media player to predict when the volume should
be turned down based on Jill’s model built using different
sensor data. Thus, the Sycophant API plays a key role in aiding
applications to adapt their behavior to individual users.

C. Interface for User Feedback
In the Sycophant environment a lot of program execution

occurs “behind the scenes” and typically only the target
(“wrapped”) application (i.e., a calendar software utility) is
accessed externally. However, to learn user preferences, Syco-
phant asks the user to provide feedback during her use of the
application. Details of the interface used in our calendaring
version of the Sycophant environment are shown in Figure 3.
Note that the quote , similar to the fortune program on Linux,
is included as an added motivation for the user to provide
feedback to the learning system.

Fig. 3. Interface for user feedback shown after a voice alarm has been issued

IV. SYCHOPHANT API: COMPONENT DETAILS AND
APPLICATION SET-UP PROCEDURE

Due to space limitation not all details pertaining to the
Sycophant API are presented in this paper. For complete
information, the reader is invited to download the Syco-
phant software publicly available via [7]. Nevertheless, in this
section we provide a thorough coverage of the Sycophant
API components Sensor API and Application API. These are
described using the class diagrams created to define them. In
addition, we illustrate the use of the API on setting up our
calendaring application. The steps followed in doing this are

general and can be used for implementing other context-aware
applications.

A. Sensors API
Figure 4 shows the class diagram of the Sensor API com-

ponent of the Sycophant API. The SycoMonitor class con-
tains and manages multiple instances of user-context sensors.
SycoMonitor has attributes that reflect the status of different
user-context sensors. For example, motionActive checks if the
motion detection sensor is active. SycoMonitor uses similar
status flags for keyboard, mouse and speech sensors. The
attribute runInterval specifies how often the context sensors
are polled for raw data. In SycoMonitor, the createPeriph-
erals method initializes the keyboard and mouse peripherals;
createMotionSensor and createSpeechSensor initialize motion
and speech sensors, respectively. All these three methods
create instances of the UserContextSensor class. The User-
ContextSensor has attributes: logFile to log a sensor’s data
and logInterval to specify how often the sensor data needs
to be logged. The attribute startDetection is used to start
detecting activity from a sensor and the attribute stopDetection
to stop a sensor’s activity detection. The runThread method
starts a thread that continuously tracks sensor activity. Three
sensor specific classes are derived from UserContextSensor.
The PeripheralsActivityDetector class manages keyboard and
mouse sensors. Next, the MotionDetector class manages mo-
tion detection. It has attributes to store the previous image
(previousImage), the current image (currentImage), the min-
imum allowed threshold for the difference between the two
images, and the program to use for grabbing images from a
web-camera (imageGrabber). Lastly, the SpeechDetector class
manages speech activity detection – its speechSoftwareCmd
specifies the speech recognition software to be used for
detecting speech from a user’s environment.

B. Application-Level API
Figure 5 shows the class diagram of the Application API

component of the Sycophant API. The GCalMonitor class
manages alarms from a user’s calendar. The method check-
ForAlarms checks for any current or pending appointments ev-
ery alarmCheckInterval seconds. The GCalProcessor gathers
the calendaring data from a user’s calendar file (getCalendar-
Data method), accesses a user-preferred alarm type (getPre-
dictedAlarm()) and generates an alarm for a current or pending
appointment using the generateAlarms() method. GCalParser
parses calendar data from a user’s calendar file. The methods
checkIfDaily, checkIfWeekly, checkIfMonthly check for daily,
weekly, and monthly repeating appointments, respectively. The
AlarmGenerator class generates different types of alarms and
notifications. The generateFortuneCookie generates a fortune
cookie (an interesting quote) along with the alarm generated
for an appointment using the attribute fortuneCookieText. User
context information from sensors (sensor features related to
motion, speech, keyboard and mouse) sensors get logged
using the writeCurrentUserContext method. The method gen-
erateAlarm generates an alarm for a user with the attribute

Fig. 4. Class diagram of Sycophant’s Sensors API
.

alarmText. A user feedback for her preferred alarm type is
stored in the attribute userFeedbackRequest using the method
getUserFeedback. This class also has methods related to alarm
prediction: getPredictedAlarmType uses the predictedAlarm-
Type to record an alarm type predicted for a user by executing
a machine learning algorithm trained on that user’s context
data, and writePredictedAndActualAlarms logs to a file the
predicted alarm and the user-preferred alarm type obtained
from the user’s feedback.
The classes VoiceAlarm and Visual Alarm inherit from the

AlarmGenerator class and generate voice and visual alarms,
respectively. For example, Figure 3 shown previously presents
the interface of the feedback form displayed after a voice alarm
was issued. A text to speech generator voices out appointment
text as a voice alarm for a user. The AlarmPredictor class
obtains the current sensor values using the attribute currSen-
sorValues and checks for existing user context data using
checkForUserContextData information. Based on the availabil-
ity of this context information, this class helps generate a user
model that reflects her preferences for alarm types using the
buildUserModel method. The method predictAlarm accesses
a machine-learning algorithm, feeds it with the current sensor
values and obtains a predicted alarm type using the generated
user model.
Most of target application-specific parameters (in this case,

Google Calendar related parameters) are set in an AppPa-
rameters class (in our case, in the GCalParameters class)
The following are the different attributes: wgetCmd obtains

a user’s calendar (userName) using the attribute googleCalen-
darLink which specifies the user’s calendar web link. Alarms
are checked every alarmCheckInterval seconds and generated
preAlarmTime seconds before the actual time of the appoint-
ment. Visual alarms and feedback request pop-ups auto close
after autoCloseAlarmInterval. The webcamImageGrabberApp
attribute specifies the application to use for grabbing images
from the user’s web-camera and the textToSpeechGenera-
torApp attribute specifies the text to speech generator used
for generating voice alarms. The gCalUserModel specifies
the location of a user model that reflects the user’s alarm
type preferences. This model is generated using the machine
learning algorithms located in the machineLearnersRootDir.
The machineLearnersPath specifies the machine learning al-
gorithm to use for generating a user model. This algorithm gets
trained on userContextTrainingSet, which is the training data
and an alarm is predicted for the current set of context values
stored in the userContextTestSet. Methods setGCalParameters
and setLearningParameters set the parameters related to the
calendar and the learning algorithms for a user, respectively.
Figure 5 shows classes related to extracting user context fea-

tures from the raw sensor data. The class UserContextCreator
has methods to set which sensors to use (setSensors), indicate
the features to extract (setFeatures), and extract context data
using these features from the raw sensor data (getUserCon-
textData()). The FeatureExtractorClass extracts the context
features used by UserContextCreator class. It has methods to
calculate how many times the a sensor was active, if it was
active during any or all of those minutes. The FeatureExtractor
uses SensorTail class which mimics the tail command on a
Linux/Unix operating system and obtains the specified number
of lines (nLinesToGrab) from a sensor’s log file sensorLogFile.
The data in this log file is a time-stamp indicating the activity
of a sensor.

C. Sycophant API in use: Example of application set-up
procedure
While next we show how to use Sycophant API for making

the Google Calendar “context-aware” it is worth noting that
the steps of setting up a sensor like the one described below
are the same regardless of the type of target application or the
type of sensor involved. These steps can be summarized as
follows:
1) Sensor setup
2) Feature-extractor setup
3) Feature set extraction
4) Target application setup

Specifically, code excerpts provided below show how to set up
a motion sensor. We can similarly set up the peripherals (key-
board and mouse) and the speech sensor using the following
steps.
Listing 1 shows how to set up a sensor and activate it to

its log raw data (timestamp value) to a file. We first create a
sensor by specifying its name and its associated log file (line
1), then we activate the sensor by calling the start method on
it (line 2).

Fig. 5. Class diagram of Sycophant’s Application-Level API

Listing 1. Sensor Setup
1 mot ionSenso r = Sensor (’ mot ion ’ , mo t i onLogF i l e)
2 mot ionSenso r . s t a r t ()

Listing 2 shows how to extract user-context features from a
sensor by setting up a feature extractor. We specify the length
of a sensors activity history in the past that we want to examine
(line 1) and indicate the type of feature extractor used (line
2). In this case, we want to look at the motion sensors activity
in the last five minutes. We can check if the sensor was active
during any of the five minutes or in all the five minutes by
specifying the checkAny and checkAll features (lines 3 and
4). We can also check how many times the motion sensor
was active in the period of five minutes by specifying the
getCountAll feature for the motion feature extractor (line 5).

Listing 2. Feature-Extractor Setup
1 l a s tNMinu t e s = 5 # du r a t i o n o f h i s t o r y check

f o r a s e n s o r
2 m o t i o n F e a t u r e E x t r a c t o r = F e a t u r e E x t r a c t o r (

mo t i onLogF i l e)
3 checkAnyNMinutes = mo t i o n F e a t u r e E x t r a c t o r .

checkAny (l a s tNMinu t e s)
4 checkAl lNMinutes = mo t i o n F e a t u r e E x t r a c t o r .

c h e c kA l l l a s tNMi nu t e s)

5 ge tCountAl lNMinutes = mo t i o n F e a t u r e E x t r a c t o r .
ge tCount (l a s tNMinu t e s)

Listing 3 shows how to create user context data using different
features extracted from different sensors. More details about
the meaning of these features are given in [1].

Listing 3. Extracting Features
1 mo t i o nF e a t u r e s = checkAny−1, checkAl l −1,

checkAny−5, checkAl l −5, getCount −5
2 s p e e c hF e a t u r e s = checkAny−1, checkAl l −1,

checkAny−5, checkAl l −5, getCount −5
3 mo t i onUse rCon t ex tDa ta = Us e rCon t e x t E x t r a c t o r (

mo t i o nF e a t u r e s)
4 s peechUse rCon t ex tDa t a = Us e rCon t e x t E x t r a c t o r (

s p e e c hF e a t u r e s)

Listing 4 shows how we use the context sensors for a target
application such as the Google Calendar by associating a
calendar file (line 1). Figure 5 provides additional details
about the target application wrapped within the Sycophant API
(specifically, in its Application-Level API component).

Listing 4. Application-Specific Use
1 c a l e n d a rMon i t o r = GCalMoni tor (c a l e n d a r F i l e)
2 c a l e n d a rMon i t o r . g ene r a t eA l a rms ()

V. RESULTS
We first deployed Sycophant API prototype to three users in

a long term study lasting four to six weeks [1], [12]. A simple
calendaring application we authored used Sycophant API to
generate four types or alarms for a user. The first alarm type
was a visual alarm that displayed the appointment text, the
second alarm type was a voice alarm where a text to speech
generation system voiced out an alarm for a user, the third
alarm type combined both visual and voice alarms, and the
fourth alarm type was a no-alarm (the user was not interrupted
by any alarm). We tested our hypothesis of using contextual
information from a users environment to learn her preferences
for alarm types by predicting the alarm type. In our research,
the two-class alarm prediction problem is deciding whether or
not to interrupt a user with an alarm, and the four-class alarm
problem is picking an alarm type to use from the class of four
different alarm types. In our initial long term study, Sycophant
API enabled us to achieve a prediction accuracy of 87 percent
on the two-class problem and 82 percent on the four-class
problem using XCS, a learning classifier system [13]. We
give details of the learning algorithms used, the experimental
methodology, and analysis results in [1].
To check the generalization of our approach, we conducted

a short term study with ten users. During the study, the user
read an article for the first 30 minutes on our experimental
set-up and answered questions related to the article during the
last 15 minutes. Our goal again was to predict the alarm type
to use for individual users based on user-context data collected
from them during the study. We achieved an accuracy of 86

percent on the two-class problem and 88 percent on the four-
class problem using XCS. Currently, we have plugged in the
Google Calendar [5] into our environment and are deploying
it to more users to gather long term usage data. More details
about our study, its design and the analysis of the performance
of the best and the worst machine learning algorithms on the
alarm prediction tasks are presented in [2].

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we pointed out to the lack of context-

awareness in many current computer applications and explored
the possibility of improving human-computer interaction by
harnessing contextual information from a users environment.
Also, we identified the lack of a platform-independent API
for extracting context features for researchers in adaptive user
interfaces. Our proposed Sycophant API is designed to remedy
this problem since it is available for use on both Windows
and Linux. Further, we described the functionality and the
4-layer architecture of our context-aware environment and
showed how Sycophant API provides a reusable, open-source
resource for personalizing user interfaces. Our Sycophant
component APIs and an example of context enabling a target
application (Google Calendar) showed the general procedure
for accessing, processing, and using context information from
a user environment. Our results from previously conducted
studies clearly demonstrated Sycophant’s utility for research in
context aware interfaces. Notably, while at this time Sycophant

is primarily a research tool, its transition to a full-fledged end
user tool should be straightforward as very little changes are
needed in its software.
Clearly, there is a lot of scope for improving the design of

our API. We are currently refining the Sycophant API and plan
to collect long term sensor data from at least ten more users.
Our goal is to test the generalization of our context learning
approach on one or more open source applications such as
the XMMS media player for Linux. We plan to incorporate
this and other new applications within our Sycophant context-
learning environment to create adaptive user interfaces that
can interact in more effective and more intelligent ways with
the users and thus improve their human-computer interaction
experience.

ACKNOWLEDGEMENTS
We thank the ten users involved in our study for their time.

This work was supported in part by contract number N00014-
0301-0104 from the Office of Naval Research and the National
Science Foundation under Grant No. 0447416.

REFERENCES
[1] A. Shankar, “Simple user-context for better application personalization,”

Master’s Thesis, University of Nevada, Reno, NV, 2006.
[2] A. Shankar, S. J. Louis, S. Dascalu, R. Houmanfar, and L. J. Hayes,

“User-context for adaptive user interfaces conference,” in Proceedings
of the Intelligent User Interfaces Conference, Honolulu, Hawaii, USA,
2007, pp. 321–325.

[3] J. A. Fogarty, “Constructing and evaluating sensor-based statistical
models of human interruptibility,” Ph.D. dissertation, Carnegie Mellon
University, Pittsburgh, PA, USA, 2006.

[4] J. Fogarty, S. E. Hudson, and J. Lai, “Examining the robustness of
sensor-based statistical models of human interruptibility,” Proceedings of
the Conference on Human factors in Computing Systems, pp. 207–214,
2004.

[5] Google Calendar, April 10, 2007, http://calendar.google.com.
[6] Carolina Computer Assistive Technology Group, UNC Assistive Tech-

nology, April 10, 2007, http://sourceforge.net/project/showfiles.php.
[7] Sycophant Website, April 10, 2007, http://www.cse.unr.edu/ syco/.
[8] X Multimedia System, April 10, 2007, http://www.xmms.org.
[9] Object Management Group, Unified Modeling Langauge, April 10,

2007, http://www.uml.org.
[10] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language

Reference Manual, 2nd Edition. Pearson Higher Education, 2004.
[11] J. Arlow and I. Neustadt, UML and the Unified Process: Practical

Object-Oriented Analysis and Design. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002.

[12] A. Shankar and S. J. Louis, “Learning classifier systems for user
context learning,” in Proceedings of the IEEE Congress on Evolutionary
Computation,September 2-5 2005, Edinburgh, UK, 2005.

[13] A. K. Shankar and S. J. Louis, “Better personalization using learning
classifier systems,” in Proceedings of the Indian International Confer-
ence on Artificial Intelligence, December 20-22, Poona, India, 2005.

